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Abstract. In this paper, a simple scheme is constructed for finding approximate
solution of the nonlinear Fredholm integral equation of the second kind. To this end,
the Lagrange interpolation polynomials together with the Gauss-Legendre quadrature
rule are used to transform the source problem to a system of nonlinear algebraic equa-
tions. Afterwards, the resulting system can be solved by the Newton method. The
basic idea is to choose the Lagrange interpolation points to be the same as the points
for the Gauss-Legendre integration. This facilitates the evaluation of the integral
part of the equation. We prove that the approximate solution converges uniformly to
the exact solution. Also, stability of the approximate solution is investigated. The
advantages of the method are simplicity, fastness and accuracy which enhance its
applicability in practical situations. Finally, we provide some test examples.
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1 Introduction

This paper concerns the construction of efficient and stable numerical method
for solving the nonlinear Fredholm integral equation of the form

u(x) = f(x) +

∫ 1

−1
K(x, t)φ(u(t))dt, x ∈ [−1, 1], (1.1)

where f ∈ C[−1, 1] and K ∈ C([−1, 1]2) are known functions, φ is a given
nonlinear function defined on [−1, 1] and u is unknown to be determined.
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Various phenomena in different fields of science and engineering can be
formulated by integral equations [37]. Fredholm integral equations appear in
numerous applications such as thermal radiation [20], fluid mechanics [10],
simulation of tumor growth [9], transport theory [34], image restoration [24],
potential theory and elasticity [23], etc.

Integral equations are usually difficult to solve analytically. Therefore, this
requires that its solution to be obtained approximately. In recent years, numer-
ical methods for solving different types of the Fredholm integral equations have
been extensively studied in many papers such as Legendre multi-Galerkin meth-
ods to solve the Fredholm integral equation with weakly singular kernel [30],
iterative procedure for the nonlinear fuzzy Fredholm integral equation [15],
Chebyshev collocation method for a class of the Fredholm integral equations
with highly oscillatory kernels [18], operator transformation for the Fredholm
integral equation with Cauchy type kernel [7], spectral collocation method for
the Fredholm integral equation on the half-line [31], Nyström method for the
Fredholm integral equation on unbounded domain [17], Chebyshev approxi-
mation for the nonlinear Fredholm-Volterra integral equation [16], Legendre
polynomials for the nonlinear Fredholm-Hammerstein integral equation [28],
Legendre wavelets for the system of linear and nonlinear Fredholm integral
equations [13], Legendre spectral collocation method for the nonlinear Fred-
holm integral equation in multidimensions [38], Newton-Steffensen iterative
scheme for the nonlinear Fredholm integral equation with non-differentiable
Nemystkii operator [19], Nyström method for the nonlinear integro-differential
equation of Fredholm type [8], etc. For a review on different numerical tech-
niques to solve such problems, see for instance [2,5,33]. Existence and unique-
ness of such equations are discussed in [11].

Interpolation techniques and quadrature methods have been widely used
to solve the nonlinear Fredholm integral equations. Katani in [22] used the
Romberg quadrature rule to find the numerical solution of the Fredholm inte-
gral equation of Urysohn type. Molabahrami applied the Lagrange interpola-
tion method for the system of Urysohn type integral equations [27]. Derakhshan
and Zarebnia [12] constructed quadrature rules of arbitrary low and high or-
ders based on quadratic spline quasi-interpolant to approximate the solution
of (1.1). Assari in [3] used the discrete Galerkin method based on the moving
least squares approach to approximate the solution of one and two dimensional
integral equations of the form (1.1). In [4], a method based on the discrete
collocation method together with the radial basis functions was also presented
by this author to find the numerical solution of (1.1). In both methods, the
required integrals estimated using the Gauss-Legendre quadrature rule. For
further references in that respect, see e.g., [1, 21]. In this study, we present
an efficient and stable numerical method based on the Lagrange interpolation
together with the Gauss-Legendre quadrature rule to find the numerical solu-
tion of (1.1). The main advantage of the presented method is that the source
problem is reduced to a system of nonlinear algebraic equations. The resulting
system can be solved by the Newton method.

