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1 Introduction

This paper deals with the oscillatory behavior of all solutions of the nonlinear
second order differential equation with a sublinear neutral term(

a(t) (x(t) + p(t)xα(σ(t)))
′)′

+ q(t)xβ(τ(t)) = 0, (1.1)

where we assume that

(i) α and β are the ratios of positive odd integers with 0 < α < 1;

(ii) a, p, q : [t0,∞)→ R+ are continuous functions with∫ ∞
t0

1/a(s)ds <∞; (1.2)

�
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(iii) τ , σ : [t0,∞)→ R are continuous functions with τ(t), σ(t) ≤ t, τ ′(t) > 0,
and τ(t), σ(t)→∞ as t→∞.

In recent years, there has been much research activity concerning the oscil-
lation and nonoscillation of solutions of various differential equations, and we
refer the reader to [2,3,4,5,6,7,8,10] for recent references. However, there are
few results dealing with the oscillation of second order differential equations
with a sublinear neutral term; see [1] as one example.

In establishing some new criteria for the oscillation of solutions of such
equations, our approach is, in some sense, to reduce the equation to a linear
one. We let

A(t) =

∫ ∞
t

1/a(s) ds.

For convenience we set y(t) = x(t) + p(t)xα(σ(t)). By a solution of equation
(1.1) we mean a function x(t) where both the quasi-derivatives a(t)y′(t) and
(a(t)y′(t))

′
are continuous on [Tx,∞), Tx ≥ t0, and which satisfies Equation

(1.1) on [Tx,∞). We consider only those solutions x(t) of (1.1) that are con-
tinuable, that is, they satisfy sup {|x(t)| : t ≥ T} > 0 for all T ≥ Tx. A solution
of (1.1) is said to be oscillatory if it has arbitrarily large zeros, and nonoscilla-
tory otherwise. Equation (1.1) will be said to be oscillatory if all its solutions
are oscillatory.

2 Main results

We will need the following lemma in the proofs of our results.

Lemma 1. ( [9]) If X and Y are nonnegative, then

Xλ + (λ− 1)Y λ − λXY λ−1 ≥ 0 if λ > 1, (2.1)

Xλ − (1− λ)Y λ − λXY λ−1 ≤ 0 if λ < 1, (2.2)

where equality holds if and only if X = Y .

In an effort to somewhat simplify our notation, for any positive continuous
functions p1, p2 : [t0,∞)→ R+, we set:

g1(t) = (1− α)α
α

1−α p
α

α−1

1 (t)p
1

1−α (t), P (t) =
(
1− p1(t)− g1(t)/A(t)

)
,

g2(t) = (β − 1)β
β

1−β [q(t)P β(τ(t))]
1

1−β p
β

β−1

2 (t),

P ∗(t) = 1−
(
p1(t) +

g1(t)

A2(σ(t))

)(
A(σ(t))

A(t)

)
,

g∗2(t) = (β − 1)β
β

1−β [q(t) (P ∗(t))
β
]

1
1−β p

β
β−1

2 (t),

Q∗(t) =
(
p2(t)− g2(t)/A(τ(t))

)
, Q1(t) = p2(t)− g∗2(t)/A2(t).

We now present our first oscillation result, it is for the case where β > 1.
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Theorem 1. Let β > 1 and conditions (i)–(iii) and (1.2) hold. Assume that
there are positive continuous functions p1, p2 : [t0,∞) → R+ such that P (t),
Q∗(t), and Q1(t) are positive for t ≥ t0. If there exists a positive function
ρ ∈ C1 ([t0,∞),R) such that

lim sup
t→∞

∫ t

t0

[
ρ(s)Q∗(s)− a(τ(s))(ρ′(s))2

4ρ(s)τ ′(s)

]
ds =∞ (2.3)

and

lim sup
t→∞

∫ t

t0

[
A(s)Q1(s)− 1

4a(s)A(s)

]
ds =∞, (2.4)

then equation (1.1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of equation (1.1), say x(t) > 0,
x(τ(t)) > 0, and x(σ(t)) > 0 for t ≥ t1 for some t1 ≥ t0. It is easy to see that
y(t) > 0 for t ≥ t1 and that equation (1.1) can be written as

(a(t)y′(t))
′
+ q(t)xβ(τ(t)) = 0.

