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Abstract. In [5], Chemin, Gallagher and Paicu proved the global regularity of so-
lutions to the classical Navier-Stokes equations with a class of large initial data on
T? x R. This data varies slowly in vertical variable and has a norm which blows up
as the small parameter ( represented by € in the paper) tends to zero. However, to
the best of our knowledge, the result is still unclear for the whole spaces R3. In this
paper, we consider the generalized Navier-Stokes equations on R™(n > 3):

u+u-Vu+ Du+ VP =0, divu=0.

For some suitable number s, we prove that the Cauchy problem with initial data of
the form u§(z) = (vl (zc), e 0l (x))?, zc = (xh, exn)?, is globally well-posed for all
small € > 0, provided that the initial velocity profile vy is analytic in x, and certain
norm of vy is sufficiently small but independent of €. In particular, our result is true
for the n-dimensional classical Navier-Stokes equations with n > 4 and the fractional
Navier-Stokes equations with 1 < s < 2 in 3D.

Keywords: large data, global solution, slowly varying.

AMS Subject Classification: 35Q30; 35Q35; 76D03.

Copyright (© 2018 The Author(s). Published by VGTU Press

This is an Open Access article distributed under the terms of the Creative Commons Attribution
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided the original author and source are credited.


ISSN: 1392-6292
https://doi.org/10.3846/mma.2018.017
mailto:hanbinxy@163.com
mailto:yukangchen@hotmail.com
http://creativecommons.org/licenses/by/4.0/

Global Regularity to the Navier-Stokes Equations 263

1 Introduction

The Cauchy problem of the incompressible Navier-Stokes equations on R" is
described by the following system

ou+u-Vu—Au+VP =0, xeR" t>0,
divu = 0, zeR™ t>0, (1.1)
u(0) = wo, z € R",

where u represents the velocity field and P is the scalar pressure.

First of all, let us recall some known results on the small-data global regu-
larity of the Navier-Stokes equations on R*. In the seminal paper [18], Leray
proved that the 3D incompressible Navier-Stokes equations are globally well-
posed if the initial data ug is such that |Jugl||p2]|Vuo||L2 is small enough. This
quantity is invariant under the natural scaling of the Navier-Stokes equations.
Later on, many authors studied different scaling invariant spaces in which
Navier-Stokes equations are well-posed at least for small initial data, which
include but are not limited to

. R 3
HE(R3) < L3(R®) < By ot * (R?) < BMO™Y(R?),

where 3 < p < 0o. The space BMO~(R?) is known to be the largest scaling
invariant space so that the Navier-Stokes equations (1.1) are globally well-posed
under small initial data. The readers are referred to [3,9, 14, 15] as references.
We also mention that the work of Lei and Lin [16] was the first to quantify the
smallness of the initial data to be 1 by introducing a new space X 1.

We remark that the norm in the above scaling invariant spaces are always
greater than the norm in the Besov space B;ofoo defined by

lull por . =

supt? et 2 ug || oo -
t>0
Bourgain and Pavlovic in [2] showed that the Cauchy problem of the 3D Navier-
Stokes equations is ill-posed in the sense of norm inflation. Partially because of
the result of Bourgain and Pavlovic, data with a large B;ol,oo are usually called
large data to the Navier-Stokes equations (for instance, see [4,20]).

Towards this line of research, a well-oiled case is the family of initial data
which is slowly varying in vertical variable. The initial velocity field u§ is of
the form

uf(@) = (vg (we), e g (2))T, we = (wn, ews)", (1.2)

which allows slowly varying in the vertical variable 3 when ¢ > 0 is a small
parameter. This family of initial data is very interesting (as has been pointed
out by V.Sverék, see the acknowledgement in [5]) and considered by Chemin,
Gallagher and Paicu in [5]. They proved the global regularity of solutions to
the Navier-Stokes equations when vg is analytic in x3 and periodic in xp, and
certain norm of vg is sufficiently small but independent of € > 0. More precisely,
they proved the following Theorem:
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Theorem 1 [Chemin-Gallagher-Paicu, Ann. Math. 2011]. Let a be a
positive number. There are two positive numbers ey and n such that for any
divergence free vector field vy satisfying

el 5 <,

2
2,1

then, for any positive € smaller than ey, the initial data (1.2) generates a global
smooth solution to (1.1) on T? x R.

The notation Bz'%, 1 in the above Theorem denotes the usual inhomogeneous
Besov space. The significance of the result lies in that the global regularity of
the 3D incompressible Navier-Stokes equations in [5] only requires very little
smallness imposed on the initial data. It is clear that the Bgofoo norm of u§ can
tend to infinity as € — 0. Let us first focus on the periodic constraint imposed
on the initial data in Theorem 1.

As has been pointed out by Chemin, Gallagher and Paicu, the reason why
the horizontal variable of the initial data in [5] is restricted to a torus is to
be able to deal with very low horizontal frequencies. In the proof of Theorem
1 in [5], functions with zero horizontal average are treated differently to the
others, and it is important that no small horizontal frequencies appear other
than zero. Later on, many efforts are made towards removing the periodic
constraint of vy on the horizontal variables. For instance, see [4,10,20] and so
on. We will review those results a little bit later.

In this paper, we consider the Cauchy problem of the following generalized
Navier-Stokes equations on R™:

ou+u-Vu+Du+VP =0, zeR" t>0,
divu =0, zeR"” t>0, (1.3)
u(0) = ug, r € R,

where D = \/—A. The initial velocity field u§ is of the form
uf(x) = (vg(ze), € g ()T, we = (2n,exn)” (1.4)

The horizontal variable xp, = (z1,z2,...,Zpn_1).

Our main result is the following theorem which generalizes the theorem of
Chemin, Gallagher and Paicu to the whole space for the generalized Navier-
Stokes equations with some appropriate number s. Definition of notations will
be given in Section 2.

Theorem 2. Let «, €y, p and s be four positive constants and (p, s) satisfy
1<p<2(n-1), 1<s<min(n—1,2(n—1)/p).

