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Abstract. In this paper, we consider a class of singularly perturbed convection-
diffusion boundary-value problems with discontinuous convection coefficient which
often occur as mathematical models for analyzing shock wave phenomena in gas dy-
namics. In general, interior layers appear in the solutions of this class of problems and
this gives rise to difficulty while solving such problems using the classical numerical
methods (standard central difference or standard upwind scheme) on uniform meshes
when the perturbation parameter ε is small. To achieve better numerical approxi-
mation in solving this class of problems, we propose a new hybrid scheme utilizing
a layer-resolving piecewise-uniform Shishkin mesh and the method is shown to be ε-
uniformly stable. In addition to this, it is proved that the proposed numerical scheme
is almost second-order uniformly convergent in the discrete supremum norm with re-
spect to the parameter ε. Finally, extensive numerical experiments are conducted to
support the theoretical results. Further, the numerical results obtained by the newly
proposed scheme are also compared with the hybrid scheme developed in the paper
[Z.Cen, Appl. Math. Comput., 169(1): 689-699, 2005]. It shows that the current
hybrid scheme exhibits a significant improvement over the hybrid scheme developed
by Cen, in terms of the parameter-uniform order of convergence.

Keywords: singularly perturbed boundary-value problem, interior layer, numerical scheme,

piecewise-uniform Shishkin mesh, uniform convergence.
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1 Introduction
In this paper, a class of singularly perturbed boundary-value problems (BVPs)
with discontinuous convection coefficient is considered on the unit interval

�
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Ω = (0, 1) and the convection coefficient is assumed to be discontinuous at
a single point x = ξ ∈ Ω. Let Ω− = (0, ξ), Ω+ = (ξ, 1) and the jump of a
function w, denoted by [w], across the point of discontinuity x = ξ is defined
by [w](ξ) = w(ξ+) − w(ξ−), where w(ξ±) = lim

x→ξ±0
w(x). The model problem

is then described as follows:{
Lεu(x) ≡ εu′′(x) + a(x)u′(x)− b(x)u(x) = f(x), x ∈ Ω− ∪Ω+,

u(0) = u0, u(1) = u1,
(1.1)

where 0 < ε � 1 is a small parameter. Here, the convection coefficient a, the
reaction term b and the source term f satisfy the following assumptions

b(x) ≥ 0 on Ω,
∣∣[a](ξ)

∣∣ ≤ C, ∣∣[f ](ξ)
∣∣ ≤ C,

−α∗1 < a(x) < −α1 < 0, for x < ξ,

α∗2 > a(x) > α2 > 0, for x > ξ,

and the solution u satisfies the following interface conditions

[u](ξ) = 0,

[
du

dx

]
(ξ) = 0. (1.2)

The BVP (1.1)–(1.2) admits a unique solution u ∈ C1(Ω) ∩ C2(Ω− ∪ Ω+)
(see [2]). Throughout the paper, we assume that a, b, f ∈ C3(Ω− ∪Ω+) so that
these functions can be extended into Ω− and Ω+ in C3. In general, due to the
particular pattern of the convection coefficient a on the either side of the point
of discontinuity, the solution possesses strong interior layers of width O(ε) in
the neighborhood of the point x = ξ.

Convection-diffusion equations of the form (1.1)–(1.2) with discontinuous
convection coefficient has application for numerous physical problems in en-
gineering and applied mathematics, which typically includes linearized steady
state viscous Burgers’ equation for studying shock wave phenomena in gas
dynamics. The special characteristic of singularly perturbed differential equa-
tions even with continuous data is that due to the presence of layers in the
exact solution, which are certain narrow regions in which the behaviour of the
solution changes very rapidly, the classical numerical methods usually yield un-
satisfactory numerical results on uniform meshes, whenever the perturbation
parameter ε tends to zero. In order to overcome this difficulty, parameter-
uniform numerical methods are designed so that for all N ≥ N0, where N is
the number of mesh-intervals and N0 is some positive integer independent of ε,
the error constant and order of convergence measured in the discrete supremum
norm are independent of ε. In this context, the fitted mesh parameter-uniform
numerical methods (see the books [6, 11] and the survey article [5]), which
utilize special layer-adapted meshes, are found to be satisfactory and popular
techniques.

