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Abstract. In this paper, we propose a mixed Jacobi-Fourier spectral method for
solving the Fisher equation in a disc. Some mixed Jacobi-Fourier approximation
results are established, which play important roles in numerical simulation of various
problems defined in a disc. We use the generalized Jacobi approximation to simulate
the singularity of solution at the regional center. This also simplifies the theoretical
analysis and provides a sparse system. The stability and convergence of the proposed
scheme are proved. Numerical results demonstrate the efficiency of this new algorithm
and coincide well with the theoretical analysis.
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1 Introduction

Fisher equation serves as a foundation in various mathematical investigations
in ecology and biology, see, e.g., [6, 7, 16, 17, 20, 23]. There are so many works
concerned with analytic solutions of the Fisher equation, see, e.g., [12, 25, 28]
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and the references therein. Recently, Olmos and Shizgal [21] provided the nu-
merical solution with the Chebyshev collocation method. Mittal and Jiwari [19]
numerically discussed the Fisher equation by using the differential quadrature
method. Jiwari [15] used Haar wavelet quasilinearization approach to solve
Burges’ equation. Wang [26] studied the Fisher equation on a semi-infinite
domain using the generalized Laguerre functions. Wang and Jiao [27] consid-
ered the Fisher equation on unbounded domain using the generalized Hermite
functions.

In this paper, we consider the Fisher equation in a disc. Let Ω̃ = {(ρ, θ) | 0 ≤
ρ < 2, 0 ≤ θ < 2π} with the boundary ∂Ω̃ and T > 0. W0(ρ, θ) and ν > 0
are the initial state and the kinetic viscosity, respectively. For simplicity, let

∂zW =
∂W

∂z
, etc. The Fisher problem in a disc is of the form


∂tW (ρ, θ, t)−ν∆W (ρ, θ, t)−W (ρ, θ, t)(1−W (ρ, θ, t))=g(ρ, θ, t),

in Ω̃, t ∈ [0, T ],

W (2, θ, t) = 0, t ∈ [0, T ],

W (ρ, θ, 0) = W0(ρ, θ), in ¯̃Ω.

(1.1)

For a scalar function w(ρ, θ),

∆w(ρ, θ) =
1

ρ
∂ρ(ρ∂ρw(ρ, θ)) +

1

ρ2
∂2
θw(ρ, θ), (1.2)

∇w(ρ, θ) = (∂ρw(ρ, θ),
1

ρ
∂θw(ρ, θ))T . (1.3)

Observing from (1.1)–(1.3) that it is a nonlinear evolution equation. Partic-
ularly, the problem has singularity at the center of the domain. This often
destroys the merit of high accuracy of spectral method. To overcome the dis-
advantage, some techniques have been proposed. Boyd [3,4] used some orthogo-
nal polynomials to approximate solutions with end-pointed weak singularities,
and in [5] compared seven methods for solving problems defined on a disk.
Stenger [24] used Sinc base functions to fit the singular solutions. Matsushima
and Marcus [18] studied spectral method for problems defined in polar coor-
dinates uing a set of orthogonal polynomials. Bernardi and Maday [2] consid-
ered ultraspherical approximations in some weighted Sobolev spaces. Guo [11]
studied Jacobi approximations in certain Hilbert spaces and with applications
to singular differential equations. On the other hand, some problems in un-
bounded domain can be reformulated as singular ones in bounded domain by
variable transformations. Guo [8] used some Jacobi approximations to numer-
ically simulate these resulting problems.

In this paper, we employ the generalized Jacobi-Fourier spectral method to
simulate (1.1) numerically. This approach has several merits:

(i) We use the generalized Jacobi approximation in the radial direction sim-
ilar to the method used by Yu and Wang in [29,30]. It avoids effectively
the singularity at the regional center.
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(ii) This reduces the difficulty of the theoretical analysis and provides a sparse
system of the unknown coefficients of numerical solution.

(iii) Moreover, the numerical solution possesses spectral accuracy in space
with the smooth solutions.

The rest of the paper is organized as follows. In the next section, we recall
some basic results of the generalized Jacobi and Fourier orthogonal approxi-
mations. In Section 3, we introduce the mixed generalized Jacobi-Fourier or-
thogonal approximation. In Section 4, a mixed spectral scheme for the Fisher
equation in a disc is constructed, and it’s stability and convergence are proved.
In Section 5, we present some numerical results to demonstrate the efficiency
of this new approach. The final section is for some concluding remarks.

2 Preliminaries

Let Λ = {x| |x| < 1} and χ(x) be a certain weight function. Denote by N the
set of all non-negative integers. For any r ∈ N, we define the weighted Sobolev
space Hr

χ(Λ) in the usual way, with the inner product, semi-norm and norm
(u, v)r,χ,Λ, |u|r,χ,Λ, and ‖u‖r,χ,Λ, respectively. In particular, L2

χ(Λ) = H0
χ(Λ),

(u, v)χ,Λ = (u, v)0,χ,Λ and ‖u‖χ,Λ = ‖u‖0,χ,Λ. For any r > 0, we define the
space Hr

χ(Λ) by space interpolation as in [1]. We omit the subscript χ whenever

χ(x) ≡ 1. Let α, β > −1 and χα,β(x) = (1−x)α(1+x)β . The Jacobi polynomial
of degree l in the interval Λ is given by

(1− x)α(1 + x)βJ
(α,β)
l (x) =

(−1)l

2ll!
∂lx((1− x)α+l(1 + x)β+l).

The set of {J (α,β)
l (x)} is a complete L2

χ(α,β)(Λ)-orthogonal system, namely

(J
(α,β)
l (x), J

(α,β)
l′ (x))χ(α,β) = γ

(α,β)
l δl,l′ , (2.1)

where δl,l′ is the Kronecker delta symbol, and

γ
(α,β)
l =

2α+β+1Γ (l + α+ 1)Γ (l + β + 1)

(2l + α+ β + 1)Γ (l + 1)Γ (l + α+ β + 1)
.

Let N ∈ N, and denote by PN (Λ) the set of all algebraic polynomials of
degree at most N . For γ, δ > −1, we introduce the space Hµ

α,β,γ,δ(Λ), 0 ≤ µ ≤
1. For µ = 0, H0

α,β,γ,δ(Λ)=L2
χ(γ,δ)(Λ). For µ = 1,

H1
α,β,γ,δ(Λ) = {u | u is measurable and ‖u‖1,α,β,γ,δ,Λ <∞},

equipped with the norm

‖u‖1,α,β,γ,δ,Λ = (|u|21,χ(α,β),Λ + ‖u‖2χ(γ,δ),Λ)
1
2 .