The remainder of this paper is organized as follows. In Section 2, we intro-
duce the Gauss-Legendre quadrature formula and also the Lagrange interpo-
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lation. In Section 3, we explain the numerical method to solve equation (1.1)
using what was introduced in Section 2. In Section 4, convergence and stability
of approximate solution are considered. Some test examples are provided in
Section 5 to demonstrate the applicability of the method. Finally, a conclusion
is given in Section 6.

2 Gauss-Legendre quadrature formula and Lagrange in-
terpolation

An Gauss-Legendre quadrature formula of order k + 1 is given by∫ 1

−1
f(x)dx =

k∑
i=0

ωif(xi), (2.1)

for some set of nodes {xi}ki=0 and weights {ωi}ki=0. The Gauss-Legendre quadra-
ture rule is defined by the unique choice for the nodes and weights so that (2.1)
is exact when f is any polynomial of degree at most 2k+1. No explicit formula
is known for the points xi and so they are calculated numerically. The nodes
for quadrature of order k+1 are given by the roots of the Legendre polynomial
pk+1(x) which occur symmetrically about 0. The points xi are available in
most standard mathematical tables and computer codes. Also, the weights ωi
are given by

ωi =
2(1− x2i )

(k + 1)2 (pk+1(xi))
2 , i = 0, 1, ..., k.

More information and details about the Gaussian quadrature formula of
order k and calculated values of corresponding nodes and weights would be
found in [36].

It should be noted that when using the extensively tabulated roots of the
Legendre polynomials and their corresponding weights to solve an equation
whose integration interval is [a, b], we need to first apply the following change
of variables

x =
b− a

2
x+

b+ a

2
,

which gives∫ b

a

f(x)dx=
b−a

2

∫ 1

−1
f

(
b−a

2
x̄+

b+a

2

)
dx ≈ b−a

2

k∑
i=0

ωif

(
b−a

2
x̄i+

b+a

2

)
.

Now consider a set of k + 1 distinct data points (z0, f0), (z1, f1), ..., (zk, fk),
then the Lagrange interpolation polynomial is given by

f(x) =

k∑
i=0

fi`i,k(x),

where `i,k(x), i = 0, 1, ..., k are the Lagrange fundamental polynomials defined
as

`i,k(x) =

k∏
j=0,j 6=i

(
x− zj
zi − zj

)
.
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Also `i,k(zj) = δij where δij is the Kronecker delta, defined as

δij =

{
1, i = j,

0, i 6= j,

which simply implies that fi = f(zi).

3 Method of solution

Consider the nonlinear Fredholm integral equation of the second kind

u(x) = f(x) +

∫ 1

−1
K(x, t)φ(u(t))dt, |x| ≤ 1. (3.1)

This can be written as

u(x) = f(x) +

∫ 1

−1
K(x, t)Φ(t)dt, (3.2)

where Φ(t) = φ(u(t)). By considering uk(x) as an approximation for u(x) we
can turn Equation (3.2) into the following equation

uk(x) = f(x) +

∫ 1

−1
K(x, t)Φk(t)dt, (3.3)

where Φk(t) = φ(uk(t)) which immediately implies

Φk(t) = φ

(
f(t) +

∫ 1

−1
K(t, x)Φk(x)dx

)
. (3.4)

In fact, the first step to approximate the solution u(x) of (3.1) is acquiring
Φk(x). To this end, we consider the Lagrange interpolation of the function
Φk(x) as

Φk(x) =

k∑
i=0

αi`i,k(x), (3.5)

where αi = Φk(zi). Here, we take the Lagrange interpolation points zi to be the
same as the points xi for the Gauss quadrature formula. Now, using (3.5) and
the quadrature formula (2.1), we may approximate the integral part of (3.4) as
follows∫ 1

−1
K(t, x)Φk(x)dx =

k∑
i=0

αi

∫ 1

−1
K(t, x)`i,k(x)dx

=

k∑
i=0

αi

 k∑
j=0

ωjK(t, xj)`i,k(xj)

 =

k∑
i=0

αi

 k∑
j=0

ωjK(t, xj)δij


=

k∑
i=0

αiωiK(t, xi). (3.6)
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Substituting (3.6) into (3.4) gives

