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Abstract. The recent development of the high performance computer platforms
shows a clear trend towards heterogeneity and hierarchy. In order to utilize the
computational power, particular attention must be paid to finding new algorithms or
adjust existing ones so that they better match the HPC computer architecture.

In this work we consider an alternative to classical time-stepping methods based
on use of time-harmonic properties and discuss solution approaches that allow efficient
utilization of modern HPC resources.

The method in focus is based on a truncated Fourier expansion of the solution of
an evolutionary problem. The analysis is done for linear equations and it is remarked
on the possibility to use two- or multilevel mesh methods for nonlinear problems,
which can enable further, even higher degree of parallelization.

The arising block matrix system to be solved admits a two-by-two block form
with square blocks, for which a very efficient preconditioner exists. It leads to tight
eigenvalue bounds for the preconditioned matrix and, hence, to a very fast convergence
of a preconditioned Krylov subspace or iterative refinement method. The analytical
background is shown as well as some illustrating numerical examples.
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1 Introduction

Traditional solution methods for time-dependent partial differential equations
are based on time-stepping methods. These methods can be explicit or implicit,
however they are by nature sequential in time, i.e., need many time steps to be
executed one after another, which make these methods slow, thus, demanding
much computing time. Parallelism might occur only within each timestep.
For reasons of numerical stability, explicit methods may require the use of very
small time-steps, which, for real life problems, may require infeasibly many time
steps. Implicit methods are stable but the timesteps should still be chosen small
enough, to achieve a sufficiently small time-discretization error. Alternatively,
higher order stable methods can be used which, however, add even further to
the computational complexity.

In the time-stepping framework parallelism is achieved within each timestep.
For implicit methods, in each time interval one has to solve a system of equa-
tions, usually of elliptic type, thereby applying known solution techniques, with
enough degree of parallelism, such as some multilevel or multigrid techniques.

The search for parallelism in time has a long history. As an example, we refer
to [33], where the parallelism is sought between the steps of suitably constructed
Diagonally Implicit Runge-Kutta (DIRK) methods, originally constructed for
solving stiff ordinary differential equations (cf. e.g., [1]). Still, the nature of the
computations remains serial and within the time-stepping framework. However,
there exist alternatives to time-stepping methods, where one still needs to solve
systems, similar to those arising in the implicit methods, but in parallel.

In many practically important applications, such as in optimal control, the
control function is periodic, for instance, an alternating current in electromag-
netic problems. Then the equation becomes time-harmonic and the solution
can be approximated with a truncated Fourier series expansion. Due to the
orthogonality of the trigonometric functions, for linear problems the computa-
tion of the Fourier coefficients separate and one can compute the solution for
each period fully in parallel. Hence, the solution process is perfectly paralleliz-
able across the different frequencies. Due to the large size of the discretized
systems one must use iterative solution methods, see e.g. [4], [5], [32], [34]. The
preconditioner used should then also be well parallelizable.

For each frequency, a system on two-by-two or four-by-four block matrix
form arises. In a series of publications ( [6, 7, 8, 10, 12]) it has been demon-
strated that for such problems a very efficient preconditioner, based on the
PREconditioned Square matrix Block (PRESB) method, exists and leads to
very tight eigenvalue bounds and, hence, few iterations. This holds uniformly
with respect to mesh size, control cost and other regularization parameters as
well as to the problem parameters. The method has been shown to outper-
form other published methods for the problems considered. We argue further,
that the structure of the PRESB method allows for additional levels of par-
allelization, achieved by applying well-developed and efficient computational
toolboxes for the basic operator equations arising in the PRESB method, such
as the Algebraic Multigrid (AMG) method, provided via publicly available sci-
entific computing libraries. To illustrate the idea we consider an optimal control
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problem, constrained by an evolutionary partial differential equation.
For nonlinear problems one can use ideas, presented in [3, 9, 37] and utilize

a two-grid or multi-level method, where the nonlinear equation is solved on a
coarse grid, then the solution is interpolated to the fine grid and a corrected
solution of the linearized Newton type equation is computed just once, which
normally suffices to get a solution with an error of the same order as the fine
mesh discretization error. Such approaches can save much computational labor.

The idea of using truncated Fourier series expansions is introduced in Sec-
tion 2. We present an introductory example of an optimal control problem for
an evolution equation in Section 3. The description of the solution method and
the preconditioner is found in Section 4. Section 5 comprises a short presenta-
tion of the suggested approach for nonlinear problems. Some discussion of the
computational and communication costs of the methods is given in Section 6.
An illustrating example for the heat equation with numerical test results are
presented in Section 7. We also shortly refer to an application of the method
for solving eddy current electromagnetic problems, as presented in [10].

2 Truncated Fourier series expansions for linear evolution
equations

Consider an evolution equation

∂u

∂t
+ Lu = f, u = u(x, t), 0 < t < T, x ∈ Ω ⊂ Rd, d = 1, 2, 3, (2.1)

where L is a time-independent linear and coercive elliptic type differential op-
erator with boundary and initial conditions u(x, t) = 0 on ∂Ω, u(x, 0) = u0(x).

2.1 Truncated Fourier expansion

As is well known, every sufficiently smooth periodic function, say F (t), that is
periodic on −T ≤ t ≤ T , has a Fourier series expansion

F (t) =

∞∑
k=0

ak cos

(
kπ

T
t

)
+

∞∑
k=0

bk sin

(
kπ

T
t

)
. (2.2)

Utilizing the Fourier expansion representation, as we show in the sequel, enables
us to strongly increase the degree of parallelism of the underlying solution
methods. As the problem to solve is, in general, not periodic, we explore the
option to extend it and make it periodic.

