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Abstract. In this article, we develop a monotone iterative technique (MI-technique)
with lower and upper (L-U) solutions for a class of four-point Dirichlet nonlinear
boundary value problems (NLBVPs), defined as,

−ψ′′(x) = F (x, ψ, ψ′), 0 < x < 1, BCs(i) ≡ ψ(i)− ciψ(ηi) = 0, i = 0, 1,

where 0 < c0 < 1, c1 > 0, 0 < η0 ≤ η1 < 1, ψ(x) ∈ C2[0, 1], the non linear term
F (x, ψ, ψ′) is continuous function in x, one sided Lipschitz in ψ and Lipschitz in ψ′.
To show the existence result, we construct Green’s function and iterative sequences for
the corresponding linear problem. We use quasilinearization to construct these itera-
tive schemes. We prove maximum principle and establish monotonicity of sequences
of lower solution (lm(x))m and upper solution (um(x))m such that lm(x) ≤ um(x),
∀m ∈ N. Then under certain sufficient conditions we prove that these sequences
converge uniformly to the solution ψ(x) in a specific region where ∂F

∂ψ
6= 0.
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1 Introduction

In real-life, there are many applications of multi-point (m-point) boundary
value problems (BVPs), e.g., suspension bridge. Two-point BVPs conduct
small size bridges, in order to conduct large size bridges we need m-point
boundary conditions (BCs) [15]. Lazer and McKenna [21] have discussed the
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existence and multiplicity of periodic solutions of possible mathematical models
for the nonlinear behavior of suspension bridge.

The study of m-point BVPs have become a broad area of research due
to their wide applications. The m-point linear second-order BVPs was first
studied by II’in and Moiseev [18]. In this article, we have focused on the
existence of solution of second-order four-point Dirichlet NLBVPs. To study
the existence, various methods are introduced such as fixed point (FP) index
theory, MI-technique, shooting method, etc., we refer the reader to [7,8,19,20].
There are various techniques to study the following class of four-point Dirichlet
NLBVPs,

ψ′′(x) + βq(x)F (x, ψ, ψ′) = 0, 0 < x < 1, (1.1)

BCs(i) ≡ ψ(i)− ciψ(ηi) = 0, i = 0, 1. (1.2)

Verma et al. [28] established MI-technique with L-U solution to study the
existence of solution, where β = q(x) = 1 and c0 = 0. Also article [30], deals
with the existence and multiplicity of positive solutions of above NLBVPs (1.1)-
(1.2), here ψ′ is involved in F explicitly and β = q(x) = 1. For this, they
have used Krasnoselskii FP theorem and triple FP theorem. By using FP
theorem Liu et al. [22], studied the existence of positive solutions for second
order problem ψ′′(x) + a(x)f(ψ(x)) = 0 with BCs (1.2).

In article [4], authors concentrated on the existence, nonexistence, and mul-
tiplicity of positive solutions for the non resonance problem (1.1)-(1.2), where
F is independent of ψ′. The main techniques used are the FP index the-
ory, the Leray-Schauder degree, and the L-U solutions method. They have
determined the range of β, for which there exists at least one, at least two,
and no positive solution. The m-point Dirichlet NLBVPs, with different tech-
niques, can also be seen in [16, 17, 24]. Bai et al. [4, 5, 6] considered the NL-
BVPs (1.1)-(1.2), where 0 < η0, η1 < 1, 0 ≤ c0 <

1
1−η0 , 0 < c1 <

1
η1

, and

q : (0, 1)→ [0,∞), F : [0, 1]× [0,∞)×R→ [0,∞) are non-negative continuous
functions. Article [5], dealt with the non resonance problem where β = 1 with
Γ ≡ c0η0(1 − c1) + (1 − c0)(1 − c1η1) > 0. By using a new FP theorem, the
authors established some multiplicity results. The article [6] dealt with the res-
onance problem where the nonlinear term does not depend on the first-order
derivative. Here β = 1 = q(x) = 1 with Γ = 0. The authors established the
L-U solution method to obtain some existence and multiplicity results.

MI-technique was first introduced by E. Picard in 1890 [25]. By using MI-
technique we can obtain existence results for a large class of BVPs. We study
this technique to ensure the existence and approximation of solutions lying in
a pair of ordered functions called L-U solutions. This technique also gives a
constructive way to find the maximal and minimal solutions corresponding to
the L-U solutions [9,10,11,12]. To know more about history and development
related to MI-technique one can refer [14,27].

In this article, to study the existence of a solution we have explored an
iterative process for a class of four-point Dirichlet NLBVPs with nonlinear
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source term, defined as follows,

−ψ′′(x) =F (x, ψ, ψ′), 0 < x < 1,

BCs(i) ≡ψ(i)− ciψ(ηi) = 0, i = 0, 1,

where 0 < c0 < 1, c1 > 0, 0 < η0 ≤ η1 < 1, ψ(x) ∈ C2[0, 1], the non linear term
F (x, ψ, ψ′) is continuous function in x, one sided Lipschitz in ψ and Lipschitz
in ψ′. The iterative schemes we have constructed in this article are defined in
(4.2)–(4.3), where λ is non zero real number.

In [23], by using the FP of strict-set-contractions, Liu et. al. studied
the existence of at least one or two positive solutions to the four-point BVPs
(1.1). Various NLBVPs have been studied with multi-point BCs by using
MI-technique. In 2019 [29], we have discussed the existence of solution for
four-point NLBVPs (1.1) with BCs ψ′(0) = 0 and ψ(1) = c0ψ(η0) + c1ψ(η1).
We also have discussed the existence of solution of the above NLBVPs (1.1)
in [26], for the same BCs where F is independent of ψ′. For the existence of
solutions on three-point NLBVPs with MI-technique, one can refer [28]. For
higher order BVP with four point BCs one can refer the work in [1, 2, 3].