Φk(t) = φ

(
f(t) +

k∑
i=0

αiωiK(t, xi)

)
. (3.7)

Evaluating (3.7) at the points t = xp, p = 0, 1, ..., k (the points for the
Gauss quadrature formula) implies

Φk(xp) = φ

(
f(xp) +

k∑
i=0

αiωiK(xp, xi)

)
. (3.8)

Since Φk(xp) = αp, (3.8) is rewritten as

αp = φ

(
f(xp) +

k∑
i=0

αiωiK(xp, xi)

)
, p = 0, 1, ..., k, (3.9)

which is a nonlinear system of algebraic equations that can be solved by
numerical methods such as Newton’s method. By solving (3.9), the values
αp, p = 0, 1, ..., k, will be known. Now combining (3.3) and (3.6), we get

uk(x) = f(x) +

k∑
i=0

αiωiK(x, ti), (3.10)

where ti = xi, i = 0, 1, ..., k.

4 Convergence and stability

In this section, we give an estimation of the error bound for the proposed
method of Section 3, which enables us to control the estimated errors. First, we
provide the interpolation error formula which is given in the following theorem.

Theorem 1. (Error formula for polynomial interpolation [35])
Suppose f ∈ Ck+1[−1, 1] and let pk denote the polynomial that interpolates
{(xi, f(xi))}ki=0 with xi ∈ [−1, 1] for i = 0, 1, ..., k. Then for every x ∈ [−1, 1]
there exists ζx ∈ [−1, 1] such that

f(x)− pk(x) =
π(x)

(k + 1)!
f (k+1)(ζx),

where π(x) = Πk
i=0(x− xi).

As mentioned in Section 3, the Lagrange interpolation points zi, i=0, 1, ..., k,
are chosen to be respectively the same as the nodes xi, i = 0, 1, ..., k, for the
Gauss-Legendre quadrature formula, so we can provide the following theorem.

Theorem 2. If the Lagrange interpolation polynomial pk(x) interpolates f(x)
at the Gauss-Legendre quadrature nodes xi, then we have |π(x)| < 1 for x ∈
[−1, 1].

Math. Model. Anal., 27(2):215–231, 2022.
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Proof. Let us consider two cases:
Case 1.
Since the nodes xi are located symmetrically in [−1, 1], then for odd k (the
number of nodes is even), the nodes are x0, x1, ..., x k−1

2
, x k+1

2
, ..., xk−1, xk,

which satisfy
xk = −x0, xk−1 = −x1, ..., x k+1

2
= −x k−1

2
.

So,

π(x) =

k∏
i=1

(x− xi)

= (x− x0)(x− x1)...(x− x k−1
2

)(x− x k+1
2

)...(x− xk−1)(x− xk)

= (x− x0)(x− x1)...(x− x k−1
2

)(x+ x k−1
2

)...(x+ x1)(x+ x0)

= (x2 − x20)(x2 − x21)...(x2 − x2k−1
2

), |x| ≤ 1.

Hence,

|π(x)| ≤
∣∣∣(1− x20)(1− x21)...(1− x2k−1

2

)
∣∣∣ . (4.1)

As the nodes xi satisfy 0 < x2i < 1 (no node equals 0 for odd k), we have

0 < 1− x2i < 1 for i = 0, 1, ..., (k − 1)/2.

Therefore, (4.1) implies
|π(x)| < 1.

Case 2.
For even k (the number of nodes is odd), the nodes are x0, x1, ..., x k

2−1
, x k

2
,

x k
2+1, ..., xk−1, xk. For even k, x k

2
= 0 and for other nodes we have

xk = −x0, xk−1 = −x1, ..., x k
2+1 = −x k

2−1
.

So,

π(x) =

k∏
i=1

(x− xi)

= (x− x0)(x− x1)...(x− x k
2−1

)(x− x k
2
)(x− x k

2+1)...(x− xk−1)(x− xk)

= (x− x0)(x− x1)...(x− x k
2−1

)(x− 0)(x+ x k
2−1

)...(x+ x1)(x+ x0)

= (x2 − x20)(x2 − x21)...(x2 − x2k
2−1

)x, |x| ≤ 1.