The space Hµ
α,β,γ,δ(Λ) with 0 < µ < 1 is defined by space interpolation as

in [1].
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For describing approximation results, we define the following two spaces,

Hr
χ(α,β),A(Λ) = {u | u is measurable and ‖u‖r,χ(α,β),A <∞}, r ∈ N,

where

‖u‖r,χ(α,β),A =
( r∑
k=0

‖∂kxu‖2χ(α+k,β+k)

) 1
2 and |u|r,χ(α,β),A = ‖∂rxu‖χ(α+r,β+r)

and

Hr
χ(α,β),∗(Λ) = {u | u is measurable and ‖u‖r,χ(α,β),∗ <∞}, r ≥ 1, r ∈ N,

where

‖u‖r,χ(α,β),∗ =
( r−1∑
k=0

|u|2k+1,χ(α,β),∗
) 1

2 and |u|r,χ(α,β),∗ = ‖∂rxu‖χ(α+r−1,β+r−1) .

Clearly, we have |u|r−1,χ(α,β),A = |u|r,χ(α,β),∗.

Lemma 1. (cf. Lemma 3.5 of [13]) If β < 1 then for any u ∈ H1
α,β,γ,δ(Λ), u

is continuous on any subinterval Λ∗ = [−1, a] with a < 1, and max
x∈Λ∗

|u(x)| ≤

c‖U‖1,χ(α,β) . If, in addition, α < 1, then these results can be extended to Λ̄.

Lemma 2. (cf. Lemma 2.3 of [30]) If one of the following conditions holds,

α ≤ γ + 2, α < 1, β ≤ 0, δ ≥ 0, (2.2)

α ≤ 0, β ≤ δ + 2, γ ≥ 0, (2.3)

α ≤ γ + 2, β ≤ δ + 1, α < 1, 0 < β < 1, (2.4)

then for any u ∈ H1
χ(α,β)(Λ) with u(1)=0,

‖u‖χ(γ,δ) ≤ c|u|1,χ(α,β) .

Lemma 3. (Lemma 2.2 of [13]) There exists a mapping P̄ 1
N,α,β : H1

χ(α,β),A
(Λ)

→ PN (Λ) such that P̄ 1
N,α,βu(−1) = u(−1), and for any u ∈ H1

χ(α,β),A
(Λ),

(∂x(P̄ 1
N,α,βu− u), ∂xφ)χ(α+1,β+1) = 0, ∀φ ∈ PN (Λ).

Moreover, for any u ∈ Hr
χ(α,β),A

(Λ), µ, r ∈ N, 1 ≤ r ≤ N + 1 and 0 ≤ µ ≤ r,

‖P̄ 1
N,α,βu− u‖µ,χ(α,β),A ≤ cNµ−r|u|r,χ(α,β),A.

Next, let α < 1 and

0H1
α,β,γ,δ(Λ) = {u | u ∈ H1

α,β,γ,δ(Λ), u(1) = 0},
0PN (Λ) = PN (Λ) ∩ 0H1

α,β,γ,δ(Λ).
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Due to Lemma 1, the set 0H1
α,β,γ,δ(Λ) is meaningful. Next, we consider the

orthogonal projection 0P 1
N,α,β,γ,δ : 0H1

α,β,γ,δ(Λ)→ 0PN (Λ) is defined by

ãα,β,γ,δ(
0P 1

N,α,β,γ,δu− u, φ) = 0, ∀φ ∈ 0PN (Λ),

where ãα,β,γ,δ(u, v) = (∂xu, ∂xv)χ(α,β) + (u, v)χ(γ,δ) .

Using similar manner to the proof of Lemma 3.4 of [30], we can get the
following result.

Lemma 4. If one of the conditions of (2.2)–(2.4) holds, then for any u ∈
0H1

α,β,γ,δ(Λ) ∩Hr
χ(α,β),∗(Λ) with r ∈ N and r ≥ 1,

‖0P 1
N,α,β,γ,δu− u‖1,α,β,γ,δ ≤ cN1−r|u|r,χ(α,β),∗. (2.5)

In addition, if α ≤ γ + 1, β ≤ δ + 1, then for 0 ≤ µ ≤ 1,

‖0P 1
N,α,β,γ,δu− u‖µ,α,β,γ,δ ≤ cNµ−r|u|r,χ(α,β),∗.

Lemma 5. If one of the conditions of (2.2)–(2.4) holds, then there exists a
quasi-orthogonal projection 0P̂ 1

α,β,γ,δ : 0H1
α,β,γ,δ(Λ)→ 0PN (Λ), such that

0P̂ 1
α,β,γ,δu(−1) = u(−1),

then for any u ∈ 0H1
α,β,γ,δ(Λ) ∩Hr

χ(α,β),∗(Λ) with r ∈ N and r ≥ 1,

‖0P̂ 1
α,β,γ,δu− u‖1,α,β,γ,δ ≤ cN1−r|u|r,χ(α,β),∗. (2.6)

In particular, if (2.2) or (2.4) holds, then we have

‖0P̂ 1
α,β,γ,δu− u‖(γ,−1) ≤ cN1−r|u|r,χ(α,β),∗. (2.7)

Proof. For any u ∈ 0H1
α,β,γ,δ(Λ), we define a quasi-orthogonal projection:

0P̂ 1
N,α,β,γ,δu(x) =

∫ x

1

0P 1
N−1,α,β,γ,δ∂ξu(ξ)dξ

+
1− x

2

(
u(−1) +

∫ 1

−1

0P 1
N−1,α,β,γ,δ∂xu(x)dx

)
.

We can check that 0P̂ 1
N,α,β,γ,δu(−1) = u(−1). Set

D = u(−1) +

∫ 1

−1

0P 1
N−1,α,β,γ,δ∂xu(x)dx.
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By (2.5), we derive that

‖0P̂ 1
N,α,β,γ,δu(x)− u(x)‖1,α,β,γ,δ (2.8)

= ‖
∫ x

1

0P 1
N−1,α,β,γ,δ∂ξu(ξ)dξ +

1− x
2

D − u(x)‖1,α,β,γ,δ

≤ ‖0P 1
N−1,α,β,γ,δ∂xu(x)− ∂xu(x)‖χ(α,β) +

1

2
(γ

(α,β)
0 )

1
2 |D|

+ ‖
∫ x

1

0P 1
N−1,α,β,γ,δ∂ξu(ξ)dξ +

1− x
2

D − u(x)‖χ(γ,δ)

≤ c‖0P 1
N−1,α,β,γ,δ∂xu(x)− ∂xu(x)‖χ(γ,δ) +

1

2
(γ

(α,β)
0 )

1
2 |D|

+ ‖
∫ x

1

0P 1
N−1,α,β,γ,δ∂ξu(ξ)dξ +

1− x
2

D −
∫ x

1

∂ξu(ξ)dξ‖χ(γ,δ)

≤ c‖0P 1
N−1,α,β,γ,δ∂xu(x)− ∂xu(x)‖χ(γ,δ) +

1

2
(γ

(α,β)
0 )

1
2 |D|

+ ‖
∫ 1

−1

(0
P 1
N−1,α,β,γ,δ∂xu(x)− ∂xu(x)

)
dx‖χ(γ,δ) +

1

2
(γ

(γ+2,δ)
0 )

1
2 |D|.