The work of this paper generalises our earlier work [28] and complement a
recent paper [29]. Cherpion in his article [13], stated that the iterative scheme
(4.2)–(4.3) do not work for constant λ. Also they stated that due to lack
of uniform antimaximum principle it is impossible to develop MI-technique
for the case lm(x) ≥ um(x). This statement is true for our case also. The
work in this paper is novel in the sense that even with constant λ we are
able to generate monotone sequences. Also, our results are based on simple
assumptions, hence it can deal with larger class of nonlinear four point BVPs,
e.g., we don’t require sign restrictions [27, p. 27]. All these further approves
the fact that L-U solution technique related to MI-method is most powerful
technique to solve class of nonlinear BVPs [31].

This paper is divided into five sections. In the second section, we discuss
some preliminaries. In the third section, we describe Green’s function, solution
of the corresponding linear problem, and maximum principle which is used
to construct monotone L-U solutions. In the fourth section, L-U solutions
are defined, some assumptions are considered on the source term F , and we
establish the main result on the existence of a solution for λ 6= 0. The final
section verifies the theoretical results numerically.

2 Preliminaries

In this section, we discuss linearization corresponding to the NLBVPs (1.1),
and derive some important inequalities for λ 6= 0. The corresponding linear
non homogeneous Dirichlet BVPs is as follows,

−ψ′′(x)− λψ(x) = q(x), BCs(0) = 0, BCs(1) = A, 0 < x < 1, (2.1)

where BCs(i), i = 0, 1, is defined in (1.1), q(x) = F (x, ψ, ψ′) − λψ(x), λ 6= 0,
and A has any constant value.

Math. Model. Anal., 27(1):59–77, 2022.
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Lemma 1. If λ ∈ I0 = (0, π2/4), δ1 ∈ R+ such that (λ− δ1) ≤ 0, and there is
a function δ2 : [0, 1]→ [0,∞) such that δ2(0) = 0 and δ′2(x) ≥ 0, then

(a). (λ− δ1) sin
√
λx+ δ2(x)

√
λ cos

√
λx ≤ 0, if

(λ− δ1) + sup
x∈[0,1]

δ′2(x) ≤ 0, ∀x ∈ [0, 1],

(b). (λ− δ1) cos
√
λx+ δ2(x)

√
λ sin

√
λx ≤ 0, if

(λ− δ1) cos
√
λ+ δ2(1)

√
λ sin

√
λ ≤ 0, ∀x ∈ [0, 1].

Proof. For the proof of this lemma we refer [28]. ut

Lemma 2. If λ ∈ (−∞, 0), δ1 ∈ R+ such that (λ + δ1) ≤ 0, and there is a
function δ2 : [0, 1]→ [0,∞) such that δ2(0) = 0, then

(a). (λ+ δ1) cosh
(
x
√
|λ|
)

+ δ2(x)
√
|λ| sinh

(
x
√
|λ|
)
≤ 0, if

(λ+ δ1) + sup
x∈[0,1]

δ2(x)
√
|λ| ≤ 0, ∀x ∈ [0, 1].

(b). (λ+ δ1) sinh
(
x
√
|λ|
)

+ δ2(x)
√
|λ| cosh

(
x
√
|λ|
)
≤ 0, if

(λ+ δ1) + sup
x∈[0,1]

(
δ′2(x) + δ2(x)

√
|λ|
)
≤ 0, ∀x ∈ [0, 1].

Proof. For the proof of this lemma we refer [28]. ut

3 Green’s function and maximum principle

In this section, we state two lemmas where we obtain Green’s function for the
BVPs (2.1), and then we show that under some assumptions the Green’s func-
tion is non-positive. We also obtain the solution for the BVPs (2.1). Further we
prove some important inequalities and establish the maximum principle which
are used to construct monotone sequences of L-U solutions.

Assume that the following conditions hold;

(P0) : λ ∈ I0, Dλ+ > 0, A1(λ) < 0, A2(λ) ≤ 0, where

Dλ+=
√
λ
(
c1 sin

((
η0−1

)√
λ
)
− c1

(
c1 sin

((
η0 − η1

)√
λ
)

+ sin
(
η1
√
λ
))

+
√
λ sin

(√
λ
))
, A1(λ) = c1 sin

(
η1
√
λ
)
− sin

(√
λ
)
, and

A2(λ) = cos
(√
λ
)
− c1 cos

(
η1
√
λ
)
.

(N0) : λ ∈ (−∞, 0), B1(λ) ≥ 0, B2(λ) < 0, B3(λ) > 0, B1(λ) +B2(λ) < 0,

Dλ− =
√
|λ|
(
c0 sinh

((
η0 − 1

)√
|λ|
)
− c1

(
c0 sinh

((
η0 − η1

)√
|λ|
)

+ sinh
(
η1
√
|λ|
))

+ sinh
(√
|λ|
))
, B1(λ) = cosh

(√
|λ|
)

− c1 cosh
(
η1
√
|λ|
)
, B2(λ) = c1 sinh

(
η1
√
|λ|
)
− sinh

(√
|λ|
)
,

B3(λ) = 1− c0 cosh
(
η0
√
|λ|
)
.



Well Ordered Monotone Iterative Technique ... 63

Under the assumed sign restriction on B1, B2 and B3, it is easy to deduce that
Dλ− > 0.