From this we see that a(t)y′(t) is decreasing and so either (I) y′(t) > 0 or (II)
y′(t) < 0 for t ≥ t2 for some t2 ≥ t1.

First we consider Case (I). From the definition of y(t) we can write

x(t) = y(t)− [p(t)xα(σ(t))− p1(t)x(σ(t))]− p1(t)x(σ(t)).

Now applying (2.2) with

λ = α, X = p1/αx and Y =
(
p1p

−1
α /α

) 1
α−1

we obtain

p(t)xα(t)− p1(t)x(t) ≤ (1− α)α
α

1−α p
α

α−1

1 (t)p
1

1−α (t) := g1(t) for t ≥ t2.

Since x(t) ≤ y(t), we have

x(t) ≥ y(t)− p1(t)x(σ(t))− g1(t) ≥ y(t)− p1(t)y(σ(t))− g1(t) (2.5)

≥ y(t)− p1(t)y(t)− g1(t). (2.6)

Since y(t) is positive and increasing and A(t) is positive and decreasing to zero,
there exists t3 ≥ t2 such that

y(t) ≥ A(t) for t ≥ t3. (2.7)

Using (2.7) in (2.6), we have

x(t) ≥
(

1− p1(t)− 1

A(t)
g1(t)

)
y(t) := P (t)y(t),

and substituting this into equation (1.1) gives

(a(t)y′(t))
′
+ q(t)P β(τ(t))yβ(τ(t)) ≤ 0. (2.8)
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Hence,

(a(t)y′(t))
′ ≤ −q(t)P β(τ(t))yβ(τ(t)) = −q(t)P β(τ(t))yβ(τ(t))

=
[
p2(t)y(τ(t))− q(t)P β(τ(t))yβ(τ(t))

]
− p2(t)y(τ(t)). (2.9)

If we now apply (2.1) with

λ = β, X = [q(t)P β(τ(t))]1/βy(τ(t)),

Y =

(
1

β
p2(t)[q(t)P β(τ(t))]−1/β

)1/(β−1)

,

we have

p2(t)y(τ(t))− q(t)P β(τ(t))yβ(τ(t))

≤ (β − 1)β
β

1−β [q(t)P β(τ(t))]
1

1−β p
β

β−1

2 (t) = g2(t) (2.10)

for t ≥ t3. Using (2.10) in (2.9), we obtain

(a(t)y′(t))
′ ≤ −q(t)P β(τ(t))yβ(τ(t))

= g2(t)− p2(t)y(τ(t)) =

(
g2(t)

y(τ(t))
− p2(t)

)
y(τ(t)),

so from (2.7),

(a(t)y′(t))
′ ≤ −

(
p2(t)− g2(t)

y(τ(t))

)
y(τ(t)) = −Q∗(t)y(τ(t)). (2.11)

Define the function

w(t) = ρ(t)
a(t)y′(t)

y(τ(t))
, for t ≥ t3.

Then w(t) > 0 for t ≥ t3 and

w′(t) = ρ′(t)
a(t)y′(t)

y(τ(t))
+ ρ(t)

(a(t)y′(t))
′

y(τ(t))
− ρ(t)

a(t)y′(t)y′(τ(t))τ ′(t)

y2(τ(t))
.

Since a(t)y′(t) is positive and nonincreasing,

a(t)y′(t) ≤ a(τ(t))y′(τ(t)).

Using this inequality, (2.11) and completing the square on the first and third
terms, we see that

w′(t) ≤ −ρ(t)Q∗(t) +
a(τ(t)) (ρ′(t))

2

4ρ(t)τ ′(t)
.