First we recall that defining F (t) on −T ≤ t ≤ T to be a periodic extension
of some given function f(t), defined on 0 ≤ t ≤ T can be done in many different
ways. There are two periodic extensions of f(t) that turn out to be particularly
useful, namely,

F (t) = f(t), 0 ≤ t ≤ T ,
F (t) is even, i.e., F (−t) = f(t),
F has period 2T ,

F (t) = a0 +
∞∑
k=1

ak cos
(
kπt
T

)
,

’even periodic extension’

F (t) = f(t), 0 ≤ t ≤ T ,
F (t) is odd, i.e., F (−t) = −f(t),
F has period 2T ,

F (t) =
∞∑
k=1

bk sin
(
kπt
T

)
,

’odd periodic extension’

Math. Model. Anal., 23(2):287–308, 2018.



290 O. Axelsson, M. Neytcheva and Z.-Z. Liang

We note, that when F is even, it has a cosine Fourier expansion and when
F is odd, it has a sine Fourier expansion. Figure 1 illustrates an even extension
of f(x), that is, the solution on the interval [T, 2T ] is the mirror of the solution
on [0, T ].
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Figure 1. A symmetrically extended function

Following the above lines, in order to get a periodic solution we extend the
problem (2.1) symmetrically to the time interval (0, 2T ], where f(x, 2T − t) =
−f(x, t), 0 < t ≤ T . Hence, it holds also that u(x, 2T − t) = u(x, t), 0 < t ≤ T .
The differential equation then becomes an evolution equation with periodic
conditions,

∂u

∂t
+ Lu = f, 0 < t < 2T, x ∈ Ω,

u(x, t) = 0, x ∈ ∂Ω and u(x, 0) = u(x, 2T ). (2.3)

This makes it possible to use a truncated Fourier series,

u(x, t) = u0(x) +

∞∑
k=1

uk(x) cos(ωkt), (2.4)

where ωk = k πT , k = 0, 1, . . . , N are the angular frequencies and uk(x) are the
Fourier coefficients at x ∈ Ω.

The expansions (2.2) and (2.4) represent the trigonometric form of a Fourier
series. We consider, however, the more general complex exponential form of
a Fourier series. The expression ak cos(kθ) + bk cos(kθ) can be stated using
exponentials and we can rewrite (2.2) as

F (t) =

∞∑
k=0

ck e
iωkt +

∞∑
k=0

c∗k e
−iωkt,

where ck = 1
2 (ak − i bk) and c∗k = 1

2 (ak + i bk) and i is the imaginary unit.
The complex formulation of a Fourier series is considered to be precursor of
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the Fourier transform which attempts to apply Fourier analysis for non-periodic
functions. The complex form is widely used by engineers, for example in circuit
and control theory.

Let assume that the solution of (2.3) is of even more general form, namely,

u(x, t) =

N∑
k=0

uck(x) cos(ωkt) + iusk(x) sin(ωkt). (2.5)

Substituting (2.5) in the differential equation (2.3), we obtain

N∑
k=0

(
− ωkuck(x) sin(ωkt) + iωku

s
k(x) cos(ωkt)

)
+

N∑
k=0

(
Luck(x) cos(ωkt) + iLusk(x) sin(ωkt)

)
= f.

A multiplication with cos(ωkt) respectively with sin(ωkt), and integration over
the time interval (0, 2T ), thereby using the orthogonality of the trigonometric
functions, results in the equations{

iωku
s
k(x) + Luck(x) = f ck(x) := 1

T

∫ 2T

0
f(x, s) cos(ωk, s)ds,

−ωkuck(x) + iLusk(x) = fsk(x) := 1
T

∫ 2T

0
f(x, s) sin(ωk, s)ds = 0.

(2.6)

Here we have used the elementary relations

1

T

∫ 2T

0

cos2(ωks)ds =
1

T

∫ 2T

0

sin2(ωks)ds = 1

and the symmetry of f(x, t) = f(x, 2T − t), which gives fsk(x) = 0.
A proper choice of N could be made by trial and error. In some problems

one can instead utilize classical truncation error expressions and estimate the
solution error via the truncation error. We refer to [21,23] for such an estimate
showing that the error in the Fourier expansion decreases at least as O(1/

√
N),

N → ∞. In practice, the solution is often much smoother and can be repre-
sented by a few-term Fourier expansion, so it is not needed to choose a large
value of N . However, as shown below, the bigger N , the more parallelism is
enabled in the solution method.

2.2 Galerkin variational FEM

Let uck ∈ U , usk ∈ V , where U and V are appropriate subspaces of H0(Ω) and
let Uh and Vh be some finite-dimensional (finite element) subspaces. Let M
be the corresponding Galerkin mass matrix and L the corresponding stiffness
matrix, for the inner product in L2(Ω). Then, after multiplying the equations
(2.6) with the basis functions in Uh and Vh and forming the finite element
(FEM) variational formulation of (2.6), the equations take the algebraic form{

Luck + iωkMusk = f ck ,

−ωkMuck + iLusk(x) = 0,
(2.7)

Math. Model. Anal., 23(2):287–308, 2018.
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where uck,u
s
k are the discrete FE solution vectors and f ck - the vector representa-

tion of the source function corresponding to ωk and the chosen basis functions.
For k = 0 we get the solutions Lu0 = f ck , Lv0 = 0, i.e., v0 = 0. We

multiply the second equation in (2.7) by the complex unit number i to get the
block matrix system, [

L iωkM
−iωkM −L

] [
uck
usk

]
=

[
f ck
0

]
. (2.8)

Clearly, the system (2.8) can be further reduced to the fourth order problem,

(LM−1L+ ω2
kM)uck = LM−1f ck . (2.9)

However, to avoid working with fourth order operators we keep the two-by-two
block form in (2.8). Note that the matrix in (2.8) is indefinite and Hermitian.
If one prefers to use only real arithmetics, the two-by-two block complex matrix
can be reformulated as a four-by-four real-valued block matrix, see e.g. [10] for
an example of this.

3 An optimal control problem with an evolution state
equation

Optimal control problems with a PDE as state equation have been studied in
many publications. Such publications, related to this paper, are for instance
[17, 18, 22, 23, 29] and the previously mentioned [6, 7, 8, 12]. Here we emphasize
the case when the constraint is an evolutionary equation.