Over the last few years, several researchers developed the fitted mesh meth-
ods for solving singularly perturbed problems with non-smooth data, one can
refer the articles [1, 2, 4, 10, 12] for the stationary case and [7, 8, 9] for the non-
stationary case. However, it is worth mentioning that the hybrid numerical
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scheme proposed by Cen in [1], is an well-known fitted mesh method for solving
singularly perturbed BVPs of the form (1.1)–(1.2) with discontinuous convec-
tion coefficient and the method is almost second-order accurate throughout the
domain [0, 1] provided the perturbation parameter ε satisfies ε� N−1, other-
wise the method is at worst first-order uniformly convergent with respect to ε in
the discrete supremum norm (see the detailed discussion in Section 6). There-
fore, it is quite natural to ask whether one can design a hybrid scheme which
attains an improvement with respect to the ε-uniform order of convergence,
compared to the above mentioned hybrid scheme.

The prime objective of this article is to develop a new hybrid scheme on a
piecewise-uniform Shishkin mesh for solving the singularly perturbed BVPs of
the form (1.1)–(1.2) so that the method is at least second-order uniformly con-
vergent with respect to ε in the discrete supremum norm. The proposed hybrid
scheme consists of a suitable combination of a second-order accurate modified
central difference scheme and the midpoint upwind scheme. The advantage of
such blending in the proposed scheme lies in the fact that it overcomes the
limitation of the standard central difference scheme (i.e., related to the loss in
stability for sufficiently small ε) and that of the standard upwind scheme (i.e.,
related to the lower-order accuracy), while solving the singularly perturbed
convection-diffusion BVPs. It is observed that the finite difference operator
LNε associated with the proposed numerical scheme does not satisfy the mono-
tonicity property. To overcome this difficulty, we show that it is possible to
transform the system of equations (described in (3.1)) into a tridiagonal sys-
tem of equations and the finite difference operator LNhyb associated with the new
system of equations does satisfy the desirable monotonicity property. Hereby,
it is shown that the proposed scheme is ε-uniformly stable, which leads to the
uniqueness of the numerical solution. Apart from this, we prove that the newly
proposed scheme is almost second-order (up to the logarithmic factor) accurate
in the discrete supremum norm throughout the domain [0,1] and it does not
require the restrictive assumption ε� N−1 to be held.

We organize the rest of the paper as follows. In Section 2, we present a pri-
ori bounds on the analytical solution and its derivatives. Section 3 describes
the Shishkin mesh and provides the detail construction of the proposed hybrid
finite difference scheme. In Section 4, we discuss the ε-uniform stability of the
proposed hybrid scheme. Afterwards in Section 5, we prove the main conver-
gence result related to the ε-uniform error bound of the proposed numerical
scheme. Finally, we carry out the extensive numerical experiments in Section 6
to validate the theoretical results and also to demonstrate the efficiency and
accuracy of the proposed scheme, we compare the numerical results obtained
by the proposed hybrid scheme with the hybrid scheme developed in [1]. We
end up this section by stating observations about the newly proposed scheme
with concluding remarks.

Throughout the paper C denotes a generic positive constant that is inde-
pendent of the perturbation parameter ε and the number of mesh-intervals N .
Here,

∥∥ · ∥∥
D

stands for the supremum norm, which is defined by∥∥g∥∥
D

= sup
ξ∈D

|g(ξ)|

Math. Model. Anal., 23(2):167–189, 2018.
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for a function g defined on some domain D.