Lemma 3. The Green’s function of the following linear BVPs

ψ′′(x) + λψ(x) = 0, BCs(i) = 0, i = 0, 1, 0 < x < 1, (3.1)

where BCs(i) is defined in (1.1), is given as,
Case-1: If λ ∈ I0 = (0, π2/4) then,

ξ+(x, t) =
1

Dλ+

×



sin
(√
λx
)(

sin
(√
λ(t− 1)

)
− c1 sin

(√
λ (t− η1)

))
+c0

(
sin
((
η0 − 1

)√
λ
)
− c1 sin

((
η0 − η1

)√
λ
))

sin
(√
λ(t− x)

)
,

0 ≤ x ≤ t ≤ η0;

sin
(√

λt
) (

sin
(√
λ(x−1)

)
−c1 sin

(√
λ
(
x−η1

)))
, 0 ≤ t ≤ x ≤ η0;(

sin
(√
λ(t− 1)

)
− c1 sin

(√
λ
(
t− η1

)))(
sin
(√
λx
)

−c0 sin
(√
λ
(
x− η0

)))
, η0 ≤ x ≤ t ≤ η1;(

sin
(√
λt
)
− c0 sin

(√
λ
(
t− η0

)))(
sin
(√
λ(x− 1)

)
−c1 sin

(√
λ
(
x− η1

)))
, η0 ≤ t ≤ x ≤ η1;

sin
(√
λ(t−1)

)(
sin
(√
λx
)
−c0 sin

(√
λ
(
x−η0

)))
, η1 ≤ x ≤ t ≤ 1;

sin
(√
λ(x−1)

)(
sin
(√
λt
)
− c0 sin

(√
λ
(
t− η0

)))
+c1

(
c0 sin

((
η0−η1

)√
λ
)
+ sin

(
η1
√
λ
))

sin
(√
λ(t−x)

)
, η1≤t≤x≤1;

(3.2)

and if (P0) holds, then ξ+(x, t) ≤ 0, where ξ+(x, t) denotes the Green’s function
for λ > 0.

Case-2: If λ ∈ (−∞, 0) then,

ξ−(x, t) =
1

Dλ−

×



sinh
(
x
√
|λ|
)(

sinh
(

(t− 1)
√
|λ|
)
− c1 sinh

(√
|λ| (t− η1)

))
+c0

(
sinh

(
(η0 − 1)

√
|λ|
)
− c1 sinh

(
(η0 − η1)

√
|λ|
))

× sinh
(√
|λ|(t− x)

)
, 0 ≤ x ≤ t ≤ η0;

sinh
(
t
√
|λ|
)(

sinh
(

(x− 1)
√
|λ|
)
− c1 sinh

(√
|λ| (x− η1)

))
,

0 ≤ t ≤ x ≤ η0;(
sinh

(
(t− 1)

√
|λ|
)
− d sinh

(√
|λ| (t− η1)

))(
sinh

(
x
√
|λ|
)

−c0 sinh
(√
|λ| (x− η0)

))
, η0 ≤ x ≤ t ≤ η1;(

sinh
(
t
√
|λ|
)
− c0 sinh

(√
|λ| (t− η0)

))(
sinh

(
(x− 1)

√
|λ|
)

−c1 sinh
(√
|λ| (x− η1)

))
, η0 ≤ t ≤ x ≤ η1;

Math. Model. Anal., 27(1):59–77, 2022.
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sinh
(

(t− 1)
√
|λ|
)(

sinh
(
x
√
|λ|
)
− c0 sinh

(√
|λ| (x− η0)

))
,

η1 ≤ x ≤ t ≤ 1;

sinh
(

(x− 1)
√
|λ|
)(

sinh
(
t
√
|λ|
)
− c0 sinh

(√
|λ| (t− η0)

))
+c1

(
c0 sinh

(
(η0 − η1)

√
|λ|
)

+ sinh
(
η1
√
|λ|
))

sinh
(√
|λ|(t− x)

)
,

η1 ≤ t ≤ x ≤ 1.

(3.3)

and if (N0) holds, then ξ−(x, t) ≤ 0, where ξ−(x, t) denotes the Green’s function
for λ < 0.

Proof. With the help of article [28,29] we can construct the Green’s function
for the BVPs (3.1), and fix its sign. ut

Lemma 4. If ψ(x) ∈ C2[0, 1] is any solution of Dirichlet four-point BVPs
(2.1), then ψ(x) is given by,

(a). If λ ∈ I0, then

ψ(x) =
1

Dλ+

√
λA
(

sin
(√

λx
)
− c0 sin

(√
λ (x− η0)

))
−
∫ 1

0

ξ+(x, t)q(t)dt. (3.4)

(b). If λ ∈ (−∞, 0), then

ψ(x) =
1

Dλ−

√
|λ|A

(
sinh

(√
|λ|x

)
− c0 sinh

(√
|λ| (x− η0)

))
−
∫ 1

0

ξ−(x, t)q(t)dt. (3.5)

Proof. For the proof of this lemma we refer [29, lemma 3.2]. ut

Lemma 5. If ψ(x) be a function given in Lemma 4, δ2 : [0, 1] → [0,∞) such
that δ2(0) = 0, then we have the following:

(a). If (P0) is true, δ1 ∈ R+ such that (λ− δ1) ≤ 0, and δ′2(x) ≥ 0, then

(λ−δ1)ξ+(x, t)+δ2(x) sign(ψ′(x))
∂ξ+(x, t)

∂x
≥0, x 6=t, ∀ t, x∈[0, 1],

where ∂ξ+(x,t)
∂x is the derivative of ξ+(x, t) with respect to x, given by

∂ξ+(x, t)