There exists a positive constant n such that for any 0 < € < ¢g and any diver-
gence free vector field vg satisfying

HeO‘D"voH =1

55 L rliios =
B, 7 nB, 7

p,1

then the generalized Navier-Stokes equations (1.3) with initial data (1.4) gen-
erate a global smooth solution on R™.
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Remark 1. 1) When n > 4, one can find that the classical Navier-Stokes equa-
tions on R”™ satisfy the assumption 1 < s = 2 < min(n — 1, %) for
1 < p < 2(n—1). Then according to Theorem 2, the n-dimensional incom-
pressible Navier-Stokes equations with initial data (1.4) have a global smooth
solution in the whole space case.
2) In the case n = 3, we require that 1 < s < 2. The main obstacle when s = 2
2 1
is that we can not get the product law in Bzi 1_2’5
space is induced by the a priori estimate of anisotropic pressure (Vjq, €293q)
(see equation (1.5) and Step 5 for details). From this point of view, the global
well-posedness of 3D incompressible Navier-Stokes equations with initial data
(1.4) on R3 is still unclear, even though the higher dimensional cases are settled
down.
3) In the present paper, we establish the global solution in the LP-type Besov
space, in which the bilinear estimate of the solution can not be derived by the
classical L? energy method. Particularly, one can obtain the L' estimate in
time of the solution by introducing the new quantity

(R?). This anisotropic Besov

t
n h
JAC L JPE L

BPY p,1

in the a priori estimate. We also mention that in [5,20, 21], authors did not
get the L'-time estimate of the solution.

Now we mention that many authors make efforts to remove the periodic
restriction on horizontal variable. Chemin and Gallagher considered the well-
prepared initial data in [4]. They proved the global well-posedness of (1.1)
when u§ is of the form u§=(vl + ewl,wd)(xn, ex3). Later, Gui, Huang, and
Zhang in [10] generalized this result to the density dependent Navier-Stokes
equations with the same initial velocity. Recently, Paicu and Zhang in [20, 21]
considered the global regularity of (1.1) if uf satisfies the form of

ug (x):e‘s(’ug(xh, €x3), eilvg’(azh, €xs))

for § = 1 and 6 € (0, 3), then u§ generates a global solution of (1.1) on R3.
Main ideas of the Proof. We will prove our main result by constructing
the bilinear estimate (independent of €). Our strategy can be stated as follows.

Step 1. Rescaled system and simplification. As in [5], we define
ut(t,x) = (V" (t,z.), e o (t, x )T, P(t,z) = q(t, z.).
Denote
A=A +202, Ay =07 +...+02_ |, D.=+/—A..

Using the Navier-Stokes equations (1.1), it is easy to derive the equations gov-
erning the rescaled variables v and ¢ (they are still depending on €):

Ol + v - Vol + Do + Vg = 0,
O™ + v - Vo' + D" + €20, = 0, (1.5)
divo =0, v(0)=vo(z),
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where vP = (vl,... v . The rescaled pressure ¢ can be recovered by the

divergence free condition as

—qu = Z 8i8j (vivj).

(2]

nfl)

The global regularity of solutions to system (1.4) for small initial data vy will
be presented in Section 3 and 4 for any positive e. But to best illustrate our
ideas, let us here focus on the case of ¢ = 0. Formally, by taking ¢ = 0 in
system (1.4), we have the following limiting system:

O +v - Vol + Do + Vg =0,
O™ +v - Vo' + Div" =0, (1.6)
dive =0, v(0) =vo(x),

where Dj, = v/—A}. The pressure ¢ in (1.6) is given by

—Ang = 0:0;(v'v7).
]

Step 2. Set-up of the a priori estimate. Observing that in the rescaled
system (1.6), the viscosity is absent in the vertical direction. To make the full
use of smoothing effect from operator d; + D7, particularly in low frequency
parts, we will apply the tool of anisotropic homogeneous Besov spaces. The
goal is to derive certain a priori estimate of the form:

(t) Sw(0) + ¥ ()2

Note that pressure term doesn’t explicitly appear in the equation of v™ of the
limiting system (1.6), which makes the estimate for v™ easier. So here let us
just focus on the equation of v". Naturally, we define

. 4
+(Bpt )

VO = [0 oy O] iy e
= (B, 7 ) L

n—1 1
At this step, we assume that the initial data v{ belongs to Bg“is’é. This
ensures that ¥(t) is a critical quantity with respect to the natural scaling of
the generalized Navier-Stokes equations. By Duhamel’s principle, we can write
the integral equation of v by

¢
o = eyl — / e~ DD (" V! + 09, 0" + Vig)dr.
0

According to the estimates of heat equation, one can formally has

U(t) SYO) + " Vo iy 000"

2

-1 s 1 +....
. L+175,—2
t p,1 t( p,1

It will be shown that

W Vet iy SO e,

t p,1 t p,1

)I\thhII =
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Step 3. Derivative loss: input the estimate of 9,v". For the quantity ¥ (t),
we need to prove the bilinear estimate in the following form:

(t) Sw(0) + ()2 + "8, 0" UETUPIERE R
+(Bp T )

Certainly, there is 0,,-derivative loss! By the product law in anisotropic Besov
spaces (Lemma 1), the strategy to bound the last term is

1

t

h h

ananv || t(,"le-u—s,%) 5/0 anHB"Tfl%Hanv ||B"T*1+1—s,%d7—
P, P, P,

and then we should add the new quantity

t
n h
S 10y
in the definition of ¥(¢). We find that ||0,v"|| »-1,,_, 1 is the hardest term
B? '

p,1
to estimate. Since we note that by Duhamel’s principle,
t
ol = e tPh, vl — / e~ t=Phg (v 0, )dr + ...
0

There is still 9,,-derivative loss in the a priori estimates!
Step 4. Recover the derivative loss: analyticity in x,. Motivated by
Chemin-Gallagher-Paicu [5], we add an exponential weight e2(t:Dn) with

B(t, [En]) = (v = A0(2))|&n]-
Here 6(t) is defined by

t
(1) = / [l ey dr,
0 B, 7 ?

which will be shown to be small to ensure that @(¢, |£,|) satisfies the subaddi-
tivity. Denoting fs = e?(t:Pn) £ we then have

t (4! ’
8nvg:eftDzeq§(t’D")8nvgf / e~ (=)D} o =X [ 6(")dt Png, (v O™ pdr+ .. ..
0

Hence, we can recover the derivative loss by

t t
/ JBl sy [Bntlll nry, .y dr S S 2HCEF I / 6(r)
0 B, 7 By ’ k,j 0
)

X / efc/\f; é(t/l)dt112j2j||Ak7j(vnanvh)¢||L£(L%)dt/d7_

0
t t . .
5 Z 2k("T?1+lfs)2%j / / e—c)\ [0t )dt' 29 Qjé(T)dT
k.j o Jt/

1 t
x IIAk,j(vnanvh)qslng(Lg)dt’SX/ W3l 21y 10005 nosy, ydt'+.. .
0 prf 2 p,f 2

Math. Model. Anal., 23(2):262-286, 2018.