Hence,

|π(x)| ≤
∣∣∣(1− x20)(1− x21)...(1− x2k

2−1
)x
∣∣∣ . (4.2)

Similar to the case of odd k, we have

0 < 1− x2i < 1 for i = 0, 1, ..., k/2− 1.

Consequently, from (4.2) we obtain |π(x)| < 1. ut

The following theorem discusses the convergence of the approximate solu-
tion obtained from the prescribed method in Section 3.
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Theorem 3. Suppose K and φ in (3.1) satisfy K ∈ C([−1, 1]2) and φ ∈
Ck+1[−1, 1] with k ≥ 0. If u(x), the exact solution, and uk(x), the approximate
solution defined by (3.10), are both in Ck+1[−1, 1], then uk(x) is uniformly
convergent to u(x).

Proof. Since φ, u ∈ Ck+1[−1, 1], there is some M > 0 with |Φ(k+1)(x)| ≤ M
for all x ∈ [−1, 1], where Φ(x) = φ(u(x)). Thus using (3.2) and (3.3) we may

proceed as follows

‖u(x)− uk(x)‖2E =

∫ 1

−1
|u(x)− uk(x)|2dx

=

∫ 1

−1

∣∣∣∣∫ 1

−1
K(x, t) (Φ(t)− Φk(t)) dt

∣∣∣∣2 dx ≤ ∫ 1

−1

(∫ 1

−1
|K(x, t)|2dt

)
×
(∫ 1

−1
|Φ(t)− Φk(t)|2dt

)
dx =

(∫ 1

−1

∫ 1

−1
|K(x, t)|2dtdx

)
×
(∫ 1

−1
|Φ(t)− Φk(t)|2dt

)
= ‖K‖2

∫ 1

−1
|Φ(t)− Φk(t)|2dt. (4.3)

Since Φk(t) is the Lagrange interpolation polynomial for Φ(t), according to
Theorem 1 we have

Φ(t)− Φk(t) =
π(t)

(k + 1)!
Φ(k+1)(ζ), ζ ∈ [−1, 1]. (4.4)

Taking into account the bounds for the functions |π(x)| and |Φ(k+1)(x)|,
(4.4) yields

|Φ(t)− Φk(t)| ≤ M

(k + 1)!
. (4.5)

Consequently by substituting (4.5) into (4.3) we observe that

‖u(x)− uk(x)‖2E ≤ ‖K‖2
∫ 1

−1

(
M

(k + 1)!

)2

dt = 2

(
‖K‖M
(k + 1)!

)2

.

Hence,

‖u(x)− uk(x)‖E ≤
C

(k + 1)!
, C =

√
2‖K‖M. (4.6)

Now we show that for every ε > 0 there exists a positive integer N such that

k ≥ N ⇒ ‖u(x)− uk(x)‖E < ε, for all x ∈ [−1, 1].

For every ε > 0, set N = C
ε > 0. Now if k ≥ N, then

C

(k + 1)!
<
C

k
≤ C

N
= ε.

Therefore (4.6) gives

‖u(x)− uk(x)‖E < ε, for all x ∈ [−1, 1];

that is, uk(x) is uniformly convergent to u(x). ut

Math. Model. Anal., 27(2):215–231, 2022.
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Theorem 4. Consider Equation (3.1) under the hypotheses of Theorem 3.
Then the obtained solution from the prescribed method in Section 3 is stable.

Proof. Suppose f(x) has ε(x) > 0 perturbation where we assume ε(x) is
bounded on [−1, 1]. Let ε̃ = sup|x|≤1 ε(x). We show that the variation of the
obtained solution is bounded by a constant multiple of ε.

Take u1k(x) as the approximated solution of Equation (3.1) which is of the
form (3.10), that is

u1k(x) = f(x) +

∫ 1

−1
K(x, t)Φk(t)dt = f(x) +

k∑
i=0

αiωiK(x, ti).

Also, let u2k(x) be the approximated solution of

u(x) = f(x) + ε(x) +

∫ 1

−1
K(x, t)φ(u(t))dt, |x| < 1,

u2k(x) = f(x) + ε(x) +

∫ 1

−1
K(x, t)Φk(t)dt.