Thanks to γ, δ < 1,

|D| =
∣∣∣ ∫ 1

−1

(0
P 1
N−1,α,β,γ,δ∂xu(x)− ∂xu(x)

)
dx
∣∣∣

≤ 1

2
(γ

(−γ,−δ)
0 )

1
2 ‖0P 1

N−1,α,β,γ,δ∂xu(x)− ∂xu(x)‖χ(γ,δ) . (2.9)

Substituting (2.9) into (2.8) and using Lemma 4, we obtain the desired result
(2.6). We next prove (2.7). Let δ̄ ∈ (−1, 1). By virtue of (2.15) of [14], we have
that

‖0P̂ 1
α,β,γ,δu− u‖(γ,−1) ≤ 21−δ̄2ζ−γ,−δ̄|0P̂ 1

α,β,γ,δu− u|1,χ(γ,δ̄)

≤ 21−δ̄2ζ−γ,−δ̄
(
‖0P 1

N−1,α,β,γ,δ∂xu(x)− ∂xu(x)‖χ(γ,δ̄) +
1

2
(γ

(γ,δ̄)
0 )

1
2 |D|

)
≤ c‖0P 1

N−1,α,β,γ,δ∂xu(x)− ∂xu(x)‖χ(γ,δ̄) ≤ cN1−r|u|r,χ(α,β),∗, (2.10)

where

ξγ = max(2γ , 1), ζγ,δ̄ = max(ξ
1
2
γ (γ + 1)−

1
2 , ξ

1
2

δ̄
(δ̄ + 1)−

1
2 ),

c = 21−δ̄2ζ−γ,−δ̄(1 +
1

2
(γ

(γ,δ̄)
0 )

1
2 )(γ

(−γ,−δ̄)
0 )

1
2 ).

ut

Moreover, we recall some results of Fourier approximation, which will be
used in the forthcoming discussion. Let I = [0, 2π), s be any positive integer,
and Hs(I) be Sobolev space with the norm ‖ · ‖s,I and the semi-norm | · |s,I as
usual. We denote by Hs

p(I) the subspace of Hs(I), consisting of all functions
whose derivatives of order up to s− 1 have the period 2π. For any r > 0, the
space Hr

p(I) is defined by space interpolation as in [1].

Math. Model. Anal., 23(2):240–261, 2018.
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Let M be any positive integer, and ṼM (I) = span{eilθ| |l| ≤ M}. We
define VM (I) as the subset of ṼM (I) consisting of all real-valued functions.
The orthogonal projection PM,I : L2(I)→ VM (I) is defined by∫

I

(PM,Iv(θ)− v(θ))φ(θ)dθ = 0, ∀φ ∈ VM (I).

It was shown in [9] that for any v ∈ Hs
p(I), and 0 ≤ µ ≤ s,

‖PM,Iv − v‖µ,I ≤ cMµ−s|v|s,I . (2.11)

3 Mixed Fourier-Jacobi approximation

In this section, we consider the mixed Jacobi-Fourier orthogonal approximation.
Let Ω = {(x, θ)| − 1 ≤ x < 1, 0 ≤ θ < 2π} and L2

χ(α,β)(Ω) = L2
χ(α,β)(Λ,L

2(I))

equipped with the inner product

(u, v)χ(α,β),Ω =

∫
Ω

(1− x)α(1 + x)βu(x, θ)v(x, θ)dxdθ

and the norm
‖u‖L2

χ(α,β)
(Ω) = (u, u)

1
2

χ(α,β) .

In order to describe the approximation results, we introduce the space

H1
α,β,γ,δ,η,ξ(Ω) ={u| u ∈ H1

α,β,γ,δ(Λ;H1
p (I)), ‖u‖1,α,β,γ,δ,η,ξ,Ω <∞},

where

‖u‖1,α,β,γ,δ,η,ξ,Ω = (‖∂xu‖2L2

χ(α,β)
(Λ;L2(I))

+ ‖∂θu‖2L2

χ(η,ξ)
(Λ;L2(I))

+‖u‖2
L2

χ(γ,δ)
(Λ;L2(I))

)
1
2 .

Let

0F(Ω) = {u | u ∈ H1
α,β,γ,δ,η,ξ(Ω) and there exists a finite trace of

u(x, θ) at x = 1},
0H1

α,β,γ,δ,η,ξ(Ω) = {u | u ∈ 0F(Ω) and u(1, θ) = 0}.

According to Lemma 1, the above space is meaningful. For simplicity, let

|u|H1
0,1,0,−1(Ω) = (‖∂xu‖2L2

χ(0,1)
(Λ;L2(I))

+ ‖∂θu‖2L2

χ(0,−1)
(Λ;L2(I))

)
1
2 ,

‖u‖L2(Ω) = ‖u‖L2

χ(0,0)
(Λ;L2(I)),

‖u‖1,0,1,0,−1,0,0,Ω = ‖u‖H1
0,1,0,−1,0,0(Ω) = (|u|2

H1
0,1,0,−1(Ω)

+ ‖u‖2L2(Ω))
1
2 .

In order to deal with the polar condition ∂θu(x, θ)|x=−1 = 0, we define the
space

0V(Ω) = {u | u ∈ 0H1
α,β,γ,δ,η,ξ(Ω) and ∂θu(−1, θ) = 0}.
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We introduce the bilinear form

aα,β,η,ξ(u, v) = (∂xu, ∂xv)χ(α,β),Ω + (∂θu, ∂θv)χ(η,ξ),Ω

and the notation

0PN,M (Ω) = (0PN (Λ)⊗ VM,I(I)) ∩ 0V(Ω).

The orthogonal projection 0P 1
N,M,Ω : 0V(Ω)→ 0PN,M (Ω) is defined by

A(0P 1
N,M,Ωv − v, φ) = 0, ∀φ ∈ 0PN,M (Ω),

where A(u, v) = a0,1,0,−1(u, v) + (u, v)χ(0,1),Ω .

Lemma 6. For any v(·, θ) ∈ L2(I) and ∂θv(−1, θ) = 0, then

∂θPM,Iv(−1, θ) = 0.

Proof. For any δ > 0, owing to ∂θv(−1, θ) = 0, we can rewrite v(x, θ) as
v(x, θ) = (1 +x)δu(x, θ) +w(x). Thanks to v(·, θ) ∈ L2(I), we can deduce that
u(·, θ) ∈ L2(I). So the PM,Iu(x, θ) is meaningful. Furthermore, PM,Iv(x, θ) =
(1 + x)δPM,Iu(x, θ) + w(x), hence, ∂θPM,Iv(−1, θ) = 0. ut

Theorem 1. If integer 2 ≤ r ≤ N + 1, s ≥ 1, then for any

v ∈ 0V(Ω)
⋂
Hr
χ(0,1),∗(Λ,H

1
p (I))

⋂
H1

0,1,0,1(Λ,Hs
p(I))

⋂
L2
χ(0,−1)(Λ,H

s
p(I))

we have

‖0P 1
N,M,Ωv − v‖1,0,1,0,−1,0,1,Ω ≤ c

(
N1−r +M1−s)(|v|Hr

χ(0,1),∗
(Λ,L2

p(I))

+ |v|Hr
χ(0,1),∗

(Λ,H1
p(I)) + |∂xv|L2

χ(0,1)
(Λ,Hsp(I)) + |v|L2

χ(0,−1)
(Λ,Hsp(I))

)
. (3.1)

Proof. Setting φ = 0P̂
1

N,0,1,0,1,Λ · PM,Iv. Then

φ(−1, θ) = 0P̂
1

N,0,1,0,1,Λ · PM,Iv(−1, θ) = PM,Iv(−1, θ).