∂x
=

√
λ

Dλ+

×


c0
(
c1 sin

(
(η0−η1)

√
λ
)
− sin

(
(η0−1)

√
λ
) )

cos
(√

λ(t−x)
)

+ cos
(√

λx
)(

sin
(√

λ(t− 1)
)
−c1 sin

(√
λ (t− η1)

))
,

0 ≤ x ≤ t ≤ η0;
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− sin
(√

λt
)(

c1 cos
(√

λ (x− η1)
)
− cos

(√
λ(x− 1)

))
,

0 ≤ t ≤ x ≤ η0;

−
(

sin
(√

λ(t− 1)
)
− c1 sin

(√
λ (t− η1)

))(
c0 cos

(√
λ (x− η0)

)
− cos

(√
λx
))

, η0 ≤ x ≤ t ≤ η1;(
sin
(√

λt
)
− c0 sin

(√
λ (t− η0)

))(
cos
(√

λ(x− 1)
)

−c1 cos
(√

λ (x− η1)
))

, η0 ≤ t ≤ x ≤ η1;

sin
(√
λ(t−1)

)(
cos
(√
λx
)
−c0 cos

(√
λ
(
x−η0

)))
, η1 ≤ x≤t≤1;

cos
(√

λ(x− 1)
)(

sin
(√

λt
)
−c0 sin

(√
λ (t− η0)

))
−c1

(
c0 sin

(
(η0 − η1)

√
λ
)

+ sin
(
η1
√
λ
))

cos
(√

λ(t− x)
)
,

η1 ≤ t ≤ x ≤ 1.

(3.6)

(b). If (N0) is true and δ1 ∈ R+ such that (λ+ δ1) ≤ 0, then

(λ+δ1)ξ−(x, t)+δ2(x) sign(ψ′(x))
∂ξ−(x, t)

∂x
≥ 0, x 6= t, ∀t, x ∈ [0, 1],

where ∂ξ−(x,t)
∂x is the derivative of ξ−(x, t) with respect to x, which can be

obtained from Equation (3.3).

Proof. (a.) The result can be easily obtained by using (3.2) and (3.6), Lemma 1,
and (P0). Let us first prove that,

(λ− δ1)ξ+(x, t) + δ2(x)
∂ξ+(x, t)

∂x
≥ 0. (3.7)

Consider the case 0 ≤ x ≤ t ≤ η0, from (3.2) and (3.6), we symbolize

ξ+1 (x, t) =
1

Dλ+

[
sin
(√

λx
)(

sin
(√

λ(t− 1)
)
− c1 sin

(√
λ (t− η1)

))
+c0

(
sin
(

(η0 − 1)
√
λ
)
− c1 sin

(
(η0 − η1)

√
λ
))

sin
(√

λ(t− x)
)]
,

∂ξ+1 (x, t)

∂x
=

√
λ

Dλ+

[
c0

(
c1 sin

(
(η0 − η1)

√
λ
)
− sin

(
(η0 − 1)

√
λ
))

+ cos
(√

λ(t−x)
)

cos
(√

λx
)(

sin
(√

λ(t−1)
)
−c1 sin

(√
λ (t−η1)

)) ]
.

Then, putting in (3.7), we get

(λ− δ1)ξ+1 (x, t) + δ2(x)
∂ξ+1 (x, t)

∂x

=
1

Dλ+

[
H1(t)

(
(λ− δ1) sin

(√
λx
))

+ δ2(x)
√
λ cos

(√
λx
)

+c0K1

(
(λ− δ1) sin

(√
λ(t− x)

)
− δ2(x)

√
λ cos

(√
λ(t− x)

)) ]
≥ 0,

Math. Model. Anal., 27(1):59–77, 2022.
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where

H1(t) = sin
(√

λ(t− 1)
)
− c1 sin

(√
λ (t− η1)

)
,

K1 = sin
(

(η0 − 1)
√
λ
)
− c1 sin

(
(η0 − η1)

√
λ
)
,

are non-positive under (P0). By applying Lemma 1(a) it can be proved that,
(λ− δ1) sin(

√
λ(t−x))− δ2(x)

√
λ cos(

√
λ(t−x)) ≤ 0. Hence proved. Similarly,

for rest of the cases, we can prove the result easily by using (P0) and Lemma
1. Proof of (b) follows similarly. ut

Proposition 1. Maximum principle: If q(x) ∈ C[0, 1] is a non negative
function and A ≥ 0 is any constant then the following conditions hold,

(a). If (P0) is true, then the solution ψ(x) ∈ C2[0, 1] of BVPs (2.1), given by
(3.4), is non-negative.

(b). If (N0) is true, then the solution ψ(x) ∈ C2[0, 1] of BVPs (2.1), given by
(3.5), is non-negative.

Proof. (a) Given that q(x) ≥ 0, A ≥ 0, and (P0) is satisfied. From Case-1
of Lemma 3, we have ξ+(x, t) ≤ 0. Now to prove that ψ(x) ≥ 0, ∀ x ∈ [0, 1] it
is sufficient to prove sin(

√
λx)− c0 sin(

√
λ(x− η0)) ≥ 0. Therefore we have,

sin
(√

λx
)
− c0 sin

(√
λ (x− η0)

)
= sin

(√
λx
)(

1− c0 cos
(√
λη0
))

+ c0 sin
(√
λη0
)

cos
(√
λx
)
≥ 0,

as 1−c0 cos(
√
λη0) ≥ 0 for c0 ∈ (0, 1). Hence proved. Similar process is applied

to prove (b). ut

4 The nonlinear problem

Here we define lower solution l(x), upper solution u(x), construct iterative
sequences with initial iterates of L-U solutions, and prove the existence result.
Nagumo conditions are used to show the bound on the derivative of the solution.
We have also assumed some conditions on nonlinear term F (x, ψ, ψ′) based on
l(x) and u(x). Here the Lipschitz constant δ2(x) ≥ 0, with respect to ψ′, is
a function of x, if we do not assume this then it is not easy to generate the
monotonic sequences.