Analogous to the Equation (3.4), we have

Φk(t) = φ

(
f(t) + ε(t) +

∫ 1

−1
K(t, x)Φk(x)dx

)
= φ(τ(t))+φ′(τ(t))ε(t)+φ′′(τ(t))

(ε(t))2

2!
+φ′′′(τ(t))

(ε(t))3

3!
+ · · · , (4.7)

where τ(t) = f(t) +
∫ 1

−1K(t, x)Φk(x)dx. We observe that

φ(τ(t)) = φ

(
f(t) +

∫ 1

−1
K(t, x)Φk(x)dx

)
= φ(uk(t)) = Φk(t),

which implies

f(x) +

∫ 1

−1
K(x, t)φ(τ(t))dt = f(x) +

∫ 1

−1
K(x, t)Φk(t)dt = u1k(x). (4.8)

Now by substituting (4.7) into u2k(x) and using (4.8) we can write

u2k(x) = f(x) + ε(x) +

∫ 1

−1
K(x, t)Φk(t)dt = f(x) + ε(x)

+

∫ 1

−1
K(x, t)

(
φ(τ(t)) + φ′(τ(t))ε(t) + φ′′(τ(t))

(ε(t))2

2!

+φ′′′(τ(t))
(ε(t))3

3!
+ . . .

)
dt =

(
f(x) +

∫ 1

−1
K(x, t)φ(τ(t))dt

)
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+ ε(x) +

∫ 1

−1
K(x, t)φ′(τ(t))ε(t)dt+

1

2!

∫ 1

−1
K(x, t)φ′′(τ(t))(ε(t))2dt

+
1

3!

∫ 1

−1
K(x, t)φ′′′(τ(t))(ε(t))3dt+ . . . = u1k(x) + ε(x)

+

∫ 1

−1
K(x, t)φ′(τ(t))ε(t)dt+

1

2!

∫ 1

−1
K(x, t)φ′′(τ(t))(ε(t))2dt

+
1

3!

∫ 1

−1
K(x, t)φ′′′(τ(t))(ε(t))3dt+ . . . = u1k(x) + r(x), (4.9)

where

r(x) =ε(x) +

∫ 1

−1
K(x, t)φ′(τ(t))ε(t)dt+

1

2!

∫ 1

−1
K(x, t)φ′′(τ(t))(ε(t))2dt

+
1

3!

∫ 1

−1
K(x, t)φ′′′(τ(t))(ε(t))3dt+ . . . . (4.10)

Let |K(x, t)| ≤ M1 for all (x, t) ∈ [−1, 1]2 and |φ(i)(τ(t))| ≤ M2 for all
t ∈ [−1, 1] and i > 0. Thus (4.10) gives

|r(x)| ≤ε(x) +

∫ 1

−1
|K(x, t)||φ′(τ(t))|ε(t)dt+

1

2!

∫ 1

−1
|K(x, t)||φ′′(τ(t))|(ε(t))2dt

+
1

3!

∫ 1

−1
|K(x, t)||φ′′′(τ(t))|(ε(t))3dt+ . . .

≤ ε̃+ 2M1M2ε̃+ 2M1M2
ε̃2

2!
+ 2M1M2

ε̃3

3!
+ . . .

= ε̃+ 2M1M2

(
ε̃+

ε̃2

2!
+
ε̃3

3!
+ . . .

)
= ε̃+ 2M1M2

(
eε̃ − 1

)
. (4.11)

Now for every ε̄ > 0 there exists δ > 0 such that, 0 < ε̃ < δ ⇒ |eε̃ − 1| < ε̄.
Thus (4.11) gives

|r(x)| < ε̃+ 2M1M2ε̄.

Setting ε = max{ε̃, ε̄} necessitates that

|r(x)| < (1 + 2M1M2)ε.

Consequently, from (4.9) we obtain

|u2k(x)− u1k(x)|2 = |r(x)|2 < (1 + 2M1M2)2ε2. (4.12)

Integrating both sides of (4.12) over [−1, 1] gives

‖u2k − u1k‖2E =

∫ 1

−1
|u2k(x)− u1k(x)|2dx < 2(1 + 2M1M2)2ε2.