Since ∂θv(−1, θ) = 0, by Lemma 6, we check that ∂θPM,Iv(−1, θ) = 0. So,
∂θφ(−1, θ) = 0. On the other hand, φ(1, θ) = 0. Then, φ ∈ 0PN,M (Ω). By the
projection theorem we have

‖0P 1
N,M,Ωv − v‖1,0,1,0,−1,0,1,Ω ≤ ‖φ− v‖1,0,1,0,−1,0,1,Ω , ∀φ ∈ 0PN,M (Ω).

Taking φ = 0P̂
1

N,0,1,0,1,Λ · PM,Iv in the above inequality, we get that

‖0P 1
N,M,Ωv − v‖1,0,1,0,−1,0,1,Ω ≤ ‖0P̂ 1

N,0,1,0,1,Λ · PM,Iv − v‖H1
0,1,0,1(Λ,L2(I))

+ ‖∂θ(0P̂ 1
N,0,1,0,1,Λ · PM,Iv − v)‖L2

χ(0,−1)
(Λ,L2(I)).

Math. Model. Anal., 23(2):240–261, 2018.
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It remains to estimate the terms ‖0P̂ 1
N,0,1,0,1,Λ · PM,Iv − v‖H1

0,1,0,1(Λ,L2(I)) and

‖∂θ(0P̂ 1
N,0,1,0,1,Λ · PM,Iv − v)‖L2

χ(0,−1)
(Λ,L2(I)).

Thanks to (2.6) and (2.11) we deduce that for integer 1 ≤ r ≤ N + 1 and
s ≥ 0

‖0P̂ 1
N,0,1,0,1,Λ · PM,Iv − v‖H1

0,1,0,1(Λ,L2(I)) ≤ ‖0P̂ 1
N,0,1,0,1,Λ · PM,Iv

− PM,Iv‖H1
0,1,0,1(Λ,L2(I)) + ‖PM,Iv − v‖H1

0,1,0,1(Λ,L2(I))

≤ cN1−r|PM,Iv|Hr
χ(0,1),∗

(Λ,L2(I)) + cM−s|∂xv|L2

χ(0,1)
(Λ,Hsp(I))

+ cM−s|v|L2

χ(0,1)
(Λ,Hsp(I)) ≤ cN1−r|v|Hr

χ(0,1),∗
(Λ,L2(I))

+ cM−s|∂xv|L2

χ(0,1)
(Λ,Hsp(I)) + cM−s|v|L2

χ(0,1)
(Λ,Hsp(I)). (3.2)

Using (2.7) and (2.11) again, we obtain that

‖∂θ(0P̂ 1
N,0,1,0,1,Λ · PM,Iv − v)‖L2

χ(0,−1)
(Λ,L2(I))

≤ ‖0P̂ 1
N,0,1,0,1,Λ · ∂θPM,Iv − ∂θPM,Iv‖L2

χ(0,−1)
(Λ,L2(I))

+ ‖∂θ(PM,Iv − v)‖L2

χ(0,−1)
(Λ,L2(I))

≤ cN1−r|∂θPM,Iv|Hr
χ(0,1),∗

(Λ,L2(I)) + cM1−s|v|L2

χ(0,−1)
(Λ,Hsp(I))

≤ cN1−r|v|Hr
χ(0,1),∗

(Λ,H1(I)) + cM1−s|v|L2

χ(0,−1)
(Λ,Hsp(I)).

(3.3)

Therefore, a combination of (3.2), (3.3) and Poincaré inequality leads to (3.1).
ut

Lemma 7. For any u ∈ 0H1(Ω),

‖u‖Lp,χ(0,1)(Ω) ≤ c|u|H1
0,1,0,−1(Ω), 2 ≤ p ≤ ∞.

Proof. By embedding theory and Lemma 2 we can easily obtain the desired
result. ut

For nonlinear problem we need the following lemma (cf. Lemma 3.1 of [10]).

Lemma 8. Assume that
(1) the constants b1 > 0, b2 ≥ 0, b3 ≥ 0 and d ≥ 0,
(2) Z(t) and A(t) are non-negative functions of t,

(3) d ≤ b21
b22

exp(−b3t) for certain t1 > 0, and for all t ≤ t1,

Z(t) +

∫ t

0

(
b1 − b2Z

1
2 (η)

)
A(η)dη ≤ d+ b3

∫ t

0

Z(η)dη.

Then for all t ≤ t1, we have Z(t) ≤ d exp(b3t).
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4 Mixed spectral method for Fisher equation

In this section, we propose the mixed spectral method for the Fisher equation
(1.1). We define the space L2(Ω̃) as usual with the following inner product and
norm

(w, v)L2(Ω̃) =

∫
Ω̃

ρw(ρ, θ)v(ρ, θ)dρdθ, ‖w‖L2(Ω̃) = (w,w)
1
2

L2(Ω̃)
.

We also define the space H1(Ω̃) equipped with the following inner product,
semi-norm and norm,

(w, v)H1(Ω̃) =

∫
Ω̃

(
ρ∂ρw(ρ, θ)∂ρv(ρ, θ) +

1

ρ
∂θw(ρ, θ)∂θv(ρ, θ)

)
dρdθ,

|w|H1(Ω̃) = (w, v)
1
2

H1(Ω̃)
, ‖w‖H1(Ω̃) = (|w|H1(Ω̃) + ‖w‖L2(Ω̃))

1
2 .

In order to use the generalized Jacobi approximation, we make the variable
transformation ρ = 1 + x. Then we can check that

(w, v)L2(Ω̃) =

∫
Ω̃

ρw(ρ, θ)v(ρ, θ)dρdθ

=

∫
Ω

(1 + x)w(x, θ)v(x, θ)dxdθ = (w, v)χ(0,1),Ω ,

(w, v)H1(Ω̃) =

∫
Ω̃

(
ρ∂ρw(ρ, θ)∂ρv(ρ, θ) +

1

ρ
∂θw(ρ, θ)∂θv(ρ, θ)

)
dρdθ

=

∫
Ω

(
(1 + x)∂xw(x, θ)∂xv(x, θ) +

1

(1 + x)
∂θw(x, θ)∂θv(x, θ)

)
dxdθ

= (∂xw, ∂xv)χ(0,1),Ω + (∂θw, ∂θv)χ(0,−1),Ω = a0,1,0,−1(w, v),

‖w‖L2(Ω̃) = ‖w‖L2

χ(0,1)
(Ω), |w|2

1,H1(Ω̃)
= ‖∂xw‖2L2

χ(0,1)
(Ω) + ‖∂θw‖2L2

χ(0,−1)
(Ω).