Definition 1. Lower solution and upper solution: l(x) ∈ C2([0, 1]), is
called lower solution of (1.1) if it satisfy,

l′′(x) + F (x, l(x), l′(x)) ≥ 0, BCs(0) = 0, BCs(1) ≤ 0, 0 < x < 1, (4.1)

where BCs(i), i = 0, 1, is defined in (1.1). Similarly, a function u(x) ∈
C2([0, 1]), is called an upper solution of (1.1) if it satisfy, (4.1) with reverse
inequality.
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Let (lm(x))m, (um(x))m ∈ C2([0, 1]), m ∈ N, are two sequences defined as
follows:

−l′′m+1(x)− λlm+1(x) = F (x, lm(x), l′m(x))− λlm(x),

lm+1(i)− cilm+1(ηi) = 0, i = 0, 1, (4.2)

−u′′m+1(x)− λum+1(x) = F (x, um(x), u′m(x))− λum(x), (4.3)

um+1(i)− cium+1(ηi) = 0, i = 0, 1.

If m = 0, define l0 = l and u0 = u, where l and u are L-U solutions of
Equation (1.1), respectively.

If λ ∈ I0 ∪ (−∞, 0) then assume that the following hypotheses hold.

(M1) : There exist L-U solutions l(x), u(x) ∈ C2([0, 1]) such that l(x) ≤
u(x), ∀ 0 ≤ x ≤ 1.

(M2) : Let F (x, v, z) : E → R is continuous on E, where E := {(x, v, z) ∈
Ω : l(x) ≤ v(x) ≤ u(x)} and Ω = [0, 1]× R2.

(M3) : There exists a constant δ2(x) ≥ 0 such that

|F (x, v, z2)− F (x, v, z1)| ≤ δ2(x)|(z2 − z1)|, ∀(x, v, zi) ∈ E, i = 1, 2.

(M4) : Suppose ϑ ∈ C(R+,R+) such that |F (x, v, z)| ≤ ϑ(|z|), which satis-
fies,

max
x∈I

u(x)−min
x∈I

l(x) <

∫ ∞
Υ

µdµ

ϑ(µ)
,

where C(R+,R+) denotes set of all continuous functions ϑ : R+ → R+ and
Υ = 2 max{supx∈I |u(x)|, supx∈I |l(x)|}.

Case-1: If λ ∈ I0, then suppose (P1) : There exists a constant δ1 ≥ 0 such

that v1 ≤ v2 ⇒ F (x, v2, z) − F (x, v1, z) ≥ δ1(v2 − v1); ∀(x, vi, z) ∈ E, where
i = 1, 2.

Case-2: If λ ∈ (−∞, 0), then suppose (N1) : There exists a constant δ1 ≥ 0
such that

v1 ≤ v2 ⇒ F (x, v2, z)− F (x, v1, z) ≥ −δ1(v2 − v1); ∀(x, vi, z) ∈ E, i = 1, 2.

4.1 The existence theorem

In this subsection, we prove monotonic behavior of L-U solution in well ordered
case and existence result. This section is divided into two subsections, in first
we see the results for λ ∈ I0 and in other we see the results for λ ∈ (−∞, 0).

Lemma 6. If function F (x, ψ, ψ′) satisfies (M4) then there exists a positive
real number M such that ‖ ψ′ ‖∞≤M , where ψ is a solution of

ψ′′ + F (x, ψ, ψ′) ≤ 0, BCs(0) = 0, BCs(1) ≥ 0, 0 < x < 1, (4.4)

such that ψ ∈ [l(x), u(x)], where l(x) and u(x) are L-U solutions of (1.1),
respectively.
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Proof. We prove lemma for the following three cases.

Case-1: If ψ′ > 0, ∀x ∈ (0, 1), i.e., ψ is strictly increasing in (0, 1). Then
there exists a constant ζ such that ψ′(ζ) = ψ(1) − ψ(0). Hence |ψ′(ζ)| ≤ Υ ,
where Υ = 2 max{supx∈[0,1]|u(x)|, supx∈[0,1]|l(x)|}. Now we have,∫ u′(x)

Υ

µdµ

ϑ(|µ|)
≤
∫ u′(x)

u′(ζ)

µdµ

ϑ(|µ|)
. (4.5)

From condition (M4) and Equation (4.4), we have u′′(x) ≤ ϑ(|u′|). Now multi-
plying by u′(x) in both sides of this inequality and then integrating from ζ to
x, we get ∫ x

ζ

u′′(x)u′(x)dx

ϑ(|u′|)
≤
∫ x

ζ

u′(x)dx.

Let us put u′(x) = µ, then there exist a constant M satisfying,∫ u′(x)

u′(ζ)

µdµ

ϑ(|µ|)
≤ max

x∈I
u(x)−min

x∈I
l(x) ≤

∫ M

Υ

µdµ

ϑ(|µ|)
, {using (M4)}. (4.6)

Hence applying Equation (4.5) in Equation (4.6), we have∫ u′(x)

Υ

µdµ

ϑ(|µ|)
≤
∫ M

0

µdµ

ϑ(|µ|)
, ⇒ u′(x) ≤M.

This completes the proof for Case-1.