268 B. Han and Y. Chen

In this way, the losing derivative term can be absorbed by the left hand side of
the above inequality by choosing A sufficient large.

Step 5. The estimate of the pressure term Vj;q. To estimate the pressure
term, we write

Vg = =2V (=A) (v 0pdivyo™) + 2V, (= Ay) " H(divy o divyo™) 4.

Lnolig g1 . .
The Ly (B, ] L ?) norm of the first term in Vjq can be estimated by
IVa(=20) " @ Ondivio™ | iy S0 0divie™)| s
1 P 2 1 P 2
¢(By1 ) Li(By1 )

Here we should point out that when s = 2,n = 3, system (1.3) is nothing but
the 3D incompressible Navier-Stokes equations. In this case we have to deal

. 2,211 .
with [|fg[| 2 21 type estimate. Unfortunately, the product law in B, s
B :

p,1
hard to obtain since we can not control the low horizontal frequency part.

Step 6. Estimate of 6(¢). In this step, we want to prove that for any time
t, 6(t) is a small quantity. This ensures that the phase function @ satisfies the
subadditivity property. We will go to derive a stronger estimate for

Y(t) =llvgll . no1 g +llvgll | o
b ) Li(B, ?

[N
~—

t p,1

However, when € > 0, we can not get the closed estimate for Y (¢). Our strategy
is to add an extra term ev” under the same norm which is hidden in the pressure
term €20,,q. See Section 4 for details.

Step 7. Estimate of vj}. If this is done, we could get a closed a priori
estimate (see Lemma 4) and finish the proof of Theorem 2. Observing that the
nonlinear term v™d,v™ can be rewritten as —v™div,v" due to divergence free
condition. Hence, in the limiting system (1.6), there is no loss of derivative in
vertical direction on v™. Thus the estimate on v™ is much easier than v".

There are also some other type of large initial data so that the Navier-Stokes
equations are globally well-posed. For instance, when the domain is thin in the
vertical direction, Raugel and Sell [22] were able to establish global solutions for
a family of large initial data by using anisotropic Sobolev imbedding theorems
(see also the paper [13] by Iftimie, Raugel and Sell). By choosing the initial
data to transform the equation into a rotating fluid equations, Mahalov and
Nicolaenko [19] obtained global solutions generated by a family of large initial
data. A family of axi-symmetric large solutions were established in [11] by Hou,
Lei and Li. Recently, Lei, Lin and Zhou in [17] proved the global well-posedness
of 3D Navier-Stokes equations for a family of large initial data by making use
of the structure of Helicity. The data in [17] are not small in B!, even in
the anisotropic sense. We also mention that for the general 3D incompressible
Navier-Stokes equations which possess hyper-dissipation in horizontal direction,
Fang and Han in [8] obtain the global existence result when the initial data
belongs to the anisotropic Besov spaces.

The remaining part of the paper is organized as follows. In Section 2,
we present the basic theories of anisotropic Littlewood-Paley decomposition
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and anisotropic Besov spaces. Section 3 is devoted to obtaining the a priori
estimates of solution. The () will be studied in Section 4. Finally, the proof
of the main result will be given in Section 5.

2 Anisotropic Littlewood-Paley theories and preliminary
lemmas

In this section, we first recall the definition of the anisotropic Littlewood-Paley
decomposition and some properties about anisotropic Besov spaces. It was
introduced by Iftimie in [12] for the study of incompressible Navier-Stokes
equations in thin domains. Let us briefly explain how this may be built in
R™. Let (x,¢) be a couple of C* functions satisfying

Suppy C {r < %} Suppy C {% <r< 2}

x(r) + Z ©(27%r) =1 forr € R, Z ©(279r) =1 for r € R\{0}.
keN Jez

For u € §'(R™)/P(R"), we define the homogeneous dyadic decomposition on
the horizontal variables by

Ahu = F~ Y p(27"&])a) for k€ Z.

Similarly, on the vertical variable, we define the homogeneous dyadic decom-
position by

Afu = F Hp279)¢)u) for j € Z.

The anisotropic Littlewood-Paley decomposition satisfies the property of al-
most orthogonality:

AvAMu =0 if |k—1>2 and ANS! udlu)y=0 if |k—1>5,

where S} is defined by Sf'u = > Aju. Similar properties hold for AY. In
r<i—1
this paper, we shall use the following anisotropic version of Besov spaces [12].

In what follows, we denote for abbreviation Ay ; f def AZA}? f

DEFINITION 1 [Anisotropic Besov space]. Let (p,r) € [1,00]?, 0,5 € R and
u e S'(R")/P(R"™), we set

| def

lull go.s = 1125727°)| Ak jull oy 23 i z2) -

(1) Fora<"le,s<%(U:%orSZ%ifrzl),Wedeﬁne
o def
By (R") = {u e &'R") | [lull gy < oo}
2 IfkleNand 2 +k <o <™t +k+1 g+l <s<gz+i+1
(o= "le—&-k—i—lors: 1 4+1+1ifr =1), then Bgf(R") is defined as the
subset of u € S’(R™) such that afagu € Bgﬁ;k’s’l(R”) whenever 8| =k, a =l

Math. Model. Anal., 23(2):262-286, 2018.
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The study of non-stationary equation requires spaces of the type Lf.(X) for
appropriate Banach spaces X. In our case, we expect X to be an anisotropic
Besov space. So it is natural to localize the equations through anisotropic
Littlewood-Paley decomposition. We then get estimates for each dyadic block
and perform integration in time. As in [6], we define the so called Chemin-
Lerner type spaces:

DEFINITION 2. Let (p,r) € [1,00]%, 0,5 € R and T € (0, 00}, we set

def
lullze (550 = 128275 | Ar jull Lo or 22y lim(z2)

and define the space Eg(Bg;g)(R”)to be the subset of distributions in u €
S'(0,T) x 8'(R™) with finite ZPT(Bg,?) norm.