Moreover, because the problem is defined in a disc, so we need the polar con-
dition ∂θu(−1, θ) = 0 for 0 ≤ θ < 2π. Taking U(x, θ, t) = W (1 + x, θ, t),
f(x, θ, t) = g(1 + x, θ, t). Then (1.1) is reformulated to

∂tU(x, θ, t) = ν
( 1

1 + x
∂x((1 + x)∂xU(x, θ, t)) +

1

(1 + x)2
∂2
θU(x, θ, t)

)
+U(x, θ, t)

(
1− U(x, θ, t)

)
+ f(x, θ, t), in Ω, t ∈ [0, T ],

∂θU(−1, θ, t) = 0, U(1, θ, t) = 0, t ∈ [0, T ],

U(x, θ, 0) = U0(x, θ), on Ω̄.

(4.1)

Therefore, a weak formulation of (4.1) is to find U(x, θ, t) ∈ 0V(Ω)⊗ [0, T ] such
that for all v(x, θ) ∈0 V(Ω) satisfy

(∂tU, v)L2

χ(0,1)
(Ω) + νa0,1,0,−1(U, v)

= (U(1− U), v)L2

χ(0,1)
(Ω) + (f, v)L2

χ(0,1)
(Ω), ∀v ∈ 0V(Ω), 0 ≤ t ≤ T,

U(x, θ, 0) = U0(x, θ), in Ω.
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The mixed spectral scheme for the above equation is to find uN,M ∈ 0PN,M (Ω)
such that

(∂tuN,M (x, θ, t), φ)L2

χ(0,1)
(Ω) + νa0,1,0,−1

(
uN,M (x, θ, t), φ

)
=
(
uN,M (x, θ, t)(1− uN,M (x, θ, t)), φ

)
L2

χ(0,1)
(Ω)

+(f(x, θ, t), φ)L2

χ(0,1)
(Ω), ∀φ ∈ 0PN,M (Ω), t ∈ [0, T ],

uN,M (x, θ, 0) = u0,N,M (x, θ) = 0P 1
N,M,ΩU0, in Ω̄.

(4.2)

We now consider the stability of scheme (4.2). Since (4.2) is a nonlinear
problem, it does not possess the usual stability. But it might be of the gener-
alized stability as described in [9]. Suppose that u0,N,M , the right-hand side of

the equation of (4.2) have the errors ũ0 and f̃ , respectively. They induce the
error of uN,M denoted by ũN,M . Then, we obtain from (4.2) that

(∂tũN,M (t), φ)L2

χ(0,1)
(Ω) + νa0,1,0,−1(ũN,M (t), φ)

− (ũN,M (t)− 2uN,M (t)ũN,M (t)− ũ2
N,M (t), φ)L2

χ(0,1)
(Ω)

= (f̃(t), φ)L2

χ(0,1)
(Ω), ∀φ ∈ 0PM,N (Ω), t ∈ [0, T ],

ũN,M (x, θ, 0) = ũ0,N,M (x, θ), in Ω̄. (4.3)

Now, let

C1(t) = 3 + 4 sup
0≤t≤T

‖v(t)‖∞,Ω ,

ρ1(u,w, t) = ‖u(t)‖2L2

χ(0,1)
(Ω) +

∫ t

0

‖w(ξ)‖2L2

χ(0,1)
(Ω)dξ,

E(u, t) = ‖u(t)‖2L2

χ(0,1)
(Ω) +

∫ t

0

|u(ξ)|21,H1(Ω)dξ.

Taking φ = 2ũN,M (t) in (4.3), we derive that

∂t‖ũN,M (t)‖2L2

χ(0,1)
(Ω) + 2ν|ũN,M (t)|2H1

0,1,0,−1(Ω) = 2
(
f̃(t), ũN,M (t)

)
L2

χ(0,1)
(Ω)

+ 2
(
ũN,M (t)− 2ũN,M (t)uN,M (t)− ũ2

N,M (t), ũN,M (t)
)
L2

χ(0,1)
(Ω)

. (4.4)

Thanks to Cauchy inequality and Lemma 7, we yield that

|2
(
ũN,M (t)− 2ũN,M (t)uN,M (t)− ũ2

N,M (t), ũN,M (t)
)
L2

χ(0,1)
(Ω)
|

≤ |2
(
ũN,M (t), ũN,M (t)

)
L2

χ(0,1)
(Ω)
|+|4

(
uN,M (t)ũN,M (t), ũN,M (t)

)
L2

χ(0,1)
(Ω)
|

+ |2
(
ũ2
N,M (t), ũN,M (t)

)
L2

χ(0,1)
(Ω)
| ≤ 2‖ũN,M (t)‖2L2

χ(0,1)
(Ω)

+ 4‖uN,M (t)‖∞‖ũN,M (t)‖2L2

χ(0,1)
(Ω) + 2‖ũN,M (t)‖L2

χ(0,1)
(Ω)

× ‖ũN,M (t)‖2L4

χ(0,1)
(Ω) ≤

(
2 + 4‖uN,M (t)‖∞

)
‖ũN,M (t)‖2L2

χ(0,1)
(Ω)

+ 2c2‖ũN,M (t)‖L2

χ(0,1)
(Ω)|ũN,M (t)|2H1

0,1,0,−1(Ω).
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Substituting the above inequality into (4.4), we deduce that

∂t‖ũN,M (t)‖2L2

χ(0,1)
(Ω) + (2ν − 2c2‖ũN,M (t)‖L2

χ(0,1)
(Ω))|ũN,M (t)|2H1

0,1,0,−1(Ω)

≤ (3 + 4‖uN,M (t)‖∞)‖ũN,M (t)‖2L2

χ(0,1)
(Ω) + ‖f̃(t)‖2L2

χ(0,1)
(Ω). (4.5)

Integrating the inequality (4.5) from 0 to t with respect to t, we obtain that

‖ũN,M (t)‖2L2

χ(0,1)
(Ω)+

∫ t

0

(
2ν−2c2‖ũN,M (ξ)‖L2

χ(0,1)
(Ω)

)
|ũN,M (ξ)|2H1

0,1,0,−1(Ω)dξ

≤ ρ1(ũ0,N,M , f̃(t), t) + C1(t)

∫ t

0

‖ũN,M (ξ)‖2L2

χ(0,1)
(Ω)dξ.

Finally, applying Lemma 8, we get the following result of stability.

Theorem 2. Suppose that ρ(ũ0,N,M , f̃ , T ) ≤ ν
c2 exp(−C1(u(t)))T , then for all

0 ≤ t ≤ T ,

E(ũN,M , t) ≤ ρ(ũ0,N,M , f̃(t), t) exp(c1t),

where C1(uN,M (t)) depends on ‖uN,M (t)‖∞.

We next deal with the convergence of (4.2). To do this, let U∗N,M=0P 1
N,M,ΩU(t).