2 Bounds on the analytical solution and its derivatives

In this section, we provide a priori bounds on the analytical solution of the BVP
(1.1)–(1.2) and its derivatives. These bounds reflect the asymptotic behavior
of the analytical solution with respect to the singular perturbation parameter
ε, and are also essential to establish the ε-uniform error estimate stated in
Theorem 2.

Theorem 1. The solution u of the BVP (1.1)–(1.2) can be decomposed as
u = v + w, where the smooth component v and the non-smooth component w
respectively satisfy

Lεv(x) = f(x) and Lεw(x) = 0, x ∈ Ω− ∪Ω+

with suitable boundary conditions such that for integers 0 ≤ k ≤ 4, the smooth
component v and the non-smooth component w respectively, satisfy the following
bounds ∥∥v∥∥

Ω
≤ C,

∥∥vk∥∥
Ω−∪Ω+ ≤ C(1 + ε3−k),

|wk(x)| ≤

{
C
[
ε−k exp

(
− (ξ − x)α1/ε

)]
, x ∈ Ω−,

C
[
ε−k exp

(
− (x− ξ)α2/ε

)]
, x ∈ Ω+.

Proof. The proof follows from [ [2], Lemma 4]. ut

3 Numerical approximation

This section describes the piecewise-uniform Shishkin mesh resolving the inte-
rior layers and introduces the proposed finite difference scheme which is used
to discretize the BVP (1.1)–(1.2).

3.1 Piecewise-uniform Shishkin mesh

Consider the domain Ω = [0, 1] and let N ≥ 16 be an even positive integer.
Since the BVP (1.1)–(1.2) has interior layers at x = ξ, we construct a piecewise-
uniform Shishkin mesh by subdividing the domain Ω into four subintervals as

Ω = [0, ξ − σ1] ∪ [ξ − σ1, ξ] ∪ [ξ, ξ + σ2] ∪ [ξ + σ2, 1],

where the transition parameters σ1 and σ2 are defined as

σ1 = min

{
ξ

2
, σ0ε lnN

}
, σ2 = min

{
1− ξ

2
, σ0ε lnN

}
.

Here, we choose σ0 = 2/γ, where γ is a positive constant. Note that this mesh
will be uniform if σ1 = ξ/2, σ2 = (1 − ξ)/2. On each subinterval, we place a
uniform mesh with N/4 mesh-intervals such that

ΩN = {xi : 1 ≤ i ≤ N/2− 1}
⋃
{xi : N/2 + 1 ≤ i ≤ N − 1},
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which denotes the set of interior points of the mesh. Then, clearly xN/2 = ξ

and Ω
N

= {xi}N0 . Let hi = xi − xi−1 denote the step size and also let ĥi =
hi+hi+1, for i = 1, . . . , N−1. Further, we denote the mesh width hi as follows:

hi =


H(l) = 4(ξ − σ1)/N, for i = 1, . . . , N/4,
h(l) = 4σ1/N, for i = N/4 + 1, . . . , N/2,
h(r) = 4σ2/N, for i = N/2 + 1, . . . , 3N/4,
H(r) = 4(1− ξ − σ2)/N, for i = 3N/4 + 1, . . . , N.

3.2 Hybrid numerical scheme

For a given mesh function Z(xi) = Zi, we define the forward, backward and
the second-order finite difference operators D+, D− and δ2 respectively by

D+Zi =
Zi+1 − Zi
hi+1

, D−Zi =
Zi − Zi−1

hi
and δ2Zi =

2(D+Zi −D−Zi)
ĥi

,

and the modified central difference operator D? by

D?Zi =

(
hi

ĥi

)
D+Zi +

(
hi+1

ĥi

)
D−Zi.