In order to investigate the continuity properties of the products of two
temperate distributions f and g in anisotropic Besov spaces, we then recall the
isotropic product decomposition which is a simple splitting device going back
to the pioneering work by J.-M. Bony [1]. Let f,g € §'(R™),

fg="T(f,9) +T(f,9)+ R(f.9),

where the paraproducts T(f, g) and T(f, g) are defined by

9) = Sk1fArg, T(f,9) = AcfSk 19

keZ keZ
and the remainder
N N k+1
R(f,9) =Y AxfArg with Agg= Y Apg.
keEZ k'=k—1

Similarly, we can define the decompositions for both horizontal variable z;, and
vertical variable x,,. Indeed, we have the following split in x,.

fg=T"(f.9)+T"(f.9) + R"(f.9),

with
T"(f.9) = St fArg, T"(f.9) = ALfSE g,
keZ keZ
_ k+1
g) = ZAZfAZg, where kg = Z Alg.
keZ

The decomposition in vertical variable x,, can be defined by the same line.
Thus, we can write fg as

fg=(T" +T" + R")(T" + T" + R")(f.g) = T"T"(f,9) + T"T"(f.9)
+T"R(f,9) + T"T"(f,9) + T"T"(f,9) + T"R"(f,9)
+ RMTV(f, 9) + R"TV(f, 9) + R"R"(f, 9). (2.1)
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Each term of (2.1) has an explicit definition. Here

T (f,9) Z Sk 1571 k.59; T (f,9) Z Ah 1fSk 1459

(k.j)ez? (k,j)€Z2
Similarly,
R'T"(f,9)= D AW fALAYg. R'R'(f9)= ) Auyifdee,
(k,j)ez? (k,j)€Z?
and so on.

At this moment, we can state an important product law in anisotropic Besov
spaces. The case p = 2,n = 3 was proved in [10]. For completeness, here we
prove a similar result in the LP framework.

Lemma 1. Let 1 < p < oo and (01,02) be in R, If 01,00 < "L and
o1+ 02 > (n—1)max(0,2/p — 1),
s 1
then we have for any f € Bp711’2 (R™) and g € B o '3 (R™),

R e AL B gl B

p,1

Proof. According to (2.1), we first give the bound of T"T?(f,g). Indeed,
applying Holder and Bernstein inequality, we get that

HAk’j(Tth(ﬁ9))||L§(Lg)5 Z HSIZA }}'71f||L°°||Ak’,j’9||thi(Lg)

k—k'|<4
li—5'1<4

k//a lj// k/o_ l]/
<D > 225 Ay o fllpr 2y - 2872227 | A jrglle e
bk |<4 K" <k’ —2
li—3'1<4 §"'<j' =2

s 9K =k ("5 —a1) g(k=k) (o1+02—"52) 9§ (5 —4") g —k( ")o—%i

Since 01 < ”le, we obtain that

— N
85, (1, 0)) gty S ewg2 M YIS ol
p,1
where the sequence {cg ;}x,j)ez2 satisfies [[ck, j[|;1(z2) = 1. This gives the esti-
mate of T"TV(f, g).

Similarly, for TVT(f, g), we have

||Ak,j(Tth(fag))HL’Z(L%)/S Z ||Ah/ 1f||L§j(Loo)HSk/ 1 ;‘)/QHL;;C(Lg)
|k—k'|<4
li—5'1<4

2V 125" Ay o Fll e 12y - 2572257 | A
> X kg fllce (2 18k 309ll g 22)
|k7k:/|§4 k”Sk}/*Q

li—3"1<4 3" <5’ =2
% 2(k/1_k/)(n;1 n—1

5 )930—3")9

n—1

> )2—%]"

Math. Model. Anal., 23(2):262-286, 2018.
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Again, oo < "le implies that

—1

- Y
185 (T T () g2y S xs2” Rl L Y P
P P
The estimate on the remainder operator which concerns the horizontal vari-
able R"T(f, g) may be more complicated. When 2 < p, the strategy is follow-
ing:
h ~h n lk
14k, BT (F D gan S 3 1ARS) 1 fAL Al 5, 2
k' >k—2
li—5'1<4
’ l -1 ’ l ./ ~
SO 2K Ap e fllperey - 28 72220 | AR AV gl e (12

k' >k—2 j"<j =2
li—3"1<4

n—1

7 )2—%j'

% Q(k—k')(01+02)2%(j—j/)2*

As o1+ 09 > 01if 2 < p, we have

1Ak (R*T(f, ) lLp 12y S k27

syl ea
In the case 1 < p < 2, we have

1Ak (R*T° (f, 9))ILp(z2) S Z 1AL SY .y fAL, ;')'QHL}{/(L%)Q(H_DU_E)IC
K >k—2
li—3"|<4

140 hoAv n—1)(1—1
Yo > 2 A fllee | AL AY gl a2 DE R

k'>k—2 j"<j’ -2
li—5"1<4

< ) D ok " | Ay, g flloe 2y - ok'72937"|| AY, A7 gllLr (L2)
k' >k—2 j"<j’ -2
li—3"1<4

« 9k=k")(e1+02—(n-1) *—1))2%(j*j')Q—k(UH-Uz—anl)Q*%j'
As o1+ 09 > (nfl)(%fl) if 1 <p <2, we have
v —k(o140o—2L)q—1;
| Ag,j(R"T (froe 2y S cx,i2 (1te2=557)9 2]||f||B”1,%H9HB,2,%-
p,1 p,1

The other terms can be followed exactly in the same way, here we omit the
details. These complete the proof of this lemma. 0O

Throughout this paper, @ denotes a locally bounded function on R x R
which satisfies the following subadditivity (see (3.2) for the explicit expression
of @)

Q(t7€n> S é(t’ gn - nn) + ¢(t7 nn)'

For any function f in §’(0,T) x S'(R™), we define

fo(t,op,2y) = F " (eé(t’g”)f(t,wh,fno .
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Let us keep the following fact in mind that the map f — fT preserves the
norm of LY (L?2), where f*(t,z,,,) represents the inverse Fourier transform

of | f(t,xn, )| on vertical variable, defined as

e e) C F U 20, 60)]-

On the basis of these facts, we have the following weighted inequality as in
Lemma 1.