In general, initially before the exponential decay caused by the elliptic na-
ture of the problem has had any significant damping influence, the solution
to an evolution equation shows a less smooth behaviour. When the diffusion
coefficient in L is relatively small, this may occur particularly late in time.
As t → ∞, eventually the solution becomes close to the stationary solution,
Lu∞ = f . In some problems, such as electrical machineries, the primary aim is
to find the stationary solution to the time-dependent problem. Then one aim is
to find an initial value function which makes the convergence to the stationary
solution smooth for all times, 0 < t < T . In addition, we want to find a source
control function such that the solution for t = T is close to some given, target
solution ud(x).

However, we pose here the task to find a solution u(x, t) of the evolution
equation for all t,

∂u

∂t
+ Lu = v(x, t), (x, t) ∈ Ω × (0, T ], Ω ⊂ Rd, d = 1, 2, 3,

u(x, t) = 0, on ∂Ω,

u(x, 0) = u0(x)

and a control function v(x, t) such that u(x, t) is as close as possible to a desired
solution ud(x, t). The boundary conditions are chosen to be homogeneous only
for simplicity, Ω is a given bounded Lipschitz domain and L is an elliptic
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operator, i.e. satisfies a coercivity condition, (Lu,w) ≥ α(u,w), α > 0, for all
w ∈ H1(Ω). For example, L can be the convection-diffusion operator, Lu =
−ν∆u+w ·∇u+cu, where ν > 0 and c− 1

2∇·w ≥ 0. The solution is controlled
by the source function v ∈ L2(Ω)× (0, T ] which, for simplicity we assume to be
distributed in the whole domain and also to satisfy the homogeneous boundary
conditions.

Such optimal control problems must be regularized to obtain a well-posed
problem. For this purpose, we use the simplest Tikhonov regularization form.
Let λ be a Lagrange multiplier to handle the constraint equation, ∂u∂t +Lu = v.
The optimal control problem can then be formulated as a saddle type func-
tional,

min
u,v

max
λ
J (u, v, λ),

where the Lagrangian functional J (u, v, λ) equals

J (u, v, λ) =
1

2

∫ T

0

∫
Ω

(u(x, s)− ud(x, s))2dxds (3.1)

+

∫ T

0

∫
Ω

λ

(
∂u

∂t
+ Lu− v

)
dxds+

1

2
β

∫ T

0

∫
Ω

v2(x, s)dxds .

Here β > 0 is the regularization parameter for the cost of the control function v.
The first order necessary conditions, ∇u,v,λ J (u, v, λ) = 0, are also sufficient
for the existence of a solution. Here ∂J

∂v = 0 leads to the simple relation,
−λ + βv = 0, which enables us to reduce the arising linear system. Hence,
substituting λ = βv in (3.1) gives

Ĵ (u, v) := L(u, v, βv) =
1

2

∫ T

0

∫
Ω

(u(x, s)− ud(x, s))2dxds

+ β

∫ T

0

∫
Ω

v

(
∂u

∂s
+ Lu

)
dxds− 1

2
β

∫ T

0

∫
Ω

v2(x, s)ds

=
1

2

∫ T

0

∫
Ω

(u(x, s)− ud(x, s))2dxds+ β

∫ T

0

∫
Ω

(−∂v
∂s

+ L∗v)u dxds

− 1

2
β

∫ T

0

∫
Ω

v2(x, s)dxds,

where L∗ is the adjoint operator to L and where we have made use of the
homogeneous boundary conditions. The first order conditions give now{

u+ β
(
−∂v∂t + L∗v

)
= ud,

β
(
∂u
∂t + Lu

)
− βv = 0,

or

{
u+
√
β
(
−∂ṽ∂t + L∗ ṽ

)
= ud,

−
√
β
(
∂u
∂t + Lu

)
+ ṽ = 0,

(3.2)

where ṽ =
√
βv. Here u and v satisfy the given homogeneous boundary condi-

tions but there are no initial conditions prescribed.

Choosing a proper set of finite element basis functions and multiplying the
equations in (3.2)(right) with these basis functions as test functions, we obtain

Math. Model. Anal., 23(2):287–308, 2018.
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the semi-discrete (FEM) formulation, corresponding to (3.2):
Mu(t) +

√
β

(
− ∂

∂t
M ṽ(t) + L∗ ṽ(t)

)
= ud(t),

−
√
β

(
∂

∂t
Mu(t) + Lu(t)

)
+M ṽ(t) = 0.

(3.3)

Here M is the mass matrix corresponding to the basis functions and the L2-
inner product, L is the stiffness matrix corresponding to the operator L, and
u(t), ud(t), ṽ(t) denote the finite element vectors, corresponding to the interior
node points in Ωh, the discrete finite element mesh.

In the sequel, dropping for simplicity the ˜ sign, we next approximate the
time-dependent vectors u(t), ud(t), ṽ(t) with truncated Fourier series expan-
sions,

N∑
k=0

[
uck + iusk
vck + ivsk

]
e−iωkt,

where ωk are the frequencies (ωk = kπ/T , k = 1, 2, . . . , N) and where

[
u(t)
v(t)

]
has its real-valued part equal to

N∑
k=1

([
uck
vck

]
cos(ωsk) +

[
usk
vsk

]
sin(ωsk)

)
and its

imaginary part - equal to
N∑
k=1

([
usk
vsk

]
cos(ωsk)−

[
uck
vck

]
sin(ωsk)

)
.

Due to the orthogonality of the trigonometric functions, for linear prob-
lems, as we consider here, the computations of the different Fourier coefficients
separate, so it suffices to consider the resulting equations for just one index k.
From (3.3), it follows then,{

M(uck + iusk) +
√
β (iωkM(vck + ivsk) + L∗(vck + ivsk)) = ucd,k + iusd,k,√

β (iωkM(uck + iusk)− L(uck + iusk)) +M(vck + ivsk) = 0.