Case-2: If ψ′ < 0, i.e., ψ is strictly decreasing in (0, 1). We can prove the
result as in Case-1.

Case-3: If ψ is neither monotonically increasing nor monotonically decreasing
through out the interval then we consider two subcases.

Subcase-1: We consider the sub interval (x0, x] ⊂ (0, 1) such that ψ′(x0) = 0,
and ψ′(x) > 0 for x0 < x. To prove the result we follow proof of Case-1.

Subcase-2: In this subcase, we consider the sub interval [x, x0) ⊂ (0, 1) such
that ψ′(x0) = 0, and ψ′(x) < 0 for x0 > x, and proceed similarly. ut

Lemma 7. If function F (x, ψ, ψ′) satisfies (M4) then there exists a positive
real number M such that ‖ ψ′ ‖∞≤M , where ψ is a solution of

ψ′′ + F (x, ψ, ψ′) ≥ 0, BCs(0) = 0, BCs(1) ≤ 0, 0 < x < 1,

such that ψ ∈ [l(x), u(x)], where l(x) and u(x) are L-U solution of (1.1),
respectively.

Proof. We can prove this result similarly as in Lemma 6. ut

Lemma 8. If λ 6= 0. Suppose (lm(x))m, (um(x))m ∈ C2([0, 1]), defined in
(4.2)–(4.3), are L-U solution of (3.1), then lm+1(x)−lm(x) ≥ 0, and um+1(x)−
um(x) ≤ 0, ∀m ∈ N, ∀x ∈ [0, 1].

Proof. See Lemma 5.1 of [29]. ut
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4.1.1 λ ∈ I0
Proposition 2. If λ ∈ I0, δ1 ∈ R+, and δ2 : [0, 1]→ [0,∞) such that (λ−δ1) ≤
0, δ2(0) = 0, δ′2(x) ≥ 0, and lemma 1 holds. Also if (P0), (P1), and (M1)−(M3)
hold, then (lm(x))m, (um(x))m, defined in (4.2)–(4.3), are such that ∀m ∈ N
and x ∈ [0, 1],

1. (lm(x))m is lower solution of (1.1) and lm+1(x)− lm(x) ≥ 0,

2. (um(x))m is upper solution of (1.1) and um+1(x)− um(x) ≤ 0.

Proof. Proof of (1.) To prove that (lm(x))m is lower solution of (1.1) such
that lm+1(x) − lm(x) ≥ 0, we use principle of mathematical induction. For
m = 0, we have l0(x) = l(x) is lower solution of (1.1), hence by Lemma 8,
l1(x)− l0(x) ≥ 0. Let the result is true for m−1, i.e., lm−1(x), is lower solution
of (1.1) and lm(x)− lm−1(x) ≥ 0. Now to prove the claim from (M3), (P1), and
Equation (4.2), we have,

−l′′m − F (x, lm, l
′
m) = λ(lm − lm−1) + δ1(lm−1 − lm) + δ2|l′m−1 − l′m|.

Now let, ψ(x) = lm(x)− lm−1(x). Then we arrive at,

−l′′m(x)− F (x, lm(x), l′m(x)) = (λ− δ1)ψ(x) + δ2(x) sign(ψ′(x))|(ψ′(x))|.

Since, lm−1(x) is lower solution of (1.1). Therefore, ψ(x) satisfies,

− ψ′′ − λψ = l′′m−1 + F (x, lm−1, l
′
m−1) ≥ 0,

BCs(0) = 0, BCs(1) ≥ 0.

Hence, we conclude that ψ(x) is a solution of (2.1), and it can be written in
the form of (3.4). So, to prove lm(x) is lower solution of (1.1) it is necessary
to prove (λ − δ1)ψ(x) + δ2 sign(ψ′(x))|(ψ′(x))| ≤ 0, which can be obtained by
using Lemmas 1 and 5. Proof for (2.) is similar. Hence the result. ut

Proposition 3. If λ ∈ I0, δ1 ∈ R+, and δ2 : [0, 1]→ [0,∞) such that (λ−δ1) ≤
0, δ2(0) = 0, δ′2(x) ≥ 0, and lemma 1 holds. Also if (P0), (P1), and (M1)−(M3)
hold, and

F (x, u(x), u′(x))− F (x, l(x), l′(x))− λ(u(x)− l(x)) ≥ 0,

then (lm(x))m, (um(x))m, defined in (4.2)–(4.3) are such that ∀m ∈ N and
x ∈ [0, 1], lm(x)− um(x) ≤ 0.

Proof. Proof of this proposition can be shown with the help of proposition 5
in [29]. ut

Theorem 1. If λ ∈ I0, δ1 ∈ R+, and δ2 : [0, 1]→ [0,∞) such that (λ−δ1) ≤ 0,
δ2(0) = 0, δ′2(x) ≥ 0, and Lemma 1 holds. Also if (P0), (P1), and (M1)− (M3)
hold, and

F (x, u(x), u′(x))− F (x, l(x), l′(x))− λ(u(x)− l(x)) ≥ 0,
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then the sequences (lm(x))m, (um(x))m monotonically converges in C1[0, 1] to
the solution l∗(x) and u∗(x) of the nonlinear Equation (1.1), such that l(x) ≤
l∗(x) ≤ u∗(x) ≤ u(x).