Integrating the last inequality from t3 to t gives∫ t

t3

[
ρ(s)Q∗(s)− a(τ(s))(ρ′(s))2

4ρ(s)τ ′(s)

]
ds ≤ w(t2),
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which contradicts condition (2.3).
Next, we consider Case (II), so suppose y′(t) < 0 for t ≥ t1. Define the

function v(t) by

v(t) =
a(t)y′(t)

y(t)
for t ≥ t1; (2.12)

then v(t) < 0 for t ≥ t1. It is easy to see that

y′(s) ≤ a(t)

a(s)
y′(t) for s ≥ t,

and an integration yields

y(u)− y(t) ≤ a(t)y′(t)

(∫ u

t

ds

a(s)

)
.

Taking the limit as u→∞, we obtain

a(t)y′(t)

y(t)
A(t) ≥ −1, (2.13)

that is,
v(t)A(t) ≥ −1. (2.14)

On the other hand, from (2.13),(
y(t)

A(t)

)′
≥ 0 for t ≥ t1. (2.15)

Since y(t)/A(t) is positive and increasing and A(t) is positive and decreasing
to zero, there exists t2 ≥ t1 such that

y(t) ≥ A2(t) for t ≥ t2. (2.16)

As in Case I above, (2.5) holds, and using (2.16), we see that

x(t) ≥ y(t)− p1(t)y(σ(t))− g1(t)

≥ y(t)−
[
p1(t) + g1(t)/A2(σ(t))

]
y(σ(t)). (2.17)

Using (2.15) in (2.17), we obtain

x(t) ≥
[
1−

(
p1(t) +

g1(t)

A2(σ(t))

)(
A(σ(t))

A(t)

)]
y(t) = P ∗(t)y(t), (2.18)

and using (2.18) in (1.1), we have

(a(t)y′(t))
′

= −q(t)xβ(τ(t) ≤ −q(t) (P ∗(t))
β
yβ(t) = −q(t) (P ∗(t))

β
yβ(t)

=
(
p2(t)y(t)− q(t) (P ∗(t))

β
yβ(t)

)
− p2(t)y(t). (2.19)

Next, applying (2.1) with λ = β, X =
(
q(t) (P ∗(t))

β
)1/β

y(t) and

Y =
( 1

β
p2(t)

(
q(t) (P ∗(t))

β
)−1/β )1/(β−1)

,
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then we have

p2(t)y(t)− q(t) (P ∗(t))
β
yβ(t)

≤ (β − 1)β
β

1−β

(
q(t) (P ∗(t))

β
) 1

1−β

p
β

β−1

2 (t) = g∗2(t) for t ≥ t2. (2.20)

Combining (2.16), (2.20) and (2.19) gives

(a(t)y′(t))
′ ≤ q(t) (P ∗(t))

β
yβ(t)

= g∗2(t)− p2(t)y(t) = −
(
p2(t)− g∗2(t)

y(t)

)
y(t)

≤ −
(
p2(t)− g∗2(t)

A2(t)

)
y(t) = −Q1(t)y(t). (2.21)

Differentiating (2.12), we obtain

v′(t) =
(a(t)y′(t))

′

y(t)
− v2(t)

a(t)
, (2.22)

so from (2.21) and (2.22), we have

v′(t) ≤ −Q1(t)− v2(t)

a(t)
. (2.23)

If we then multiply both sides of (2.23) by A(t) and integrate the resulting
inequality from t2 to t, we see that

A(t)v(t)−A(t2)v(t2) +

∫ t

t2

Q1(s)A(s)ds+

∫ t

t2

v(s)

a(s)
ds+

∫ t

t2

A(s)
v2(s)

a(s)
ds ≤ 0.

Completing the square on the last two terms on the right hand side and using
(2.14) yields∫ t

t2

[
A(s)Q1(s)− 1

4a(s)A(s)

]
ds ≤ 1 +A(t2)v(t2) <∞,

which contradicts (2.4). This completes the proof of the theorem. ut

Next, we establish another new oscillation result for equation (1.1) with
β > 1.