Here we separate the real and the imaginary parts for each equation, to get
[
M 0
0 M

] [
uck
usk

]
+
√
βωk

[
0 −M
M 0

] [
vck
vsk

]
+
√
β

[
L∗ 0
0 L∗

] [
vck
vsk

]
=

[
ucd,k
usd,k

]
,

√
βωk

[
0 −M
M 0

] [
uck
usk

]
−
√
β

[
L 0
0 L

] [
uck
usk

]
+

[
M 0
0 M

] [
vck
vsk

]
=

[
0
0

]
or, in block matrix form,

[
M 0
0 M

] √
β

[
L∗ −ωkM
ωkM L∗

]
−
√
β

[
L ωkM

−ωkM L

] [
M 0
0 M

]


uck
usk
vck
vsk

 =


ucd,k
usd,k
0
0

 . (3.4)

Note that the off-diagonal blocks are skew-Hermitian. Introduce the notation

M =

[
M 0
0 M

]
, B = −

√
β

[
L ωkM

−ωkM L

]
.



Parallel Solution Methods and Preconditioners for Evolution Equations 295

Then the block matrix in (3.4) can be written as,

A =

[
M −B∗
B M

]
.

4 Preconditioning method

Following the approach used in several earlier papers, [6,7,8,12] as a precondi-
tioner to A we choose

C =

[
M + B + B∗ −B∗

B M

]
=

[
M + (L + L∗) −B∗

B M

]
, (4.1)

where L =
√
β

[
L 0
0 L

]
. The preconditioned matrix takes the form

C−1A =

[
I 0
0 I

]
− C−1

[
L + L∗ 0

0 0

]
.

Further, as shown below, C−1 possesses a block-factorized form

C−1 =

[
I (M + L)−1

0 (M + L)−1

] [
I 0
−L I

] [
(M + L∗)−1 −(A+ L∗)−1

0 I

]
,

so,

C−1
[
L + L∗ 0

0 0

]
=

[
I (M + L)−1

0 (M + L)−1

] [
(M + L∗)−1(L + L∗) 0
−L(M + L∗)−1(L + L∗) 0

]
.

Therefore, besides some matrix-vector multiplication, an action of the precon-
ditioned matrix, involves only a solution with the elliptic type matrices M+L∗

and M + L, which consist of blocks that are a sum of mass matrices and dis-
cretized elliptic operators.

In addition, as outlined below and has been shown in the above cited earlier
publications of the first and the second author, the preconditioning leads to
tightly clustered eigenvalues and, hence, very fast convergence.

We present now the preconditioner for a matrix in the general form

A =

[
A B2

B1 −A

]
,

where A, B1 and B2 are generic matrices of order n × n, A is assumed to be
symmetric and positive definite and A+Bi, i = 1, 2 are nonsingular. Let

C =

[
A+B1 +B2 B2

B1 −A

]
(4.2)

be a preconditioner to A, to be used in a Krylov subspace type of iteration
method, such as GMRES [31] or MINRES [28]. Given a linear matrix precon-
ditioning equation

C
[
x
y

]
=

[
f
g

]
, (4.3)

Math. Model. Anal., 23(2):287–308, 2018.
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by changing the sign of the second equation and adding the first, the system
can be written in the equivalent form,{

(A+B1 +B2)x +B2y = f ,
(A+B2)x + (A+B2)y = f−g, i.e.,

[
A+B1 B2

0 A+B2

] [
x
z

]
=

[
f

f−g

]
,

where z = x + y. Hence, z = (A + B2)−1(f − g) and (A + B1)x = f −
B2z. Therefore, the algorithm to compute the solution of (4.3) can be written

as
(1) Solve (A+B2)z = f − g, (3) Solve (A+B1)x = f̃ ,

(2) Compute f̃ = f −B2z, (4) Compute y = z− x.
Alter-

natively, it is readily seen that

C =

[
I 0
I −(A+B2)

] [
I B2

0 I

] [
A+B1 0

I I

]
,

so,

C−1 =

[
(A+B1)−1 0
−(A+B1)−1 I

] [
I −B2

0 I

] [
I 0

(A+B2)−1 −(A+B2)−1

]
.

Hence, besides some vector additions, the algorithm involves a solution of a
linear systems with A+B2, a matrix-vector multiplication with B2 and a solu-
tion with the matrix A+B1. In practice, the solution of the two linear systems
contribute to the major cost of computing an action of C−1. In our applications
they correspond to discrete elliptic operators, for which very efficient solution
methods are known to exist.

As Proposition 1 shows, the eigenvalues are tightly clustered near the unity.
See also [8].

Proposition 1. Let

A =

[
A B2

−B1 A

]
, C = A+

[
B1 +B2 0

0 0

]
,

where we assume that A, of order n×n, is symmetric positive definite, B2 = B∗1 ,
B1 = B, B + B∗ is positive semidefinite and A + B is nonsingular. Then the
eigenvalues of C−1A are real and satisfy

1

2
≤ 1

1 + α
≤ λ ≤ 1,

where α = max {Re(µ)/|µ|}, and µ is an eigenvalue of Bz = µAz, z 6= 0. The
dimension of the eigenvalue λ = 1 is n+ n0, where n0 is the dimension of the
nontrivial nullspace of B1 +B2. It follows that

λ =
1 + |µ|2

1 + |µ|2 + 2Re(µ)
=

1

1 + 2Re(µ)
1+|µ|2

≥ 1

1 + Re(µ)
|µ|

. (4.4)

Proof. From

λC
[
x
y

]
= A

[
x
y

]
, ‖x‖+ ‖y‖ 6= 0
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it follows

(1− λ)C
[
x
y

]
=

[
(B1 +B2)x

0

]
.

Since B1 +B2 is positive semidefinite, it follows that λ ≤ 1. Further, for λ 6= 1,
it holds B1x = Ay. Hence

(1− λ)(A+B1 +B2 +B2A
−1B1)x = (B1 +B2)x

or, since A is spd,

(1− λ)(I + B̃ + B̃∗ + B̃∗B̃)x = (B̃ + B̃∗)x,

where B̃ = A−1/2BA−1/2. Therefore (1− λ)(1 + 2Re(µ) + |µ|2) = 2Re(µ) or

1− λ =
2Re(µ)/|µ|

1/|µ|+ |µ|+ 2Re(µ)/|µ|
≤ α

1 + α
.