Lemma 2. Let 1 < p < 0o and (01,02) be in R2. If 01,00 < (n—1)/p and
o1+ o2 > (n—1)max(0,2/p — 1),
then we have for any fg € Bgl’2 (R™) and gg € BU2 H (R™),

[EORJ—

1
p 2

<
< Woll oo 3195

p,1

-1 1

72 norm of T"TV(f, g)e. For fixed k, j,

o1+o2—

Proof. We only prove the B 1
we have

18 (T T (f, 9)a)  p (12)

SO e F(SE S ) (@n, ) % F(Dk e g) (@, )llLe )
|k—k'|<4
li—5'|<4
SO NFSE L Shfa)@n, )| * [F(Aw e ga) (@n, )lpe sy
k<4
li—4'1<4
S0 > NF Ao o) (@, ) * | F (A jrga) @n, )lle 22

|k—k'|<4 k"' <k'—2
li—5'1<4 5" <5' =2

> > Ak fa) T lee o) 1A rge) Hllp r2)2 "7

|k—k'|<4 k"' <k'—2
li—5'1<4 "' <" =2

117

lk//22J .

Using the fact that f — f* preserves the norm of L} (L2), we then get by the
similar method as in Lemma 1 that

”(ThTU(fv g)ds)HBaﬁ-aQ—"T_l,% N ”f‘PHBGL% Hg‘PHBQ 3

p,1 p,1 p,1

The other terms in (2.1) can be estimated by the same method and finally, we
have

1ol epiopos

p,1

1
’2

<

< Woll v 395
O

The following lemma is a direct consequence of Lemma 2.
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Lemma 3. Let 1 < p < oo, p € [1,00], (p1,p2) € [1,0]? and (o1, 02) be in R2.
Assume that

1/p < 1/p1 +1/po.
If 01,09 < ”le and o1 + o2 > (n — 1)max(0,2/p — 1), then we have for any
T 501,% (mon T 5025 (mon
fo € L (B, y* (R")) and g € LT (B, 7 (R")),

L I Y N 1
T

o L”l( Lpz(Bf’2 2)

3 Estimates for the re-scaled system

This section is devoted to obtaining the a priori estimate for the following
system

Ol +v - Vol + D3 + Vg = 0,
O™ +v - Vo' + D" + €20, = 0,
dive = 0,

v(0) = wvo(x).

The pressure g can be computed by the formula
0,J

Due to the divergence free condition, the pressure can be split into the following
three parts

n—1
L= (=407 X 9:0;(v'7),

2]1

=2(=4)~" 233( "),
—2(—=A)~ 13 (vdivi,o™).

<
I

(3.1)

q

q
It is worthwhile to note that there will lose one vertical derivative owing to
the term v"0,v" and pressure terms ¢2,¢> which appear in the equation on
v". Thus, we assume that the initial data is analytic in the vertical variable.
This method was introduced in [7] to compensate the losing derivative in z,,.
Therefore, we introduce two key quantities which we want to control in order
to obtain the global bound of v in a certain space. We define the function 6(t)

/ B s y b
and denote
V) = ol sy Hlel o /qusll —_—
?C(Bp,l L{(B
||anv<15|| n=1,4_ sldT W(O): ||€ UO” n=1,y_ 41

P,l p,l
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The phase function &(t, D,,) is defined by

P(t,&n) = (a = A0(1))|€nl, (3.2)

for some A that will be chosen later on, « is a positive number. Obviously, we
need to ensure that 6(¢) < § which implies the subadditivity of &.

The following lemma provides the a priori estimate of vg in the anisotropic
Besov spaces, which is the key bilinear estimate.

Lemma 4. There exist two constants A\g and Cy such that for any X > Ay and
t satisfying 0(t) < 5%, we have

T (t) < C1w(0) + CLw(t)2.

3.1 Estimates on the horizontal component v"
According to the definition of v/, we find that in each dyadic block, it verifies
the following equation
t .
Akjvéé(t,x) — e‘tD%\}*@(t’D")Akij _ / e—(t—T)Dje—ADn f: 6(t")dt’
0
t V(4! ’
X Ak,j (’U . vvh)Q(T)dT— / ei(th)D:ef/\D" th 6(t")dt vhﬂkyjths(’r)d’r. (33)
0

Taking the L (L2) norm, we deduce that

_ oks | _sojs
1Ak jvgllceray S e T2 A je*Prog ||y 2

t . ] .
+ / e—c(2k5+55215)(t—T)e—cAQJ Sl )dt’ ||Ak j('U . V’Uh)¢||LP(L2)dT
’ A
0
t j j V(4! ’
+ / efc(2ks+5521 )(t=7) g—eA2? Jro)dt ||VhAk,jQ¢||L£(L,2)dT def I + 1 + Is.
o T

We first estimate the linear term I;. In fact, we have

Iz + 2% 0lipy S 1Ak e P gl Le p2)

S e 2 FET N2 e Pl
P

p,1

where {cy j}(x,j)ez> is a two dimensional sequence satisfying |[|ck,;|[;1(z2) = 1.
The term I5 can be rewritten as

t
S [ e A0 T algazydr
0 (L3
By Young’s inequality, we have

1allzge + 2% L2l S 1Ak (0 - Vo) al L or 2y

—1 .
S22 )0 Vo el nayy

t(Bp1
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Thus, we can get by Lemma 2 and 3 that

IDollne + 25| Dl S e 27 M7 027 o)
g oo P
t p,1

+1-s,1

t
_k(n=L,1_ _ 1,
<ol g o2 K221 410), QJ/O\|Ug||Bn_1,%||anug||.%H_Sém.
1

P
t P, p,1 p,1

Now we are left with the study of the pressure term I3. The pressure can
be split into ¢ = ¢* + ¢? + ¢ with ¢!, ¢?, ¢ defined in (3.1). For convenience,
we denote that

t
ks _sojs i (o) dt'
I :/ e e @THEFN ) =2 [0 7y Ay gl r (2 dr
0

t
ks 507s _ _ It o’ ’
I3 :/ 670(2 +e529%)(t ‘I')6 eX2? [To(t)dt ”thk,jq%”Lﬁ(L%)dTv
0