By the definition of 0P 1
N,M,Ω , we derive that

a0,1,0,−1(U∗N,M (t), φ) + (U∗N,M (t), φ)χ(0,1)

= a0,1,0,−1(U(t), φ) + (U(t), φ)χ(0,1) , ∀φ ∈ 0PM,N (Ω).

Then, we have that

(∂tU
∗
N,M (t), φ)L2

χ(0,1)
(Ω) + νa0,1,0,−1(U∗N,M (t), φ)

−
(
U∗N,M (t)− U∗2N,M (t), φ

)
L2

χ(0,1)
(Ω)

= (f(t), φ)L2

χ(0,1)
(Ω) +

(
G1(t) +G2(t) +G3(t), φ

)
L2

χ(0,1)
(Ω)

+ ν(G3(t), φ)L2

χ(0,1)
(Ω), ∀φ ∈0 PM,N (Ω), t ∈ [0, T ],

where

G1(t)=∂t(U
∗
N,M (t)− U(t)), G2(t)=U∗2N,M (t)− U2(t), G3(t)=U(t)− U∗N,M (t).

Next, taking Ũ(t) = U∗N,M (t)− uN,M (t), we check that

(∂tŨ(t), φ)L2

χ(0,1)
(Ω) + νa0,1,0,−1(Ũ(t), φ)

−
(
Ũ(t)− 2Ũ(t)U∗N,M (t) + Ũ2(t), φ

)
L2

χ(0,1)
(Ω)

=
(
G1(t) +G2(t) + (1 + ν)G3(t), φ

)
L2

χ(0,1)
(Ω)

, ∀φ ∈ 0PM,N (Ω), t ∈ [0, T ].
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Using the similar manner of the derivation of (4.5), we can deduce that

∂t‖Ũ(t)‖2
L2

χ(0,1)
(Ω)

+ (2ν − 2c2‖Ũ(t)‖2
L2

χ(0,1)
(Ω)

)|Ũ(t)|2
H1

0,1,0,−1(Ω)

≤ (3 + 4‖U∗N,M (t)‖∞,Ω)‖Ũ(t)‖2
L2

χ(0,1)
(Ω)

+‖G1(t) +G2(t) + (1 + ν)G3(t)‖2
L2

χ(0,1)
(Ω)

.

(4.6)

Integrating the inequality (4.6) from 0 to t with respect to t, we obtain that

E(Ũ(t), t) +

∫ t

0

(2ν − 2c2‖Ũ(ξ)‖2L2

χ(0,1)
(Ω))|Ũ(ξ)|2H1

0,1,0,−1(Ω)dξ

≤ ρ2(t) + C2(t)

∫ t

0

‖Ũ(ξ)‖2L2

χ(0,1)
(Ω)dξ,

(4.7)

where

ρ2(t) =

∫ t

0

(
‖G1(ξ)‖2L2

χ(0,1)
(Ω) +‖G2(ξ)‖2L2

χ(0,1)
(Ω) +(1+ν)‖G3(ξ)‖2L2

χ(0,1)
(Ω)

)
dξ.

Similarly, applying Lemma 8 to (4.7), we have the following conclusion. Sup-

pose that ρ2(t) ≤ ν

c2
e−C2T . Then, for all 0 ≤ t ≤ T

E(Ũ(t), t) ≤ ρ2(t)e−C2T , (4.8)

where C2 depend on ‖U(t)‖∞. Now, we only need to estimate ρ2(t). According
to Theorem 1, we have that

‖G1(t)‖2
L2

χ(0,1)
(Ω)
≤ c‖G1(t)‖2

L2

χ(0,0)
(Ω)
≤ c(N2−2r +M2−2s)B(∂tU(t)).

Similarly, we deduce that

‖G2(t)‖2L2

χ(0,1)
(Ω) ≤ c‖G2(t)‖2L2

χ(0,0)
(Ω)

≤ c(‖U∗N,M (t)‖2∞ + ‖U(t)‖2∞)(‖U∗N,M (t)− U(t)‖2L2(Ω))

≤ c(N2−2r +M2−2s)(‖U∗N,M (t)‖2∞ + ‖U(t)‖2∞)B(U(t))

≤ c(N2−2r +M2−2s)‖U(t)‖2∞B(U(t)),

‖G3(t)‖2L2

χ(0,1)
(Ω) ≤ c‖G3(t)‖2L2

χ(0,0)
(Ω) ≤ c(N

2−2r +M2−2s)B(U(t)),

where

B(U(t)) =
(
|U |Hr

χ(0,1),∗
(Λ,L2

p(I)) + |U |Hr
χ(0,1),∗

(Λ,H1
p(I))

+|∂xU |L2

χ(0,1)
(Λ,Hsp(I)) + |U |L2

χ(0,−1)
(Λ,Hsp(I))

)2
.

The above inequality implies ρ2(t) = O(N2−2r +M2−2s), when N and M are
large enough. We can obtain from (4.8) that

E(Ũ(t), t) ≤ C(N2−2r +M2−2s), 0 ≤ t ≤ T,

where C depends on ‖U(t)‖∞, ν and

∫ t

0

B(U(ξ))dξ. Then, we have the follow-

ing result of convergence.
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Theorem 3. Let U(x, θ, t) be the solution of problem (4.1) and uN,M (x, θ, t) be
the solution of scheme (4.2), if U(1, θ, t)=0 and ∂θu(−1, θ, t)=0, α, β, γ > −1,
δ ≥ −1, then for any U ∈ L∞(0, T : Hr

χ(α,β),∗(Λ,L
2
p(I)) ∩ L2

χ(γ,δ)(Λ,H
s
p(I)) ∩

Hr
χ(α,β),∗(Λ,H

1
p (I))), ∂xU ∈ L2

χ(α,β)(Λ;Hs
p(I)), 1 ≤ r ≤ N + 1, s ≥ 1, all

0 ≤ t ≤ T, we have

E(uN,M − U, t) ≤ c(N2−2r +M2−2s),

where c depends on ν and the above norms of U.

5 Numerical results

In this section, we describe the numerical implementations and present some
numerical results. Let

ϕl(x) = J
(−1,0)
l (x), 1 ≤ l ≤ N, ψl(x) = J

(−1,−1)
l (x), 2 ≤ l ≤ N.

Clearly, ϕl(1) = 0, 1 ≤ l ≤ N and ψl(±1) = 0, 2 ≤ l ≤ N. We set
φ

(1)
l,m(x, θ) =

1√
2π
ψl(x) sin(mθ), 2 ≤ l ≤ N, 1 ≤ m ≤M,

φ
(2)
l,m(x, θ) =

1√
2π
ψl(x) cos(mθ), 2 ≤ l ≤ N, 1 ≤ m ≤M,

φ
(3)
l (x, θ) =

1√
2π
ϕl(x), 1 ≤ l ≤ N.

It is easy to check that

φ
(q)
l,m(±1, θ) = 0, ∂θφ

(q)
l,m(−1, θ) = 0, q = 1, 2

φ
(3)
l (1) = 0, ∂θφ

(3)
l (−1) = 0.