The estimate (4.4) follows directly from the latter relation.

Proposition 1 shows that the relative size, Re(µ)/|µ|, of the real part of

the spectrum of B̃ = A−1/2BA−1/2 determines the lower eigenvalue bound
of C−1A and, hence, the rate of convergence of the preconditioned iterative
solution method. For a small such relative part the convergence of the iterative
solution method will be exceptionally rapid. Such small parts can occur for
harmonic problems with a large value of the frequency.

It is further readily seen that the eigenvalue problem has a full eigenvector
space, i.e. the preconditioned matrix C−1A is diagonalizable by a similarity
transformation formulation, see e.g. [4].

5 A multilevel-mesh solution method in the context of
nonlinear evolution equations

For a nonlinear problem, such as ∂u
∂t + L(u)u = f, where L(a)u = −∇ ·

(a(u))∇u+w(u) ·∇u = f the arising block matrix system is nonlinear and one
must use a nonlinear solver.

In a similar way as holds for the classical Newton method, to ensure fast
convergence of the nonlinear solver, we need a high quality initial guess see
e.g. [3]. For this purpose we can use (nested) discretization meshes, T0 ⊂ T1 ⊂
. . . ⊂ Tm, obtained by regular refinements of some given coarse mesh (T0). A
scheme to obtain a good starting vector, used e.g., in [29] in the framework of
PDE-constrained optimal control problems, is depicted in Algorithm 1.

Thus, in order to solve the nonlinear system on level m we solve it also on all
coarser meshes. This, of course, makes the solution procedure computationally
demanding.

In [9, 12] the following idea is shown to be very fruitful: solve (accurately)
the nonlinear problem on some coarse mesh, prolong the so-obtained solution
to the finest (Tm) and solve the linearized problem only once, gaining under
certain conditions the order of the accuracy of the discretization of the finest
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Algorithm 1 Constructing an initial guess for the nonlinear solver using the
full mesh hierarchy

Initialize a, b and the solution at T0
For all i = 0, 1, . . . ,m

Solve the nonlinear system on level i
If i < m, prolong the current solution to level i+ 1

EndFor

level. We note that this idea is not always directly applicable for optimal control
problems. For instance, in the framework of the semi-smooth Newton method
applied for problems with a box-constrained solution, the stopping criterion is
not related to a certain tolerance but to a set of point identifiers where the
box-constraint values are taken exactly and that stop changing ( [12]). In this
sense we cannot control the accuracy of the solution on a mesh by a tolerance
and continue the nonlinear iterations until convergence is achieved. The two-
level framework for the semi-smooth Newton method can then be applied as
follows. Instead of using all levels in the mesh hierarchy, we choose one (or
more, not necessarily consecutive coarser meshes), solve the nonlinear problem
there, prolong to Tm and perform only one Newton step there, thus, solve the
linear problem only once. In [12], the effect of using different combinations of
meshes is nicely illustrated.

6 Computational and communication complexity of the
proposed approach

The suggested method, based on periodic function extension and truncated
Fourier expansions, enables much work in parallel. To compute the vectors
uk and vk for a linear problem as in (3.4), we are able to solve N systems
(3.4) for each frequency ωk, independently. These can be assigned to N sub-
systems of the hardware resource (consisting of a number of cores or nodes,
or accelerators), with size large enough to solve the systems efficiently. We
refer to this as a first level of parallelism. These solutions do not require any
communication. Communication occurs only when the individual components
per frequency must be summed up.

The solution of the system in (3.4) is the second level of parallelism. The
framework is very similar to solving a single discrete PDE problem and the
approaches for parallelizing the computations are well studied. The system
is assumed to be solved by an iterative solution method that accommodates
variable preconditioning, such as FGMRES ( [31]). Each iteration requires one
matrix-vector multiplication, a few vector updates and scalar products, and a
solution of a system with the preconditioner C. In turn, the latter requires two
solutions with the matrices

F =

[
M +

√
βL −ωk

√
βM

ωk
√
βM M +

√
βL

]
and F∗ =

[
M +

√
βL∗ ωk

√
βM

−ωk
√
βM M +

√
βL∗

]
(6.1)
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plus one multiplication with

[
L∗ −ωkM
ωkM L∗

]
.

Using our preconditioner, the solution with F and F∗ boils down to solutions
with the matrices

Q = (1 + ωk
√
β)M +

√
βL and Q∗ = (1 + ωk

√
β)M +

√
βL∗ (6.2)

and a multiplication with ωk
√
βM . For the solution with Q and Q∗ we can use

the Conjugate Gradient method preconditioned by some Algebraic Multigrid
(AMG) method, see e.g. [20, 27] or by some other well-parallelizable precondi-
tioner such as special AMG versions [10,11,13] or such as the gaining popularity
Monte Carlo-based approximate inverse preconditioning methods (cf. e.g. [2]).

Assuming that the partitioning of the discretization mesh is done using an
appropriate software tool, such as ParMetis ( [19]), we expect a well-balanced
distribution of the computational work, good data locality, no communication
bottlenecks and good scalability and efficiency of the proposed solution method.

The preconditioner C in (4.2) has been used in the context of multi-phase
fluid simulations and parallel performance results are available in [30].

To sum up, we propose a computational procedure that is suitable both
for large homogeneous or heterogeneous computer platforms, with two-level
parallelism. One level of (coarse grain) parallelism is enabled through the fully
decoupled computation of the Fourier coefficients of the state and the control,
that can be assigned to relatively large computing entities (nodes, groups of
nodes, GPUs, etc., depending on the number of the degrees of freedom in the
fine discretization mesh). The second level of parallelism is imposed via the
solution of the algebraic systems for each individual frequency. To solve those,
we advocate a method, that allows for using ready toolboxes from already
available highly optimized parallel libraries, such as HYPRE ( [24]), Trilinos
( [16]), MFEM ( [15]), PETSc ( [14]), to name some. The potential of the
approach is similar to that of the method to solve fractional diffusion problems
reported in [35,36], where also some parallel tests are included.