Also we define Zi± 1
2

=
(
Zi+Zi±1

)
/2. For the discretization of the BVP (1.1)–

(1.2), we now describe the proposed hybrid numerical scheme which consists of
a modified central difference scheme when ε > 2‖a‖N−1 and a proper combina-
tion of the midpoint upwind scheme in the outer regions (0, ξ − σ1], [ξ + σ2, 1)
and the modified central difference scheme in the interior layer regions (ξ −
σ1, ξ), (ξ, ξ + σ2), when ε ≤ 2‖a‖N−1. At the point of discontinuity, second-
order one-sided difference approximations are used. The numerical scheme then
takes the following form:

εδ2Ui + aiD
?Ui − biUi = fi, for i = N/4 + 1, . . . , N/2− 1, N/2 + 1, . . . ,

3N/4− 1,

εδ2Ui + aiD
?Ui − biUi = fi, for i = 1, . . . , N/4, 3N/4, . . . , N − 1, and

when ε > 2
∥∥a∥∥N−1,

εδ2Ui + ai− 1
2
D−Ui − bi− 1

2
Ui− 1

2
= fi− 1

2
, for i = 1, . . . , N/4, and

when ε ≤ 2
∥∥a∥∥N−1,

εδ2Ui + ai+ 1
2
D+Ui − bi+ 1

2
Ui+ 1

2
= fi+ 1

2
, for i = 3N/4, . . . , N − 1, and

when ε ≤ 2
∥∥a∥∥N−1,

DF Ui −DB Ui = 0, for i = N/2,

where D
F UN/2 = (−UN/2+2 + 4UN/2+1 − 3UN/2)/2h(r),

DB UN/2 = (UN/2−2 − 4UN/2−1 + 3UN/2)/2h(l).

Math. Model. Anal., 23(2):167–189, 2018.
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After rearranging the terms, we obtain the following form of the difference
scheme on the mesh ΩN :{

LNε Ui = f̃i, for i = 1, . . . , N − 1,
U0 = u0, UN = u1,

(3.1)

where we define the finite difference operator LNε as

LNε Ui=

{[
r−i Ui−1+r0iUi+r

+
i Ui+1

]
, i=1, . . . , N2 −1, N2 +1, . . . , N−1,[

q−,2i Ui−2 + q−,1i Ui−1+q0iUi+q
+,1
i Ui+1+q+,2i Ui+2

]
, i=N

2 ,
(3.2)

and the right hand side vector f̃i as

f̃i ≡



fi, for i = N/4 + 1, . . . , N/2− 1, N/2 + 1, . . . , 3N/4− 1,

fi, for i = 1, . . . , N/4, 3N/4, . . . , N − 1 and ε > 2
∥∥a∥∥N−1,

fi− 1
2
, for i = 1, . . . , N/4 and when ε ≤ 2

∥∥a∥∥N−1,
fi+ 1

2
, for i = 3N/4, . . . , N − 1 and when ε ≤ 2

∥∥a∥∥N−1,
0, for i = N/2.

(3.3)

Let us denote{
λ = ε+ 1

2aihi, for i = 1, . . . , N/2− 1,

µ = ε− 1
2aihi+1, for i = N/2 + 1, . . . , N − 1.

Then, the coefficients in (3.2) for i = N/4 + 1, . . . , N/2 − 1 and i = N/2 +
1, . . . , 3N/4− 1 are respectively given by

r−i =
2λ

hi+1 ĥi
,

r0i = − 2λ

hihi+1
+
ai
hi
− bi,

r+i =
2λ

hi ĥi
− ai
hi
,


r−i =

2µ

hi ĥi
,

r0i = − 2µ

hihi+1
− ai
hi+1

− bi,

r+i =
2µ

hi+1 ĥi
+

ai
hi+1

.