Proof. Using Propositions 2 and 3, we obtain that the sequences (lm(x))m
and (um(x))m such that,

l(x) = l0(x) ≤ l1(x)... ≤ lm(x)... ≤ um(x) ≤ ... ≤ u1(x) ≤ u0(x) = u(x). (4.7)

From (4.7), we can conclude that (lm(x))m is monotonically increasing and
(um(x))m is monotonically decreasing. Also (lm(x))m and (um(x))m are boun-
ded. Therefore by monotone convergence theorem, (lm(x))m converges to its
supremum, say l∗(x); and (um(x))m converges to its infimum, say u∗(x). Hence
we can write,

lim
m→∞

lm(x) = l∗(x) and lim
m→∞

um(x) = u∗(x),

such that lm(x) ≤ l∗(x) ≤ u∗(x) ≤ um(x), ∀x ∈ [0, 1]. From Equations (4.2)–
(4.3), (4.7) and Lemmas 6–7, we can conclude that (lm)m and (um)m are
uniformly bounded and equicontinuous in C1[0, 1]. Let (lmi)i and (umi)i are
any subsequences of (lm)m and (um)m respectively, then (lmi)i and (umi)i
are also uniformly bounded and equicontinuous in C1[0, 1]. With the help of
Arzela Ascoli theorem, we conclude that these subsequences (lmi)i and (umi)i
also contain uniformly convergent subsequences in C1[0, 1]. Since (lm)m and
(um)m are monotone. And by uniqueness of limit we have, lm(x) → l∗(x) in
C1[0, 1] uniformly and um(x)→ u∗(x) in C1[0, 1] uniformly.

The solution of (4.2)–(4.3) can be written by Equation (3.4) of Lemma 4
and taking limit on both sides we can conclude existence of solution of NLB-
VPs (1.1). ut

4.1.2 λ ∈ (−∞, 0)

We skip the proof of this section, as all the proofs are similar to the proof of
the above subsection, for λ ∈ I0.

Proposition 4. If λ ∈ (−∞, 0), δ1 ∈ R+, and δ2 : [0, 1] → [0,∞) such that
(λ+δ1) ≤ 0, δ2(0) = 0 and Lemma 2 holds. Also if (N0), (N1), and (M1)−(M3)
hold, then (lm(x))m, (um(x))m, defined in (4.2)–(4.3), are such that ∀m ∈ N
and x ∈ [0, 1],

1. (lm(x))m is lower solution of (1.1) and lm+1(x)− lm(x) ≥ 0.

2. (um(x))m is upper solution of (1.1) and um+1(x)− um(x) ≤ 0.

Proposition 5. If λ ∈ (−∞, 0), δ1 ∈ R+, and δ2 : [0, 1] → [0,∞) such that
(λ+δ1) ≤ 0, δ2(0) = 0 and Lemma 2 holds. Also if (N0), (N1), and (M1)−(M3)
hold, and

F (x, u(x), u′(x))− F (x, l(x), l′(x))− λ(u(x)− l(x)) ≥ 0,

then (lm(x))m, (um(x))m, defined in (4.2)–(4.3) are such that ∀m ∈ N and
x ∈ [0, 1], lm(x)− um(x) ≤ 0.
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Theorem 2. If λ ∈ (−∞, 0) and δ1 ∈ R+ such that (λ + δ1) ≤ 0. Let δ2 :
[0, 1] → [0,∞) such that δ2(0) = 0, and Lemma 2 holds. Also if (N0), (N1),
and (M1)− (M3) hold, and

F (x, u(x), u′(x))− F (x, l(x), l′(x))− λ(u(x)− l(x)) ≥ 0,

then the sequences (lm(x))m, (um(x))m monotonically converge in C1[0, 1] to
the solution l∗(x) and u∗(x) of the nonlinear Equation (1.1), such that l(x) ≤
l∗(x) ≤ u∗(x) ≤ u(x).

5 Numerical verifications

In this section, we verify our theoretical results by three examples. First two
examples are for λ ∈ I0 and the last example is for λ ∈ (−∞, 0). We have used
Mathematica 11.3 version for plotting.

Example 1. Consider the four point NLBVPs,

−ψ′′(x) =
9eψ

22
− 3

28
xeψ

′
, 0 < x < 1, (5.1)

BCs(i) =ψ(i)− ciψ(ηi) = 0, i = 0, 1,

where F = 9eψ

22 −
3
28xe

ψ′ and c0 = 0.2, c1 = 1, η0 = 0.6 and η1 = 0.8.
Taking initial lower solution l0(x) = 1

5x
2 − 0.5x− 0.057 and initial upper solu-

tion u0(x) = 2
(−1

5 x
2 + 0.5x+ 0.057

)
such that l0(x) ≤ u0(x). The Lipschitz

constants are δ1 = 0.28627 and δ2 = 3xeM

28 , where M = 0.479061583. We

obtain ϑ(|z|) = 0.83542235 + 3e(|z|)

28 by using assumption (M4). Hence we ob-
tain that the sequences of L-U solutions converge to the solution of (5.1) for
λ ≤ 0.113292817. This value of λ is obtained by using inequality

λ ≤ min
(
δ1,
(
δ1 − sup

x∈[0,1]
δ′2(x)

)
,
F (x, u, u′)− F (x, l, l′)

(u− l)

)
.

We have plotted the graph of the conditions defined in (P0). Also, in Figures 1–
5 we have shown graphically that the proposed method works and the sequences
of L-U solutions monotonically converge to the solution of (5.1).

Example 2. Consider the four-point NLBVPs,

−ψ′′(x) =
1

20

( 1

14
x2eψ +

19

2
eψ
′
)
, 0 < x < 1,

BCs(i) =ψ(i)− ciψ(ηi) = 0, i = 0, 1,

where c0 = 0.2, c1 = 1.2, η0 = 0.4 and η1 = 0.5. Initial iterations of L-U
solutions are l0(x) = 0 and u0(x) = 1

4

(
− 3

2x
2 + 3x+ 0.24

)
which are in well

ordered case. Again δ1 = 0.475 and δ2(x) = x2eM

280 , where M = 0.05574175147.