So,
‖u2k − u1k‖E < Cε, C =

√
2(1 + 2M1M2),

which means stability of the method. ut

Math. Model. Anal., 27(2):215–231, 2022.
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5 Numerical examples

In this section, we apply the method proposed in Section 3, to some test ex-
amples. All numerical calculations are performed by Maple 13.

Example 1. [12, 33]

u(x) = sin(πx) +
1

5

∫ 1

0

cos(πx) sin(πt) (u(t))
3
dt, 0 ≤ x ≤ 1,

with exact solution u(x) = sin(πx) + 1
3 (20−

√
391) cos(πx). The absolute error

|uk(x)− u(x)| of Example 1 for k = 2, 3, 4, 7 is shown in Table 1.

Table 1. Absolute error of Example 1.

x k = 2 k = 3 k = 4 k = 7 [33] (N=16) [12] (n=25 and m=9)

0.0 1.5e−2 3.2e−3 4.1e−4 9.5e−8 1.1e−3 −−
0.1 1.4e−2 3.0e−3 3.9e−4 9.2e−8 1.9e−4 4.4e−10
0.2 1.2e−2 2.6e−3 3.3e−4 7.8e−8 21.5e−3 3.7e−10
0.3 9.0e−3 1.9e−3 2.4e−4 5.4e−8 5.6e−4 2.7e−10
0.4 4.7e−3 1.0e−3 1.2e−4 2.9e−8 1.2e−3 1.4e−10
0.5 0.0 0.0 0.0 0.0 1.3e−3 0.0
0.6 4.7e−3 1.0e−3 1.2e−4 3.0e−8 1.2e−3 1.4e−10
0.7 9.0e−3 1.9e−3 2.4e−4 5.5e−8 3.0e−4 2.7e−10
0.8 1.2e−2 2.6e−3 3.3e−4 7.6e−8 1.3e−3 3.7e−10
0.9 1.4e−2 3.0e−3 3.9e−4 9.3e−8 4.9e−5 3.3e−10
1.0 1.5e−3 3.2e−3 4.1e−4 9.5e−8 6.2e−2 −−

Example 2. [12]

u(x) =

∫ 1

0

xt
√
u(t)dt+ 2− 1

3
(2
√

2− 1)x− x2, 0 ≤ x ≤ 1,

with exact solution u(x) = 2−x2. The absolute errors |uk(x)−u(x)| of Example
2 for k = 2, 3, 4, 7 are shown in Table 2.

Table 2. Absolute error of Example 2.

x k = 2 k = 3 k = 4 k = 7 [12] (n=20 and m=9)

0.1 5.9e−6 3.1e−7 1.8e−8 1.4e−10 1.4e−12
0.3 1.5e−5 9.5e−7 5.8e−8 4.0e−10 4.4e−12
0.5 2.9e−5 1.5e−6 9.7e−8 4.0e−10 7.4e−12
0.7 4.1e−5 2.2e−6 1.7e−7 0.0 1.0e−11
0.9 5.9e−5 2.8e−6 1.7e−7 8.0e−10 1.3e−11

Example 3. [22]

u(x) =

(
1

2
− ln(2)

)
x2 +

√
x+

∫ 1

0

x2t2

1 + u2(t)
dt, 0 ≤ x ≤ 1,
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Table 3. Absolute error of Example 3.

x k = 2 k = 3 k = 4 k = 7 [22] (N = 5) [22] (N = 25)

0.05 5.7e−8 1.7e−9 5.1e−11 4.2e−14 8.3e−12 5.6e−16
0.1 2.2e−7 6.8e−9 2.0e−10 1.7e−13 3.3e−11 2.2e−15
0.25 1.4e−6 4.3e−8 1.2e−9 1.0e−12 2.8e−10 1.4e−14
0.5 5.7e−6 1.7e−7 5.1e−9 4.2e−12 8.3e−10 5.6e−14
0.75 1.2e−5 3.8e−7 1.1e−8 9.6e−12 1.8e−9 1.2e−13
1.0 2.2e−5 6.8e−7 2.0e−8 1.7e−11 3.3e−9 2.2e−13

with exact solution u(x) =
√
x. The absolute errors |uk(x)− u(x)| of Example

3 for k = 2, 3, 4, 7 are shown in Table 3.