7 Illustrating test problems

For the purpose of illustrating the approximation of the time-dependent solu-
tion and the robustness of the method with respect to mesh and regularization
parameters we consider first the heat problem. Then, to further illustrate
the robustness of the preconditioning method with respect to a larger set of
parameters – meshsize, regularization, angular frequency and other problem
parameters, we shortly comment also on an eddy-current time-harmonic prob-
lem.

All numerical experiments, reported here, are performed in Matlab on a
laptop Lenovo ThinkPad T500 2055 Core 2 Duo T9400 / 2.53 GHz Centrino 2
with 8GB memory.

7.1 The heat equation as constraint

Consider the transient heat equation as a state constraint in the following
optimal control problem.

Math. Model. Anal., 23(2):287–308, 2018.
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Problem 1.

∂

∂t
u(x, t)−∇ · (κ(x)∇u(x, t)) = v(x, t) for all (x, t) ∈ Ω × (0, 1],

u(x, t) = 0 for all (x, t) ∈ ∂Ω × (0, 1],

u(x, 0) = 0 for all x ∈ Ω, (7.1)

where ud is the desired solution. The form of ud is taken as Example 3 in [23],
namely,

ud = χ[ 14 ,
3
4 ]

(t)χ[ 12 ,1]
2(x).

In (7.1), Ω = [0, 1]2 and κ(x) is the thermal conductivity. The function χ is the
characteristic function, being equal to one when the argument is in the given
interval and zero elsewhere. In alignment with the assumptions, we infer that
the solution u, the desired solution ud and the control v are of the form (2.5)
and that ud is extended to the interval [0, 2] by use of symmetric mirroring as

ucd,k =
1

T

(∫ T

0

ud(x, t) cos(ωkt)dt+

∫ 2T

T

ud(x, 2T − t) cos(ωkt)dt
)
,

usd,k =
1

T

(∫ T

0

ud(x, t) sin(ωkt)dt+

∫ 2T

T

ud(x, 2T − t) sin(ωkt)dt
)
.

The space discretization is done using bilinear finite element basis functions
on a square discretization mesh.

In the experiments we use only up to five terms in the extension, i.e., N = 5.
The solution procedure is as follows. The outer solution method and the solver
for the blocks F and F∗ (cf. (6.1)), appearing in the preconditioner C (cf.
(4.1)) is FGMRES. The very inner solver for the blocks Q and Q∗ (cf. (6.2))
is the Conjugate Gradient method, preconditioned by AGMG (cf. [27]). The
(relative) stopping criteria are 10−6, 10−3 and 10−3, correspondingly. The
results for various h, N and β are presented in Table 1. As in [21], ω is fixed

as 2π. The iterations are shown in the form ITouter(IT
(av)
inner/IT

(av)
agmg), where

ITouter is the number of outer FGMRES iterations, IT
(av)
inner is the average

number of inner FGMRES iterations and IT
(av)
agmg is the average number of the

AGMG-preconditioned conjugate gradient. Even though the implementation
is in Matlab, we include as a reference the total execution time (in seconds).

As shown in Table 1, for each individual frequency ωk, k = 0, 1, . . . , 5, and
for all chosen values of h and β, the number of outer iterations varies between
6 and 8. The number of inner iterations varies between 1 and 4 and the inner-
most iterations using the AGMG-preconditioned conjugate gradient vary also
within a very short interval, between 2 and 7. This means that the method
shows a very robust behaviour. It is worth noting that even though we use
Matlab, the total computing time increases with an almost constant factor
between 4.5 and 6.8, when h−1 is doubled, which is relatively close to the
optimal value 4.

For comparison, in Table 2 we include the performance of the block-diago-
nally preconditioned MINRES, as described in [21]. The stopping criteria are
10−6 for the outer MINRES and 10−3 for the blocks, solved by AGMG.
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Table 1. Problem 1: Performance results for FGMRES, A preconditioned by C in (4.1)

β = 10−2 β = 10−4 β = 10−6 β = 10−8

h k IT CPU IT CPU IT CPU IT CPU

0 7(1/3) 0.60 8(1/3) 0.67 8(1/2) 0.63 8(1/2) 0.47
1 7(3/7) 2.38 8(2/6) 1.74 8(2/5) 1.53 8(1/4) 0.62

1
128

2 7(4/6) 2.92 8(3/6) 2.52 8(2/5) 1.50 8(1/4) 0.63
3 6(4/6) 2.60 8(3/6) 2.47 8(2/5) 1.52 8(1/4) 0.69
4 6(4/6) 2.67 8(3/6) 2.44 8(2/5) 1.51 8(1/4) 0.77
5 6(4/6) 2.62 8(4/6) 3.06 8(2/5) 1.56 8(2/4) 0.81

0 7(1/4) 3.16 9(1/3) 3.83 8(1/3) 3.03 8(1/2) 2.64
1 7(3/7) 11.62 8(2/6) 8.72 8(2/5) 7.73 8(1/4) 3.93

1
256

2 7(4/7) 14.01 8(3/6) 12.13 8(2/5) 7.66 8(1/4) 4.50
3 6(4/7) 12.99 8(3/6) 12.05 8(2/5) 7.70 8(1/4) 4.63
4 6(4/7) 13.68 8(3/6) 11.99 8(2/5) 7.67 8(1/4) 4.89
5 6(4/7) 13.76 8(4/6) 14.52 8(2/5) 7.75 8(2/4) 5.53

0 7(1/4) 22.52 8(1/4) 18.81 8(1/3) 17.72 8(1/3) 16.29
1 7(3/7) 66.40 8(2/7) 45.75 8(2/6) 41.77 8(1/5) 23.15