Here ϑ(|z|) = 19
40 + e(|z|)

280 . We obtain the sequences of L-U solutions converge
in the range of λ ∈ (0, 0.4674] ⊂ I0. Below in Figures 6–11, we have shown
convergence of monotone iterative sequences graphically.
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D�+ = � c0 Sin� � (�0 - 1) - c1 c0 Sin λ ( η0 - η1) + Sin λ η1  + Sin λ 

0.5 1.0 1.5 2.0 2.5

0.02

0.04

0.06

0.08

Figure 1. D+
λ > 0.

A1 � ) = c1 Sin� � �1 � - Sin� � �

0.5 1.0 1.5 2.0 2.5
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- 0.10

- 0.08

- 0.06

- 0.04

- 0.02

Figure 2. A1(λ) < 0.

A2(� ) = Cos � � � - c1 Cos � � η1 

0.5 1.0 1.5 2.0 2.5
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- 0.25

- 0.20

- 0.15

- 0.10

- 0.05

Figure 3. A2(λ) ≤ 0.
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Figure 4. λ = 0.05, m = 4.
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0.4
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Figure 5. λ = 0.1, m = 5.

D�+ = � c0 Sin� � (�0 - 1) - c1 c0 Sin λ ( η0 - η1) + Sin λ η1  + Sin λ 

0.5 1.0 1.5 2.0 2.5

0.05

0.10

0.15

Figure 6. D+
λ > 0.

A1 � ) = c1 Sin� � �1 � - Sin� � �

0.5 1.0 1.5 2.0 2.5

- 0.25

- 0.20

- 0.15

- 0.10

- 0.05

Figure 7. A1(λ) < 0.
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A2(� ) = Cos � � � - c1 Cos � � η1 

0.5 1.0 1.5 2.0 2.5

- 0.8

- 0.6

- 0.4

- 0.2

Figure 8. A2(λ) ≤ 0.

0.2 0.4 0.6 0.8 1.0
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Figure 9. λ = 0.05, m = 5.
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0.4

Figure 10. λ = 0.2, m = 6.

0.2 0.4 0.6 0.8 1.0

0.1

0.2

0.3

0.4

Figure 11. λ = 0.4, m = 5.

Example 3. Consider the four point NLBVPs,

−ψ′′(x) =
1

49

(
eψ + ψ′

3 − sin(x)

8

)
,

BC(i) =ψ(i)− ciψ(ηi) = 0, i = 0, 1,

where c0 = 0.2, c1 = 0.9, η0 = 0.4, η1 = 0.5, l0(x) = 3
2x

2 − 3x − 0.24 and
u0(x) = − 3

2x
2 + 3x + 0.24 such that l0(x) ≤ u0(x). For λ < 0 we obtain

Lipschitz constant δ1 = 0.262263 and δ2(x) = x(x3+2)eM

49 , where M = 0.6527.

By using Nagumo condition given by (M4), we have ϑ(|z|) = 3
49 (1.865 + e|z|).

We obtain the value of λ as,

λ ≤ min

(
−δ1,− sup

(
(δ1 + δ2) +

1

2
δ2

(
δ2 +

√
δ22 + 4 (δ1 + δ2)

)))
= −0.587610142.

Hence the sequences of L-U solutions converge monotonically in the interval
λ ∈ (−a,−0.587610142) ⊂ (−∞, 0), where a can be obtained from figure 14.
For the different values of λ and m graphs (see Figures 12–17) are shown
below. We can also see that all the assumption taken in (N0) are satisfied for
the specific region for λ ∈ (−∞, 0).
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B1(� ) = Cosh� � � - c1 Cosh� � η1 

- 10 - 8 - 6 - 4 - 2

2

4

6

8
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Figure 12. B1(λ) ≥ 0.

B2(� ) = c1 Sinh� � �1 � - Sinh� � �

- 10 - 8 - 6 - 4 - 2

- 10
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Figure 13. B2(λ) < 0.

B3(� ) = 1 - c0 Cosh λ η0 

- 10 - 8 - 6 - 4 - 2

0.2
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0.8

Figure 14. B3(λ) > 0.
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Figure 15. λ = −1, m = 5.
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Figure 16. λ = −1, m = 2 to 4.
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Figure 17. λ = −10, m = 5.

6 Conclusions

The work of this paper generalises and complement our earlier work [28, 29].
Since assumptions are simple we can deal with larger class of nonlinear four
point boundary value problems (see [27, p. 27]) and since method is simple
iterative, it is user friendly and can be used to develop software package to
compute solutions of multi point BVPs.
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Appendix

Here we provide the algorithm which we are using to compute the sequence of
upper and lower solutions:

Step 1 Input the nonlinear term F (x, ψ, ψ′).

Step 2 Choose m and λ, where m = n is the number of members of sequences
(lm) and (um).

Step 3 Choose initial guesses : l0 satisfying (4.1) and u0 satisfying (4.1) with
reverse inequalities.

Step 4 Start the iteration put m = 0 in (4.2) and (4.3).

Step 5 Use l0, u0 and solve the resulting linear system to get l1 and u1.

Step 6 Repeat step 4 and step 5, n times to get l0, l1, l2, . . . , ln and u0, u1, u2,
. . . , un.

Remark 1. We have used Mathematica 11.3 to solve the linearized multi point
BVPs and plotting. Mathematica has DSolve and NDSolve command which
can be used to solve the linear BVPs.
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