Example 4. [28]

u(x) = ex−1(e− e2 + 1) +

∫ 1

−1
ex−2t (u(t))

3
dt, |x| ≤ 1,

with exact solution u(x) = ex. The absolute errors |uk(x) − u(x)| of Example
4 for k = 2, 3, 4 are shown in Table 4.

Table 4. Absolute error of Example 4.

x k = 2 k = 3 k = 4 method of [28]
with (N = 6)

-1.0 3.9e−6 1.8e−8 2.3e−10 7.1e−6
-0.8 4.8e−6 2.2e−8 7.4e−10 1.8e−6
-0.6 5.9e−6 2.5e−8 2.2e−10 2.3e−6
-0.4 7.2e−6 3.2e−8 0.0 1.8e−8
-0.2 8.8e−6 3.9e−8 6.0e−10 2.2e−6
0.0 1.0e−5 4.8e−8 0.0 1.3e−7
0.2 1.3e−5 5.8e−8 4.4e−10 2.2e−6
0.4 1.6e−5 7.1e−8 5.4e−10 2.5e−7
0.6 1.9e−5 8.9e−8 1.3e−9 2.5e−6
0.8 2.4e−5 1.0e−8 0.0 1.8e−6
1.0 2.9e−5 1.3e−7 1.0e−9 8.1e−6

For this example, the exact and approximated solutions are compared in Fig-
ure 1 with k = 7. In addition, the absolute error function |u(x) − uk(x)| is
plotted in Figure 2 with the same value for k.

Example 5. (Constructed by authors)

u(x) = cos(x)− x
(
−1

2
sin(1) cos3(1) +

1

4
cos(1) sin(1) +

1

4

)
+

∫ 1

−1
x sin2(t) (u(t))

2
dt, |x| ≤ 1.

Math. Model. Anal., 27(2):215–231, 2022.
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Figure 1. Exact and
approximated solutions of

Example 4 (k = 7).

Figure 2. Absolute error of
Example 4 (k = 7).

To calculate the error in the interval [−1, 1], we define the error function
ek(x) as

ek(x) = uk(x)− f(x)−
∫ 1

−1
K(x, t)(uk(t))2dt.

In fact, in the right hand side of above equation, we put the approximate
solution uk(x) instead of the exact solution u(x) of Equation (3.1). Now the
absolute errors |ek(x)| of Example 5 for k = 2, 3, 4, 7 and some x ∈ [−1, 1] are
shown in Table 5. The exact solution of this example is u(x) = cos(x).

The exact and approximated solutions are compared in Figure 3 with k = 7.
In addition, the absolute error function |ek(x)| is plotted in Figure 4 with the
same value for k.

Table 5. Absolute error of Example 5.

x e2(x) e3(x) e4(x) e7(x)

-1.0 1.1e−2 1.5e−3 7.5e−5 9.0e−10
-0.8 1.1e−2 1.2e−3 6.0e−5 8.0e−10
-0.6 1.1e−2 9.4e−4 4.5e−5 6.0e−10
-0.4 1.1e−2 6.3e−4 3.0e−5 5.0e−10
-0.2 1.1e−2 3.1e−4 1.5e−5 2.0e−10
0.0 1.1e−2 0.0 0.0 0.0
0.2 1.1e−2 3.1e−4 1.5e−5 2.0e−10
0.4 1.1e−2 6.3e−4 3.0e−5 5.0e−10
0.6 1.1e−2 9.4e−4 4.5e−5 6.0e−10
0.8 1.1e−2 1.2e−3 6.0e−5 8.0e−10
1.0 1.1e−2 1.5e−3 7.5e−5 9.0e−10
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Figure 3. Exact and
approximated solutions of

Example 5 (k = 7).

Figure 4. Absolute error of
Example 5 (k = 7).