Theorem 2. Let β > 1 and conditions (i)-(iii) and (1.2) hold. Assume that
there is a positive continuous function p1 : [t0,∞) → R+ such that P (t)
and P ∗(t) are positive for t ≥ t0. If there exists a positive function ρ ∈
C1 ([t0,∞),R) such that

lim sup
t→∞

∫ t

t0

[
ρ(s)q(s)Aβ−1(τ(s))P β(τ(s))− a(τ(s))(ρ′(s))2

4ρ(s)τ ′(s)

]
ds =∞, (2.24)

lim sup
t→∞

∫ t

t0

[
q(s)A2β−1(s) (P ∗(s))

β − 1

4a(s)A(s)

]
ds =∞, (2.25)

then equation (1.1) is oscillatory.
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Proof. Let x(t) be a nonoscillatory solution of (1.1), say x(t) > 0, x(τ(t)) > 0,
and x(σ(t)) > 0 for t ≥ t1 for some t1 ≥ t0. Proceeding as in the proof of
Theorem 1, we see that either Case (I) or Case (II) holds for t ≥ t2 for some
t2 ≥ t1. As in the proof of Case (I) in Theorem 1, we again arrive at (2.8).
Now, using (2.7) in (2.8), we have

(a(t)y′(t))
′
+ q(t)Aβ−1(τ(t))P β(τ(t))y(τ(t) ≤ 0.

The rest of the proof in this case is similar to that of Case (I) in Theorem 1
and hence is omitted.

Next, we proceed as in the proof of Case (II) in Theorem 1 to obtain (2.19).
Using (2.16) in (2.19) we have

(a(t)y′(t))
′

= −q(t))xβ(τ(t)) ≤ −q(t)A2(β−1)(t) (P ∗(t))
β
y(t).

The remainder of the proof is similar to that of Case (II) in Theorem 1 and we
omit the details. ut

If β = 1, we immediately have the following oscillation result for equation (1.1).

Theorem 3. Let β = 1 and conditions (i)–(iii) and (1.2) hold. Assume that
there is a positive continuous function p1 : [t0,∞)→ R+ such that P (t) > 0 and
P ∗(t) > 0 for t ≥ t0. If there exists a positive function ρ(t) ∈ C1 ([t0,∞),R)
such that

lim sup
t→∞

∫ t

t0

[
ρ(s)q(s)P (τ(s))− a(τ(s))(ρ′(s))2

4ρ(s)τ ′(s)

]
ds =∞, (2.26)

lim sup
t→∞

∫ t

t0

[
A(s)q(s)P ∗(s)− 1

4a(s)A(s)

]
ds =∞, (2.27)

then equation (1.1) is oscillatory.

Next, we establish an oscillation result in case 0 < β < 1.

Theorem 4. Let 0 < β < 1 and conditions (i)–(iii) and (1.2) hold. As-
sume that there is a positive continuous function p1 : [t0,∞) → R+ such that
P (t) and P ∗(t) are positive for t ≥ t0. If there exists a positive function
ρ ∈ C1 ([t0,∞),R) such that

lim sup
t→∞

∫ t

t0

[
ρ(s)

q(s)P β(τ(s))

K1−β − a(τ(s))(ρ′(s))2

4ρ(s)τ ′(s)

]
ds =∞, (2.28)

lim sup
t→∞

∫ t

t0

[
A(s)

q(s)(P ∗(s))β

K1−β − 1

4a(s)A(s)

]
ds =∞ (2.29)

for every constant K > 0, then equation (1.1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of (1.1), say x(t) > 0, x(τ(t)) > 0,
x(σ(t)) > 0 and y(t) > 0 for t ≥ t1 for some t1 ≥ t0. Proceeding as in the proof
of Theorem 1, we again arrive at the two cases:

Math. Model. Anal., 23(2):217–226, 2018.



224 S.R. Grace and J.R. Graef

(I) y′(t) > 0 or (II) y′(t) < 0 for t ≥ t2
for some t2 ≥ t1.

In considering Case (I) we obtain (2.8) as before. Since a(t)y′(t) is non-
increasing on [t2,∞), there exists a constant C > 0 such that

a(t)y′(t) < C for t ≥ t2.

Integrating from t2 to t, in view of (1.2), we have

y(t) ≤ C
∫ t

t2

1

a(s)
ds+ y(t2) ≤ K for t ≥ t2 (2.30)

for some constant K > 0. Using (2.30) in (2.8) we obtain

(a(t)y′(t))
′
+
q(t)P β(τ(t))

K1−β y(τ(t))≤ (a(t)y′(t))
′
+ q(t)P β(τ(t))

y(τ(t))

y1−β(τ(t))
≤0.