1

ks sojs _ _ i [t Are! ’

I33 :/ 670(2 +e°27°)(t -r)6 cA2? [T o(t")dt ||thk,qu5”LfL(L%)dT-
0

Hence, using the fact that (—A.)7'9;0; is a bounded operator applied for
frequency localized functions in LZ(L%) when i,j =1,2,...,n— 1, we get

IVhArkjqallr2) S 1Ak (0" - Vio™)l e 2)-
By the same method as in the estimate of I, we have
a1l pge + 2" || Isa | oy

(2=l —g) a1
S e 2 M) 2]||U§§||Nm .%Hfs,%)ﬂvgﬂ 1(.%“,%)-
t p,1 t p,1

Noting that
Vihe = 2(—A€)*1Vh8i(v”8nvh - vhdivhvh)

and as in the estimate of I, it holds that

32l Lge + 2| T2l 3

t
S e 2 PTI98 [ B)| sy (|00l aors, gt
0 B 2 I 2

p,f p,1
k(2= 41—8)g—1j. A h
+Ck,j2 ot €)2 2J||U¢H L .”;14—1,% ||v<15||~Oo ‘";14-1—5,% :
t\Pp1 ) t p,1 )

Using
Vi = 2(—A6)_1Vh(divhvhdivhvh — v"@ndivhvh),

we write I33 as follows

t ks . .
I35 < 2_'“/ e (t_T)(||Ak,j(dlvhvhdlvhvhb”Lﬁ(L%)
0

+ ||Ak,j (v”@ndivhvh)quLi(L%))dT.
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By Young’s inequality and Lemma 3, as 1 < s < min{n — 1, 2"771}, we have

133l 5= + 2"°|| 33| 3

(=l _ 1,
Seng2 TN ey ey
t(Pp1

t p,1

t
+Ck7j2_k(”p1+1—8)27%j/ va” n—1 ;”3711)2)“ noligs 1dr.
0 {J ’2 B P 2

B po1

P,

Now we are going to estimate the key quantity
t
n h
/ 031t 10n vy

According to (3.3), we find that in each dyadic block 9,05 verifies

h —+D*+®(r,D, h
A jOpvg(T ) =€ 7 cto(r )A;w-@nvo

S e NN R NV
- / e~ (T2 = ADn [0 g, Ay 0, g (t)dE
0

Taking the LY (L2) norm on both sides of (3.4), we have

1Ak ;000 ]| p (12)
< e—c(2ks+652js)re—c)\2j N é(t”)dt”HAk,jeaDnanUgHLﬁ(L%)

T ks sojs —t —ec J [T (4! " .
b [ e R S A, (0 Ve oy agydt! B
0
+/ 670(2k5+552j5)(Tft/)efc)\Qj .ftﬂ’— é(t”)dt”thAk)janqu”Li(L?)dtlo

0 A\

For fixed k, 7, multiplying the (3.5) by 6(7) and integrating over (0,¢), one can

have

t
/0 B A0l 12y

t
S [ e RO )P0, Ay o g
* /olt /oT e S 0UDN QG (7) | Ap (v Vo")gllpp (Laydt'dr
* /ot /oT eI é(t//)dtuzjé(ﬂ||VhAk,jqqs||LZ(L%)dtldT
O+ I+ I
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The term I containing initial data can be bounded by

t j (41! " ..
1y 5/ o cA2? [T (" dt 239(7')d7-||Ak7jeaDnU(})L||L§(L2)
o (L5

1.

_2—k<"’;1+1—s)2—%j||eaDnvg|| N

1
< —c
~ k.j

n—1
> p

p,1

By Fubini’s theorem, the term I5 can be rewritten as
K ¢ i [T (4! "o
Is S/ / e~ A2 [ 0(t")dt 2]9(7')dTHAk’j(v . vvh>d5HLﬁ(Lg)dt/
o Jv

1 t
S5 [ 180 e el at

1 Ch(n=li]_g)a_ Ll
S Jora? TN ol ey
t p,1

Thus, we can get by Lemma 2 and 3 that

1 - y
— +1-s)9—% h

I S feeg2 7 27 logll . iyl . !

Ly (B, T ) Li(B, T )

1 gm—1 4 1 t
b Lo ket sy ;a/ [0 ey - Y
0 B, Y B 7

p,1

As for Ig, for convenience, we denote that
t T i T (4! " ..
o= [ [ e IO 009, A bl g () dr
0 Jo .
t T J [T A4l " ..
162 = / / 6_0)‘2 ft’ 0(t")dt 239(7')||VhAk’ij25||L§(L2)(t/)dt/d’7',
o Jo (L3

t T j (41! "o
Ig3 =/ / e A2’ [ 0(t")dt 2]9(T)||VhAk’qu5||Lf(L2)(t/)dtld7.
0 0 n v

By the same method as in the estimate of I5, we have

Is1 + Is2

1 n—1 1
< —¢g RS 93|k n=1, 1 vl n=141
~ 5] H QHZ,?"(B:? +1 ,é)H <P||L%(B:f +1,%)

1 n- [
L -l TP R P
A 0 B2 p 2

3
2 p,1

Finally, Ig3 can be estimated as follows
t T ) .
Ig3 5/ / e= A [ 0(A 9i g ()
o Jo
X ||Ak,j(—AE)_lvhan(vndthvh)Q||L1;L(L3)(t/)dt/d7'

t T j V(4! 1" ..
< Q_k/ / e— A2 [ (") dt 230(7)d7'||Ak’jan(v"divhvh)qs||L§:(L%)(t/)dt’.
0o Jv
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Thus, we can obtain that

1 - )
Iss < Sep 2 PO 1997500, (v divi") || sy
A LiB, 7 %
1 _ ) X
< “eps2” k<"p1+1—6>2*%ﬂ||v§%>u~ ||vq>u
A 0 B,r %
+ Lo g2 HOT g / B s 100 syt
Bp)1

Together with the above estimates on I3 — 16, we get that

I, g+ b oot Bl
t ( p,1 t,( (36)
Vo] sy S000) + Xw) coer.
B 7 :

p,1
3.2 Estimates on the vertical component v"™
We begin this part by studying the equation of v™, which is stated as follows
o™ + Div"™ +v - Vo™ + €20,q = 0.