1
512

2 7(4/7) 71.25 8(3/7) 63.22 8(2/6) 40.81 8(1/5) 24.59
3 6(4/7) 65.58 8(3/7) 63.87 8(2/6) 40.54 8(1/5) 26.15
4 6(4/7) 66.63 8(3/7) 67.86 8(2/6) 41.56 8(2/5) 30.06
5 6(4/7) 65.91 8(4/7) 79.63 8(2/6) 41.18 8(2/5) 33.74

Table 2. Problem 1: Performance of the block-diagonally preconditioned MINRES, equa-
tions (33) and (34) in [21]

β = 10−2 β = 10−4 β = 10−6 β = 10−8

h k IT CPU IT CPU IT CPU IT CPU

0 14(3) 0.83 20(3) 1.04 24(2) 1.14 25(2) 0.78
1 16(6) 1.51 22(5) 1.83 22(4) 1.53 24(4) 0.99

1
128

2 18(6) 1.68 22(5) 1.79 24(4) 1.75 24(4) 0.95
3 18(6) 1.65 22(5) 1.79 24(4) 1.66 24(4) 0.95
4 20(6) 1.82 24(5) 1.95 24(4) 1.68 24(4) 0.96
5 20(5) 1.76 24(5) 1.97 24(4) 1.66 24(4) 0.97

0 14(3) 3.93 20(3) 5.21 24(2) 5.68 26(2) 4.88
1 16(6) 7.46 22(6) 9.29 24(5) 8.77 26(4) 7.14

1
256

2 18(6) 8.27 24(6) 9.98 25(5) 9.18 26(4) 7.19
3 20(6) 9.05 24(6) 10.17 24(5) 8.82 26(4) 7.29
4 20(6) 8.96 24(6) 10.18 24(5) 8.96 26(4) 7.25
5 20(6) 9.07 25(6) 10.56 24(5) 9.25 26(4) 7.17

0 14(3) 24.90 21(3) 35.52 24(3) 26.88 26(2) 36.89
1 16(7) 39.67 22(6) 48.09 25(5) 42.68 26(4) 37.73

1
512

2 18(6) 41.76 24(6) 54.47 25(5) 49.75 26(5) 43.82
3 20(6) 42.83 24(6) 49.37 25(5) 43.17 26(5) 54.94
4 20(6) 44.64 24(6) 60.88 24(5) 43.05 26(5) 55.67
5 20(6) 43.25 26(6) 63.45 24(5) 40.96 26(5) 42.47

Table 2 confirms the robust behaviour of MINRES, documented in [21]. We
see, however, that for small values of β, which must be used to obtain a solution
sufficiently close to the desired target, our method outperforms MINRES.

To test the accuracy of the solution the resulting approximate solution is
compared with the solution of an implicit time-stepping method, the midpoint
trapezoidal (or the implicit midpoint) method, briefly recalled for complete-
ness. Consider the ordinary differential equation x′(t) = f(t, x(t)) with initial
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condition x(0) = x0. The midpoint trapezoidal methods reads as follows:

xk+1 = xk +∆tf

(
tk + tk+1

2
,
xk + xk+1

2

)
, k ≥ 0,

where ∆t is the timestep. The method is implicit, second order accurate and
unconditionally stable for linear problems, as the one in hand. Consider the
equation in (2.1). After space discretization and applying the above time-
stepping scheme, the problem becomes as follows:

For k = 0, 1, . . . ,m,

Solve (M + 1
2∆tL)uk+1 = (M − 1

2∆tL)uk +∆tv
opt
k+1/2.

Here, m = T/∆t and vopt is the optimal control, obtained from the optimization
problem, evaluated at the required time. For the solution of systems with
M + 1

2∆tL we use the AGMG-preconditioned conjugate gradient method with
a relative stopping criterion 10−3. We compare the solutions at the final time
T . The results are shown in Table 3.

Table 3. Problem 1: Performance of the midpoint trapezoidal method (N = 5)

β = 10−2 β = 10−4 β = 10−6 β = 10−8

h ∆t IT CPU IT CPU IT CPU IT CPU
0.1 6 0.41 6 0.41 6 0.41 5 0.38

1
128

0.05 6 0.68 6 0.69 6 0.66 5 0.65
0.025 6 1.18 6 1.19 6 1.23 5 1.08
0.1 7 1.42 7 1.41 7 1.39 6 1.30

1
256

0.05 7 2.74 7 2.70 6 2.45 6 2.44
0.025 6 4.70 6 4.71 7 5.23 6 4.70
0.1 7 8.28 7 7.01 7 8.56 6 6.60

1
512

0.05 7 15.57 7 13.91 7 17.35 6 14.17
0.025 7 29.64 7 27.62 7 30.32 6 31.56

The difference in the solution obtained within the optimal control and the
solution obtained via the time stepping scheme is illustrated in Table 4. The

difference is computed
||uopt−uk||2
||uopt||2 with uopt being the state computed by the

optimal control method and uk – computed by the time-stepping method.

Table 4. Problem 1: Difference between the optimal control solution uopt and the solution
from the time stepping method uk for tk = T

β = 10−2 β = 10−4 β = 10−6 β = 10−8

h ∆t N = 5 N = 10 N = 5 N = 10 N = 5 N = 10 N = 5 N = 10

0.1 0.45 0.50 0.88 1.12 0.90 1.17 0.85 1.11
1

128
0.05 0.12 0.15 0.24 0.38 0.26 0.45 0.25 0.45
0.025 0.03 0.04 0.06 0.10 0.07 0.12 0.07 0.12

Figure 2 shows the obtained optimal control and state vectors at the final
time T (= 1), as well as the form of the desired state, approximated by a
truncated Fourier expansion with N = 5. Figure 3 visualizes the solution from
the time-stepping procedure for different timesteps.
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Figure 2. Problem 1: Surface plots of the desired state ud, the computed state u and the
control v on a 64 × 64 grid and β = 10−6

7.2 Eddy current electromagnetic problem with Maxwell’s equa-
tions as constraint

For completeness, we refer shortly also to a second test problem involving
several regularization and problem parameters. The aim here is to demonstrate
the applicability of our approach to more difficult problems.