Next, when ε > 2
∥∥a∥∥N−1 and ε ≤ 2

∥∥a∥∥N−1, the coefficients in (3.2) for i =
1, . . . , N/4, are respectively given by

r−i =
2λ

hi+1 ĥi
,

r0i = − 2λ

hihi+1
+
ai
hi
− bi,

r+i =
2λ

hi ĥi
− ai
hi
,



r−i =
2ε

hiĥi
−
ai−1/2

hi
−
bi−1/2

2
,

r0i=−
2ε

hihi+1
+
ai−1/2

hi
−
bi−1/2

2
,

r+i =
2ε

hi+1ĥi
.
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Again, when ε > 2
∥∥a∥∥N−1 and ε ≤ 2

∥∥a∥∥N−1, the coefficients in (3.2) for i =
3N/4, . . . , N − 1 are respectively given by

r−i =
2µ

(hi ĥi)
,

r0i = − 2µ

(hihi+1)
− ai
hi+1

− bi,

r+i =
2µ

(hi+1 ĥi)
+

ai
hi+1

,



r−i =
2ε

hiĥi
,

r0i = − 2ε

(hihi+1)
−
ai+1/2

hi+1
−
bi+1/2

2
,

r+i =
2ε

(hi+1ĥi)
+
ai+1/2

hi+1
−
bi+1/2

2
.

Finally, the coefficients in (3.2) for i = N/2 are given by
q−,2N/2 = −1/(2h(l)), q−,1N/2 = 2/h(l),

q0N/2 = −3

2

(
1

h(l)
+

1

h(r)

)
,

q+,1N/2 = 2/h(r), q+,2N/2 = −1/(2h(r)).

4 Stability

In this section, we discuss the stability of the proposed numerical scheme (3.1)–
(3.3). In the analysis, we assume that σ1 = σ2 = σ = σ0ε lnN and so,

hi =

 H(l) = 4(ξ − σ)/N, for i = 1, . . . , N/4,
h = h(l) = h(r) = 4σ/N, for i = N/4 + 1, . . . , 3N/4,
H(r) = 4(1− ξ − σ)/N, for i = 3N/4 + 1, . . . , N.

It can be easily checked that the finite difference operator LNε defined in (3.2)
does not satisfy the monotonicity property and accordingly, the present form
(3.1) does not allow us to establish the stability result of the proposed numerical
scheme. In order to overcome this difficulty, we transform the equation in (3.1)
for i = N/2, i.e.,

q−,2i Ui−2 + q−,1i Ui−1 + q0iUi + q+,1i Ui+1 + q+,2i Ui+2 = 0, (4.1)

so that the operator associated with the new system of equations satisfy the
monotonicity property. Now, from (3.1) we have

UN/2−2 =
1

r−N/2−1

[
fN/2−1 − r0N/2−1UN/2−1 − r

+
N/2−1UN/2

]
,

UN/2+2 =
1

r+N/2+1

[
fN/2+1 − r0N/2+1UN/2+1 − r−N/2+1UN/2

]
.

Therefore, after inserting the above expressions for UN/2−2 and UN/2+2 in
(4.1), we transform the system of equations in (3.2) into a tridiagonal system
of equations and obtain the following form:{

LNhybUi = f̃hyb,i, for i = 1, . . . , N − 1,

U0 = u0, UN = u1.
(4.2)

Math. Model. Anal., 23(2):167–189, 2018.
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Here, the difference operator LNhyb and the right hand side term f̃hyb,i are
respectively defined as

LNhybUi =

{
q−i Ui−1 + q0iUi + q+i Ui+1, for i = N/2,
LNε Ui, for i 6= N/2

(4.3)

and

f̃hyb,i =


h/2

λ− hai−1
fi−1 +

h/2

µ+ hai+1
fi+1, for i = N/2,

f̃i, for i 6= N/2,
(4.4)

where 

q−N/2 =
1

2h

(
4−

2λ− haN/2−1 + h2bN/2−1

λ− haN/2−1

)
,

q+N/2 =
1

2h

(
4−

2µ+ haN/2+1 + h2bN/2+1

µ+ haN/2+1

)
,

q0N/2 =
1

2h

(
− 6 +

λ

λ− haN/2−1
+

µ

µ+ haN/2+1

)
.