The remainder of the proof in this case is similar to that of Theorem 1 and
hence is omitted.

To prove the theorem if Case (II) holds, we proceed as in the proof of Case
(II) in Theorem 1, and again obtain (2.19). Using (2.30) in (2.19) gives

(a(t)y′(t))
′ ≤ −q(t)(P

∗(t))β

K1−β y(t).

The remainder of the proof is similar to that of the corresponding part of the
proof of Theorem 1 and hence is omitted. ut

To illustrate our results we have the following example.

Example 1. Consider the differential equation with a sublinear neutral term(
t2
(
x(t) +

1

t2
x1/3(t/2)

)′)′
+ tγxβ(t/2) = 0, t ≥ 4. (2.31)

Here, α = 1/3, β is the ratio of positive odd integers, a(t) = t2, τ(t) = σ(t) =
t/2, p(t) = 1/t2 and q(t) = tγ , γ ∈ R.

It is easy to see that (1.2) holds and A(t) = 1/t. Letting p1(t) = p(t), we
see that g1(t) = 2/(3

√
3t2), and so

1

2
< P (t) =

(
1− 1

t2
− 2

3
√

3t

)
< 1 and

1

2
≤ P ∗(t) =

(3
√

3− 1

3
√

3
− 2

t2

)
< 1.

Letting β = 1/3, γ > 0 and ρ(t) = t, we see that∫ t

t0

[
Kβ−1ρ(s)q(s)P β(τ(s))− a(τ(s))(ρ′(s))2

4ρ(s)τ ′(s)

]
ds

=

∫ t

4

[
K−

2
3 sγ+1

(
1− 4

s2
− 4

3
√

3s

)1/3

− s

8

]
ds→∞ as t→∞
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and∫ t

t0

[
Kβ−1A(s)q(s) (P ∗(s))

β − 1

4a(s)A(s)

]
ds

=

∫ t

4

[
K−

2
3 sγ−1

(3
√

3− 1

3
√

3
− 2

s2

)1/3
− 1

4s

]
ds→∞ as t→∞

for every K > 0, i.e., conditions (2.28) and (2.29) of Theorem 4 are satisfied.
Hence equation (2.31) is oscillatory. Now, we let β = 1, γ > 0 and ρ(t) = t.
Then conditions (2.26) and (2.27) become∫ t

4

[
sγ+1

(
1− 4

s2
− 4

3
√

3s

)
− s

8

]
ds→∞ as t→∞,∫ t

4

[
sγ−1

(3
√

3− 1

3
√

3
− 2

s2

)
− 1

4s

]
ds→∞ as t→∞,

respectively, so equation (2.31) is oscillatory by Theorem 3.
If we let β = 3, γ > 4 and ρ(t) = t. Then conditions (2.24) and (2.25)

become ∫ t

4

[
4sγ−1

(
1− 4

s2
− 4

3
√

3s

)3
− s

8

]
ds→∞ as t→∞,∫ t

4

[
32sγ−5

(3
√

3− 1

3
√

3
− 2

s2

)3
− 1

4s

]
ds→∞ as t→∞,

respectively, so equation (2.31) is oscillatory by Theorem 2.

Finally, we let β = 3, γ = 9, and p2(t) = t3/2. Taking B = (β − 1)β
β

1−β =
2 · 3−3/2, it is not hard to see that

g2(t) ≤ Bt−9/4, g∗2(t) ≤ Bt−9/4, Q∗(t) ≥ t3/2 − (B/2)t−5/4 > 0

and

Q1(t) ≥ t3/2 −Bt−1/4 > 0.

With ρ(t) ≡ 1, it is easy to see that conditions (2.3) and (2.4) are satisfied.
Thus, by Theorem 1, equation (2.31) is oscillatory.

Remark 1. The results of this paper are presented in a form that should make
it easy to extended to higher order equations. It would also be of interest to
use the approach here to study equation (1.1) with α > 1, i.e., equation (1.1)
with a superlinear neutral term.
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