Consider then the linear eddy current case of Maxwell’s equations in a
bounded domain Ω with Lipschitz boundary Γ . The problem reads: find a
time-dependent magnetic vector potential y such that

σ
∂y

∂t
+ curl(ν curl y) = j in Ω × (0, T ),

y × n = 0 on ∂Ω × (0, T ),

y = y0 on ∂Ω × {0},
(7.2)

where σ, ν and j denote the electrical conductivity, magnetic reluctivity, and
the external current density, respectively, and where n is the outward normal
vector to ∂Ω. Note that the conductivity can be zero, such as in air.

Due to the discontinuity of σ and to obtain uniqueness in the nonconducting
regions, unless the solution is divergence free and a classical inf − sup stability
relation holds, the state equation must be regularized. We do this here by
adding a positive term εy, ε > 0 to the state equation. The regularized problem
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Figure 3. Problem 1: Surface plots of the state obtained by different timesteps on a
64 × 64 grid and β = 10−6

takes then the form,
σ ∂y∂t + curl(ν curl y) + εy = j in Ω × (0, T ),

y × n = 0 on ∂Ω × (0, T ),

y = y0 in Ω × {0}.

In the time-harmonic regime with angular frequency ω, y(x, t) = Re{ŷ(x)eiωt},
j(x, t) = Re{ĵ(x)eiωt}, it leads to finding the complex-valued amplitude ŷ
satisfying {

iωσŷ + curl(ν curl y) + εŷ = ĵ in Ω,

ŷ × n = 0 on ∂Ω.

The problem is formulated in sense of distributions: find ŷ ∈ H0(curl, Ω)

iω

∫
Ω

σŷ · vdx+

∫
Ω

(νcurl ŷ · curl v + εŷ · v)dx =

∫
Ω

ĵ · v dx

for all complex-valued test functions v ∈ H0(curl;Ω), where

H0(curl;Ω) := {v ∈ L2(Ω)3 : curl v ∈ L2(Ω)3, v × n = 0 on Γ}.

Assuming ĵ ∈ L2(Ω)3, the linear form is bounded. Assuming further that
σ, ν ∈ L∞(Ω), σ(x) ≥ 0, and ν(x) ≥ ν0 > 0 the bilinear form is bounded and
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elliptic, therefore, the problem is uniquely solvable and the solution depends
continuously on the data.

Using conforming finite element approximations requires continuity of the
traces. For this purpose we use Nèdèlec finite elements, see [25, 26]. We arrive
at the linear system

(iωM +K)z = b, (7.3)

where Mij :=
∫
Ω
σϕj ·ϕi, Kij :=

∫
Ω
ν curl ϕj · curlϕi + εϕj ·ϕi, bi :=

∫
Ω
ĵ ·ϕi

with ϕi(x), i, j = 1, . . . , n, being the lowest order Nèdèlec basis functions. To
avoid complex arithmetics we can rewrite (7.3) in real-valued block matrix form[

K −ωM
ωM K

] [
x
y

]
=

[
ξ
η

]
,

where z = x+iy and b = ξ+iη. We recognize the same type of block matrix that
arise in the optimal control problem, constrained by a time-harmonic equation.

For the time-harmonic problem the aim is to compute a periodic steady
state solution (y, v) that satisfies (7.2) but not necessarily the initial condition
y = y0. Including instead the periodicity condition, y(0) = y(2T ), the state
equation takes the form

σ ∂y∂t + curl(ν curl y) + εy = v in Ω × (0, T ),

y × n = 0 on ∂Ω × (0, T ),

y(0) = y(2T ) in Ω.

We denote the adjoint variable with w. Similarly, the condition w(2T ) = 0
is replaced by the periodicity condition, w(0) = w(2T ). We consider then a
time-harmonic desired state

yd(x, t) = ycd(x) cos(wt) + ysd(x) sin(ωt).

Due to the linearity of the problem, the state y, the Lagrange multiplier, i.e. co-
state w and the control u are time-harmonic as well with the same frequency.
Considering the case where the control and observation regions are nonzero
only on a subspace. As shown in [10] this leads to a four-by-four block matrix
system with two-by-two block of the same from as before, where both are
preconditioned by use of the PRESB method. The arising system is solved by
a coupled inner-outer iteration method. Even though one now gets coupled
inner-outer iterations, which multiply up, this is a viable approach since, as
follows from Proposition 1, the arising condition numbers for both the outer
and inner iterations are bounded by a not large number 1 + α, 0 < α ≤ 1, for
different values of α, as in Proposition 1. Hence, there will be few iterations.
Furthermore, as is seen by numerical tests, in practice it suffices to solve the
inner systems to a fairly rough relative accuracy, say 10−2 to get the smallest
or nearly the smallest number of outer iterations, so, there will be very few
iterations. As before, the major parallelism comes from the parallel solution of
the problem for different frequencies in addition to the parallel implementation
possible for the inner solution method used.

The robustness of the method has been reported in [10] for different values
of the reluctivity and two meshsizes. In particular, the method is very robust
with respective to the frequency ω.

Math. Model. Anal., 23(2):287–308, 2018.



306 O. Axelsson, M. Neytcheva and Z.-Z. Liang

Acknowledgements

The work of the first author is supported by the projects LD15105 Ultrascale
computing in geosciences and LQ1602 IT4Innovations excellence in science sup-
ported by the Ministry of Education, Youth and Sports of the Czech Republic.
The work of the third author is funded by the China Scholarship Council (File
No. 201606180086) and by the National Natural Science Foundation of China
(Grant No. 11771193). His work is performed during his visit at Uppsala
University, Sweden.

References

[1] R. Alexander. Diagonally implicit Runge-Kutta methods for stiff
ODEs. SIAM Journal on Numerical Analysis, 14(6):1006–1021, 1977.
https://doi.org/10.1137/0714068.

[2] V. Alexandrov, O. Esquivel-Flores, S. Ivanovska and A. Karaivanova. On the pre-
conditioned quasi-Monte Carlo algorithm for matrix computations. In I. Lirkov,
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