Clearly, the set φ
(q)
l,m(x, θ), 2 ≤ l ≤ N, 1 ≤ m ≤ M, q = 1, 2 and φ

(3)
l (x), 1 ≤

l ≤ N conform the basis of the space 0PM,N (Ω).

Remark 1. Observing that the basis consists of three groups of functions

φ
(1)
l,m(x, θ), φ

(2)
l,m(x, θ), 2 ≤ l ≤ N, 1 ≤ m ≤M and φ

(3)
l,m(x, θ), 1 ≤ l ≤ N . The

first two groups of base functions contain the generalized Jacobi polynomial

J
(−1,−1)
l (x), and the third group contains J

(−1,0)
l (x). The generalized Jacobi

polynomials with indices α = β = −1 and α = −1, β = 0 fit the behaviours of
the true solution U(x, θ, t) and the polar condition ∂θU(−1, θ, t) = 0 well.

The numerical solution uN,M (x, θ, t) can be expanded as

uN,M (x, θ, t) =

N∑
l=2

M∑
m=1

ũ
(1)
l,m(t)φ

(1)
l,m(x, θ) +

N∑
l=2

M∑
m=1

ũ
(2)
l,m(t)φ

(2)
l,m(x, θ)

+

N∑
l=1

ũ
(3)
l (t)φ

(3)
l (x).
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Taking φ = φ
(q)
l′,m′(x, θ), q = 1, 2 and φ = φ

(3)
l′ (x) in (4.2). Then, by the

orthogonality of trigonometric functions, we deduce that

N∑
l=2

∂tũ
(q)
l,m(t)

∫
Λ

(1 + x)ψl(x)ψl′(x)dx

+ ν

N∑
l=2

ũ
(q)
l,m(t)

∫
Λ

((1 + x)∂xψl(x)∂xψl′(x) +
1

1 + x
m′2ψl(x)ψl′(x))dx

= 2f
(q)
l′,m′ , q = 1, 2, l′ = 2, 3, · · · , N, m′ = 1, 2, · · · ,M,

N∑
l=1

∂tũ
(3)
l (t)

∫
Λ

(1 + x)ϕl(x)ϕl′(x)dx+ ν

N∑
l=1

ũ
(3)
l,m(t)

×
∫
Λ

(1+x)∂xϕl(x)∂xϕl′(x)dx=f
(3)
l′ , l′=1, 2 · · · , N, m′=1, 2, · · · ,M,

where

f
(q)
l′,m′ =

∫
Ω

(1 + x)(f(t) + uN,M (t)(1− uN,M (t)))φ
(q)
l′,m′dxdθ, q = 1, 2,

f
(3)
l′ =

∫
Ω

(1 + x)(f(t) + uN,M (t)(1− uN,M (t)))φ
(3)
l′ dxdθ.

We introduce the matrices A = (al,l′), B = (bl,l′), C = (cl,l′), G = (gl,l′) and
H = (hl,l′) with the following entries

al,l′ =

∫ 1

−1

(1 + x)ψl+1(x)ψl′+1(x)dx, 1 ≤ l, l′ ≤ N − 1,

bl,l′ =

∫ 1

−1

(1 + x)∂xψl+1(x)∂xψl′+1(x), 1 ≤ l, l′ ≤ N − 1,

cl,l′ =

∫ 1

−1

1

1 + x
ψl+1(x)ψl′+1(x)dx, 1 ≤ l, l′ ≤ N − 1,

gl,l′ =

∫ 1

−1

(1 + x)ϕl+1(x)ϕl′+1(x)dx, 0 ≤ l, l′ ≤ N − 1,

hl,l′ =

∫ 1

−1

(1 + x)∂xϕl+1(x)∂xϕl′+1(x)dx, 0 ≤ l, l′ ≤ N − 1.

We next calculate the non-zero elements of the matrices A,B,C,G and H. We
denote by Ll(x) the Legendre polynomial of degree l. We have∫ 1

−1

Ll(x)Ll′(x)dx =
2

2l + 1
δll′ , (5.1)

where δll′ is the Kronecker symbol. We also have the recurrence relation

xLl(x) =
l

2l + 1
Ll−1(x) +

l + 1

2l + 1
Ll+1(x), l ≥ 1. (5.2)



Mixed Jacobi-Fourier Spectral Method for Fisher Equation 255

Thanks to (6.8) of [22] and (5.2), we have that

(1 + x)J
(−1,−1)
l+1 (x) = (1 + x)

2l

2l + 1
(Ll−1(x)− Ll+1(x))

=
2l

2l + 1

( l − 1

2l − 1
Ll−2(x) + Ll−1(x) +

2l + 1

(2l − 1)(2l + 3)
Ll(x)

− Ll+1(x)− l + 1

2l + 3
Ll+2(x)

)
.

Then, we can obtain that

al,l′ =



− 2l

2l + 1

2l + 6

2l + 7

l + 2

2l + 3

2

2l + 5
, l = l′ − 3,

− 2l

2l + 1

2l + 4

2l + 5

2

2l + 3
, l = l′ − 2,

2l

2l + 1

2l + 2

2l + 3

( 2

(2l − 1)(2l + 3)
+

l + 2

2l + 3

2

2l + 5

)
, l = l′ − 1,

2l

2l + 1

2l

2l + 1
(

2

2l − 1
+

2

2l + 3
), l = l′,

2l

2l + 1

2l − 2

2l − 1

( l − 1

2l − 1

2

2l − 3
− 2

(2l − 1)(2l + 3)

)
, l = l′ + 1,

− 2l

2l + 1

2l − 4

2l − 3

2

2l − 1
, l = l′ + 2,

− 2l

2l + 1

2l − 6

2l − 5

l − 1

2l − 1

2

2l − 3
, l = l′ + 3,

0, otherwise.

According to (6.12) of [22], we deduce that

bl,l′ =

∫ 1

−1

(1 + x)∂xJ
(−1,−1)
l+1 (x)∂xJ

(−1,−1)
l′+1 (x)dx

= 4ll′
∫ 1

−1

(1 + x)Ll(x)Ll′(x)dx.

With the aid of (5.2) and (5.1), we get that

bl,l′ =



8l(l + 1)2

(2l + 1)(2l + 3)
, l = l′ − 1,

8l2

(2l + 1)
, l = l′,

8(l − 1)l2

(2l − 1)(2l + 1)
, l = l′ + 1,

0, otherwise.

Using (6.1) of [22], we yield that

cl,l′ =

∫ 1

−1

1

(1 + x)
J

(−1,−1)
l+1 (x)J

(−1,−1)
l′+1 (x)dx

=

∫ 1

−1

1

(1 + x)

(
(1 + x)(1− x)J

(1,1)
l−1 (x))((1 + x)(1− x)J

(1,1)
l′−1 (x)

)
dx

=

∫ 1

−1

(1− x)J
(1,1)
l−1 (x)J

(1,1)
l′−1 (x)(1 + x)(1− x)dx.

(5.3)

Math. Model. Anal., 23(2):240–261, 2018.