Example 6. [14,26,29] Consider the following Lichtenstein-Gershgorin integral
equation for ν = 1.2, and −1 ≤ x ≤ 1,

u(x) = 2 tan−1
(

ν sin(πx)

ν2(cos(πx) + cos2(πx)) + sin2(πx)

)
+

∫ 1

−1

νu(t)

(ν2 + 1)− (ν2 − 1) cos(π(x+ t))
dt.

This equation has been used for the determination of conformal mapping of an
ellipse onto a circle as mentioned in [14]. Table 6 gives a comparison between
the approximated solutions obtained by the presented method for k = 3, 4, 7
and the methods proposed in [14,26,29].

Table 6. Numerical results of Example 6.

x k = 3 k = 4 k = 7 [14] (n=10) [29] (n=10) [26] (n=10)

0.1 0.2151 0.2147 0.2155 0.215 0.2158 0.2158
0.2 0.4623 0.4599 0.4618 0.461 0.4625 0.4625
0.3 0.7696 0.7628 0.7663 0.766 0.7673 0.7679
0.4 1.1497 1.1372 1.1421 1.142 1.1434 1.1434
0.5 1.5826 1.5652 1.5705 1.570 1.5721 1.5721
0.6 2.0136 1.9943 1.9991 1.999 2.0007 2.0007
0.7 2.3891 2.3716 2.3750 2.375 2.3765 2.3767
0.8 2.6904 2.6777 2.6796 2.679 2.6808 2.6808
0.9 2.9317 2.9252 2.9260 2.926 2.9266 2.9265

Example 7. [6, 32] Consider the mathematical model for an adiabatic tubular
chemical reactor which in the case of steady state solutions, can be stated as
the ordinary differential equation

u
′′
(x)− λu

′
(x) + F (λ, µ, β, u(x)) = 0, x ∈ [0, 1],

Math. Model. Anal., 27(2):215–231, 2022.
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with boundary conditions

u
′
(0) = λu(0), u

′
(1) = 0,

where F (λ, µ, β, u(x)) = λµ(β−u(x))eu(x). The problem can be converted into
a Hammerstein integral equation of the form [25]

u(x) =

∫ 1

0

µκ(x, t)(β − u(t))eu(t)dt, x ∈ [0, 1], (5.1)

where

κ(x, t) =

{
1, t ≤ x,
eλ(x−t), x ≤ t.

The existence and uniqueness of the solution for the above Hammerstein
integral equation with respect to the values of parameters λ, µ and β are dis-
cussed in [25]. Integral equation (5.1) is solved in [6, 32] for the particular
values of the parameters λ = 10, µ = 0.02 and β = 3. Table 7 gives a compari-
son between the approximated solutions obtained by the presented method for
k = 4, 7 and the methods proposed in [6, 32].

Table 7. Numerical results of Example 7.

x k = 4 k = 7 [6] (N=10) [32] (M=4)

0.0 0.006051 0.006050 0.006048 0.006048
0.2 0.018799 0.018011 0.018192 0.018193
0.4 0.028583 0.031527 0.030424 0.030424
0.6 0.042223 0.043986 0.042669 0.042669
0.8 0.055762 0.054519 0.054371 0.054368
1.0 0.061564 0.061505 0.061459 0.061505

6 Conclusions

In this work, we have proposed a simple and accurate method for evaluating
the solution of the nonlinear Fredholm integral equation which is based on the
use of the Lagrange interpolation simultaneously with the Gauss-Legendre in-
tegration. Implementation of the method demonstrates this method is effective
and computationally attractive. The key point here, is to choose the Lagrange
interpolation points to be the same as the points for the Gauss quadrature
formula and transforming the main problem to a system of nonlinear algebraic
equations that can be solved by Newton’s method. The approximate solution
is uniformly convergent to the exact solution. Furthermore, the solution of the
proposed method is stable. Some test examples are carried out which confirm
effectiveness of the proposed method. It is stated that high accuracy is achieved
even by using a few number of interpolation polynomials.

We suggest this method to the Volterra-Hammerstein integral equations.
The method can be extended to the system of Fredholm and Volterra Ham-
merstein integral equations through some modifications. Also, other types of
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numerical integration methods and interpolation functions can be examined for
the same type of integral equations.
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