Observing that in the above equation, one can expect that there is no loss of
derivative in vertical direction. More precisely, due to divergence free condition,

the nonlinear term v"9,v" can be rewritten as —v™div,v”. Thus the estimate

on v" is different from v”".

Applying the anisotropic dyadic decomposition operator Ay ; to the equa-
tion of v™, then in each dyadic block, v™ satisfies

Ot Ay jv" + DA jo" = —Ak,j(vh-th”)+Ak7j(v"divhvh)—62Ak,j8nq. (3.7)

Let us define G % v . V0" — vndiv,oh. We write the solution of (3.7) as
follows

Ag vl = e—tD§+45(t7Dn)Ak’jvg n /t o~ (t=T)D? ;=ADn It é(t/)dtlﬂk’qusdT
0
+ e /t o~ (t=T)DZ ,=ADy It é(t/)dt/Ak,jan%dr.
0
Taking the L (L2) norm, we infer that
1Ak, 503l e (22) S e A e "USHL;’L(Lg)
+ /OteCka(tT)||Ak,jG¢||L§;(Lg)dT+€2 /Ot e~ || Ay 0ngallp 12y dr

By the Young’s inequality, we deduce that

1Ak 50l o= zr (22)) + 251 Ak 503l i e r2)) S 11 Ak€*P 08 | 2r (22)

+ 1Ak, GallLr Lz (12)) + || Ay, 5 OngallLr(Lr(L2))- (3.8)
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Multiplying both sides of (3.8) by k("5 +1-)9j3 and taking the sum over k, j,
we have

Il wsioy 0B ai

2 2
t p,1 t p,1 )
S ”eaDnU(T)LH Setiiosd + ”G@” Lot sl + 62“&1‘]@” e s T
p,1 t p,1 ) t( p,1

According to Lemma 3, we can obtain the estimates of nonlinear term by the
following:

”(Uh : Vh””)é” L ."’*1+175,%) S ||vg||~oo _nT71+175,%)||’Ug” o=l ls

(B, 7 (B 1 Ly(B,} )

U"divhvhqs n—=1_,,_ .1 < |0} n=1_,_ .1 ’Uh n—1 1.
H( ) ” : .p‘f +1 .,;) ~ ” (PHZ?O('I,,{’ +1 ;)” QBHL%(prf +1,;)

This implies that

IGoll, ony Shooll_ sy ool oy

2
t\Pp1 t p,1 t(Bp 1 )

While for the pressure term, we use the decomposition ¢ = ¢* + ¢® + ¢° in
(3.1). For ¢!, since e(—A.)~19;0, is a bounded operator applied for frequency
localized functions in L¥(L2) if i = 1,2,--- ,n — 1, we have

[ 0ngall Lol d :62||(—A€)_18i8j8n(vivj)¢” neligog, 1
t(Bp1 t

S e|Vi("oMel el -
1B, 1

Therefore, we get by using Lemma 3 that

2 1 _ < h e h e
N0uhl, ozt rmns SRty 0B, ot

Similarly, the fact that €?(—A.)~102 is a bounded operator applied for fre-
quency localized functions in L? (L?) implies

2 2 < n, h
N0 et isony IV Dol ocriay

62“871615%” ) o=l l Sn(vndivhvh)@'l ) a=ligs,l -
Lt p,?lj ) t P,

Thus, we have

EQHGTLqQ%”Ll ,nT?l+lfs,%) + €2||anq§5”Ll B";1+175.%

t(Bp1 t(Pp1
< _ _
S ||vqs||~§o A:Tmfs,%)l\vqsllL%(B:fl+1,%)~

Then we obtain that

2 1

l0naall ooy Sleallaoriy Tosll sy
t p,1 ?o p,1 ) t p,1 )
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Combining the above estimates, we can get the bound of v} as follows:

n n 2
[l omnag FIL, oty SPOTEOR (g

t p,1 t p,1

Together (3.9) with (3.6), we finally get that
1
w(t) SW(0) + 1w(t) + w(t)?.

This completes the proof of Lemma 4 by choosing A large enough.

4 Estimates for 0(t)

In the above section, we have used the fact that @(¢) is a subadditivity function.
This means we should ensure that 6(t) < §. Thus, it is sufficient to prove that
for any time ¢, 0(t) is a small quantity. By the definition of §(¢), naturally, we

1

_si
®2 " According to the property of the
Ln=11
operator d; + Df, then we can get the bound for vg in L} (B,] ). However,
n—1 n—1 1

~ m=1l g1 SR
we can not enclose the estimate for vy in L{°(B, ] "IN L{(B,} *). Our
observation is to add an extra term ev™ under the same norm which is hidden

in the pressure term €20,q'. Hence, we first denote that

Xo = e|e®Pvg|  nm Yo = [e*P0g || nor,y,
B P 3 P 2

—s,
p,1 p,1

n—
assume that e*Pny? belongs to B,1

—s, 10

X(t) = cllofll_ aos .y el s
b p,1 ) L;

YO = Iopl
(B P

t p,1

n
R

(B,,?
In order to get the desired estimates, it suffices to prove the following lemma.

Lemma 5. There exists a constant Cy such that for any XA > 0 and t satisfying
0(t) < £, we have

2X°
X(t) + Y(t) < CQ(XO + Yo) + CQ(X(t) + Y(t))g/(t)
Proof. We apply the same method as in the above section to prove Y (¢).