256 Y. Jiao, T. Wang, X. Shi and W. Liu

Recurrence relation (3.110) of [22] leads to

(1− x)J
(1,1)
l−1 (x) = − l

2l + 1
J

(1,1)
l−2 (x) + J

(1,1)
l−1 (x)− l(l + 2)

(l + 1)(2l + 1)
J

(1,1)
l (x).

Furthermore, (5.3) and (2.1) lead to

cl,l′ =



− l(l + 2)

(l + 1)(2l + 1)
γ

(1,1)
l , l = l′ − 1,

γ
(1,1)
l−1 , l = l′,

− l

2l + 1
γ

(1,1)
l−2 , l = l′ + 1,

0, otherwise.

Formulas (3.116a) and (3.168) of [22] imply

J
(−1,0)
l+1 (x) = (1− x)J

(1,0)
l (x) = Ll(x)− Ll+1(x). (5.4)

By (5.4) and (5.2), we deduce that

(1 + x)J
(−1,0)
l+1 (x) = (1 + x)(Ll(x)− Ll+1(x))

=
l

2l + 1
Ll−1(x) +

l + 2

2l + 3
Ll(x)− l

2l + 1
Ll+1(x)− l + 2

2l + 3
Ll+2(x).

Then, we derive that

g(l, l′) =



− 2(l + 2)

(2l + 3)(2l + 5)
, l = l′ − 2,

− 2l

(2l + 1)(2l + 3)
+

2(l + 2)

(2l + 3)(2l + 5)
, l = l′ − 1,

2(l + 2) + 2l

(2l + 1)(2l + 3)
, l = l′,

2l

(2l − 1)(2l + 1)
− 2(l + 2)

(2l + 1)(2l + 3)
, l = l′ + 1,

− 2l

(2l − 1)(2l + 1)
, l = l′ + 2,

0, otherwise.

By (6.12) of [22], we verify that

hl,l′ =

∫ 1

−1

(1 + x)∂xJ
(−1,0)
l+1 (x)∂xJ

(−1,0)
l+1 (x)dx

= (l + 1)(l′ + 1)

∫ 1

−1

(1 + x)J
(0,1)
l (x)J

(0,1)
l′ (x)dx = (l + 1)2γ

(0,1)
l δll′ .

Next, we denote that

X(q)
m = (ũ

(q)
2,m(t), ũ

(q)
3,m(t), · · · , ũ(q)

N,m(t))T ,

F (q)
m = (f

(q)
2,m(t), f

(q)
3,m(t), · · · , f (q)

N,m(t))T , q = 1, 2, 1 ≤ m ≤M



Mixed Jacobi-Fourier Spectral Method for Fisher Equation 257

and

X(3)=(ũ
(3)
1 (t), ũ

(3)
2 (t), · · · , ũ(3)

N (t))T , F (3)=(f
(3)
1 (t), f

(3)
2 (t), · · · , f (3)

N (t))T .

Then, we have the following compact form of (4.2)

A∂tX(q)
m (t) + ν(B +m2C)X(q)

m (t)=2F (q)
m (t), m = 1, 2, · · · ,M, q = 1, 2,

G∂tX(3)(t) + νHX(3)(t) = F (3)(t).

They are two ODE systems. We use the Crank-Nicolson method in time t, with

the step size τ . For description of the numerical errors, let θM,j =
2πj

2M + 1
,

0 ≤ j ≤ 2M be the Fourier interpolation points, and xN,i and ωN,i, 0 ≤ i ≤
N be the zeros and weights of Legendre-Gauss interpolation. The numerical
errors are measured by the quantity

EN,M (t) =
( 2π

2M + 1

N∑
i=0

2M∑
j=0

(
U(xN,i, θM,j , t)− uN,M (xN,i, θM,j , t)

)2
ωN,i

) 1
2

.

Firstly, we take the test function

U(x, θ, t) = (1− x)(1− x2)e(x+sin θ+t/10).
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Figure 1. L2−errors against M , N(M = N) with t = 1: a) ν = 1, b) ν = 0.001.

We sketch the L2−errors with t = 1, τ = 0.01, 0.001, 0.0001, ν = 1 (in
Figure 1(a)) and ν = 0.001 (in Figure 1(b)). We find that for fixed τ , the
errors decay fastly as M and N increase and for fixed N and M the errors
decrease as τ decrease. Observing from Figure 1(b) that our algorithm works
well for small ν.

In Table 1, we list the L2−errors with ν = 1, M = N = 10, τ = 0.001 and
various t. It implies the stability for long time computation.

Secondly, we take the test function

U(x, θ, t) = (1− x2) sin(x+ θ + t/10).
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Table 1. L2−errors with N =M = 10, ν = 1 and τ = 0.001.

t = 2 t = 4 t = 6 t = 8 t = 10

2.48e-08 3.01e-08 3.69e-08 4.49e-08 5.45e-08
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Figure 2. L2−errors against M , N(M = N) with t = 1: a) ν = 1, b) ν = 0.001.

We plot the L2−errors with t = 1, τ = 0.01, 0.001, 0.0001, ν = 1 (in Figure
2(a)) and ν = 0.001 (in Figure 2(b)). The results show that exponential rates
of convergence are achieved, and the efficiency of our method.

In Table 2, we tabulate the L2−errors with M = N = 10, ν = 1, τ = 0.001
and various t. The results show the stability for long time computation once
again.

Table 2. L2−errors with N =M = 10, ν = 1 and τ = 0.001.

t = 2 t = 4 t = 6 t = 8 t = 10

2.69e-09 2.71e-09 2.72e-09 2.74e-09 2.77e-09

Thirdly, we take the test function

U(x, θ, t) = (1− x2)|x|2π sin(θ + t/10).

In Figures 3(a,b) we depict the solution U(x, θ, t) at t = 2. The solution
U(x, θ, t) has suitable steep spatial gradients.

We plot the L2−errors with t = 2, τ = 0.0001, M = N, ν = 1 (in Figure 4).
The results show that algebraic rates of convergence are achieved with low-
regularity solution.

6 Concluding discussion

In this paper, we recalled some results about Jacobi approximation and Fourier
approximation. We constructed some mixed Jacobi-Fourier approximation re-
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Figure 3. U(x, θ, t): a) in a disc with t = 2, b) against x with θ = 0 and t = 2.
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Figure 4. L2−errors against M , N(M = N) with τ = 0.001, t = 2, ν = 1.

sults which play important roles in the theoretical analysis of problem with po-
lar condition in a disc. We proposed a spectral scheme for the Fisher equation
in a disc and proved it’s generalized stability and convergence. Numerical re-
sults demonstrated the efficiency of this new algorithm and coincided well with
the theoretical analysis. This approach has several merits: (i) The generalized
Jacobi-Fourier approximation with parameters α = β = −1 and α = −1, β = 0
fitted the behaviours of the true solutions well. (ii) The use of the generalized
Jacobi-Fourier approximation reduced the difficulty of the theoretical analysis
and provided a sparse system which can be solved efficiently. (iii) The numer-
ical solutions possess spectral accuracy in space with smooth solutions. The
new approach is good even for solutions with steep gradients (converges with
algebraic rate).
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