Indeed, multiplying both sides of (3.8) by 9("5=9k93 and taking the sum
over k,j, we can get that

[ T S o |7 { I

Lge(B, ¥ 2y LiB, T ?)
<[Pl oy +1Gell | iy +€10ngall | naaiy
B, T HERED Lis,7 %)

According to Lemma 3, we can obtain the estimates of nonlinear terms that

|| divy, (v ™) n-1_,1

ol noa g
Ly(B, 7 )

< ’Un n—1 1 Uh n—=1_.,_ .1
SR, ooy Bl et

—s,

ol ami1 (@ divioh)
e, )
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This implies that
1Call s

1
. -1
Li(B,? )

While for the pressure term, we use the decomposition ¢ = ¢* + ¢® + ¢° in
(3.1). For ¢, since e(—A.)719;0, is a bounded operator applied for frequency

<Y ()T (t).

localized functions in L} (L2) if i = 1,2, ,n — 1, we have
Eonapll | aor g =E(=A) 00000V el sy
LiB, 7 %) LiB, 7 %)
SellVi@" el aa g Sellogll acay Rl iy
1 P 2 1 P 2 2
t\Fp,1 ) t\Fp,1 ) t p,1

Similarly, the fact that €?(—A.)~102 is a bounded operator applied for fre-
quency localized functions in L? (L?) implies

EN0ngapll o1y SIVA@"Ma]  a

LiB,7 ) LB

P,

Clongdll  ncs

57 P 2)
t p,1 t p,1

L S dve)el  ws,
) 1
Thus, applying Lemma 3, we have

NG, sy + NG, s

S5

2
t(Bp1 t(Pp1 )

h
A I ] I

tBp1 Lg p,1 )
Then we obtain that
SY(@)P(t) + X(t)P(t).

1
2

o[22 [
Li(B, Y

Combining all the above estimates, we can get the bound of v

n—1 1

)N L} (Bﬁé) by the following:

~ . n=1_
3 oo P
in L*(B, 1

1
S,5

logl  nov g Fllvgll e
@B Ly(B, 7}

SYo+ (XO+YOWP®). (41

1
2
t p,1

This completes the proof of Y'(¢) in Lemma 5.
The following is devoted to getting the estimate of X (¢). The horizontal
component v" in each dyadic block satisfies

BtAk,jvh + D?Akyj’l)h = —Akyjdivh(vh (39 Uh) - Akyjan(v”vh) — VhAk’jq.
Denote F % —divy,(v" ® v") — 9, (v™v"), then we infer that

js t s EDYE]
||Ak,jUgHL§(L3) < p—c(@ e +es2! )t”Ak’jeaDn,,UéLHLﬁ(L%) +/ o2 42" (- )
0

t
ks sojs
X IIAmF@llLﬂ;;(Lg)dTJr/ e AN A iV aga | Lp (12)dT.
0
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By Young’s inequality, it holds that
t
_ ks s6js _
”/ e c(2"°4-€°27°) (¢t T)||Ak,jan(vn’0h)qs||L£(L3)dT||Lt°C
0

1
< 180l e

s —c(2ks 5270 T
ok ||/ (42 A0 (00" | 1 (127 s

< 22 1Ak (V" 0")a L1 (zr (22))-

Here and in what follows, if s = 1, the quantity |4y ;(v"0")s ||L )
should be regarded as [|Ag j(v"0")a| (L2 (12)). Therefore, taking L norm

and L' norm on [0,#], we deduce that

1Ak 508l Lee (L2 (L2)) + 2% 1Ak ol 3 oz (n2y) S 1€ A jog Il e L2
1 n
+ 25| A s (0" ® Uh)QSHLg(L;{(Lg)) + EQkHAk,j(U ”h)qﬁHLg(L;{(Lg))

1
JFEHAk,j('U v")gl| + 1 Ak,;Viaol Ly p (£2))- (4.2)

L™ 1(L"(LZ))

Multiplying both sides of (4.2) by 9" 5 =k93 and taking the sum over k, j,
we finally get

bl aay bl a,
(B, T ) Ly(B, 7 °)
Selle®Prelll nos_y +el 0" ©0Mall  aoai
B, Y : Li(B, T %)
@ Mall e iy A 1@ ae, Ly
Ly p,1 %( p,1
Y I—— (4.3)

2
+(Bp 1 )

For the pressure term g = ¢! + ¢% + ¢°, we find that

IVhaall o1,y = (=407 VRdid;(v'v))al| 1y
1 P 2 p 2)
t\Pp1 r, p,1
SIVa@*oMall a4
LiB, 7 %)

where we have used that (—A.)719;0; is a bounded operator for frequency
localized functions in L? (L?). Similarly,

IIthqu 1= 2(=A) T VAGO. (|| e,
(Bf ) LB,

[N

)

)

1
S IV Mell iy
€ LB, %)

IVhaall | aoxy = 20(=A)7'ViOa (" diviv")all  aca,y
LiB,! ) LiB, 7 %)
1
< @ divee"ell  aoay
€ HES
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According to Lemma 3, the right hand side of (4.3) can be bounded by following:

@ @ oMol ariy Selvbll amy Jobll ey
i(B, Y ) (BT %) e B, 7 )
’Unvh n—1,,_ _ 1 < Uh n—1.,; .1 Un n—1 1
0700l ocrame S TOb ooy IR, oy
Vigoll  woioy S (cllobll ary ARl )
LB, 7} ) Li(B,7 7) Li(B,7 7)
X opll ey
< (B, 1 )
||(’Unvh)<15||~i n-1_,1 S va”~ s n-t_4 1 ||Ug”~ nolyg, 1
LB, YY) LB, T ) (B, 1 )
SOBl_ aay ol g VIR ey
L (B, T ) LiB,7 ) 2 (Bp 1

These imply that

R
t p,1 t p,1

Combining (4.4) with (4.1), we finally obtain that there exists a constant
C5 such that
X@)+Y(#) <Ca(Xo+Yo) + Co(X(E)+Y(1)¥(1).

This completes the proof of Lemma 5. 0O

5 Proof of the main result

In this section, we will prove the Theorem 2. It relies on a continuation argu-
ment. For any A > A\g and 7, we define 7 by

T=max{t >0 X(t)+Y({) <m, ¥{)<m} (5.1)
In what follows, we shall prove that 7 = co under the assumption (1.3) for some
small number 7;. Assume that this is not true. We choose 7; small enough

such that

1
0(r) SCY() <Om < 5o (Gt Cm < 7.

For such fixed 71, we select the following norms of initial data sufficiently small
enough such that

C1W(0) + Co(X(0) + Y (0)) < Cnp < %1

Hence, we obtain from Lemma 4 and 5 that
U(r) < C1(0) + Ciny,  X(1)+Y (1) < C2(X(0) +Y(0) + Carf.
This implies that

X()+Y(r) <D, v <D

However, this contradicts (5.1) and hence completes the proof.
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