(4.5)

The following lemma shows that operator LNhyb associated with the discrete
problem (4.2) satisfies the monotonicity property with some mild assumptions.

Lemma 1. Assume that there exists a positive integer N0 such that for all
N ≥ N0,

N

lnN
≥ 2σ0α

∗,
αN

2
≥
∥∥b∥∥, (4.6)

where α = min{α1, α2} and α∗ = max{α∗1, α∗2}. Then, the operator LNhyb de-
fined by (4.3) satisfies a discrete maximum principle, i.e., if the mesh function
Zi satisfies

Z0 ≤ 0, ZN ≤ 0 and LNhybZi ≥ 0 for i = 1, . . . , N − 1,

then Zi ≤ 0 for all i.

Proof. Here, we set

L̃NhybZi = −LNhybZi ≡ Ai,i−1Zi−1 +Ai,iZi +Ai,i+1Zi+1, i = 1, . . . , N − 1,

where

Ai,i−1 = −r−i , Ai,i = −r0i , Ai,i+1 = −r+i , for i 6= N/2

AN/2,N/2−1 = − 1

2h

(
2λ− 3haN/2−1 − h2bN/2−1

λ− haN/2−1

)
,

AN/2,N/2+1 = − 1

2h

(
2µ+ 3haN/2+1 − h2bN/2+1

µ+ haN/2+1

)
,

AN/2,N/2 =
1

2h

(
2λ− 3haN/2−1

λ− haN/2−1
+

2µ+ 3haN/2+1

µ+ haN/2+1

)
.



Parameter-Uniform Improved Hybrid Numerical Scheme 175

Then, according to the hypothesis of the discrete maximum principle we sup-
pose that

L̃NhybZi = ρi, for i = 1, . . . , N − 1, (4.7)

Z0 = ρ0, ZN = ρN , ρi ≤ 0, for all i.

In this proof, we consider the following two cases based on the relation
between ε and N .
Case 1. When ε > 2‖a‖N−1. Here, we have

λ ≥ ε−
∥∥a∥∥
2hi

> 0, for 1 ≤ i ≤ N/2− 1,

µ ≥ ε−
∥∥a∥∥

2hi+1
> 0, for N/2 + 1 ≤ i ≤ N − 1.

Now, let 1 ≤ i ≤ N/2−1 and N/2 + 1 ≤ i ≤ N −1. Then, it is straightforward
that

Ai,i−1 < 0, Ai,i+1 < 0, Ai,i > 0, |Ai,i| − |Ai,i−1| − |Ai,i+1| ≥ 0.

Next, let i = N/2. Then, using h ≤ 4N−1 and the second assumption of (4.6),
we have

− 3aN/2−1/h− bN/2−1 > 3α1N/4−
∥∥b∥∥ > 0,

3aN/2+1/h− bN/2+1 > 3α2N/4−
∥∥b∥∥ > 0,

which imply that Ai,i−1 < 0, Ai,i+1 < 0. It is also clear that Ai,i > 0 and
|Ai,i| − |Ai,i| − |Ai,i+1| ≥ 0.

Case 2. When ε ≤ 2‖a‖N−1. Here, using the first assumption of (4.6) we have

λ = h

(
ε

h
+
ai
2

)
= h

(
N

4σ0 lnN
+
ai
2

)
> 0, for N/4 + 1 ≤ i ≤ N/2− 1

µ = h

(
ε

h
− ai

2

)
= h

(
N

4σ0 lnN
− ai

2

)
> 0, for N/2 + 1 ≤ i ≤ 3N/4− 1.

Now, for N/4 + 1 ≤ i ≤ 3N/4 − 1, the similar arguments as in Case 1 can be
used to show that

Ai,i−1 < 0, Ai,i+1 < 0, Ai,i > 0, |Ai,i| − |Ai,i−1| − |Ai,i+1| ≥ 0.

On the other hand, it is straightforward that Ai,i+1 < 0, Ai,i > 0 for 1 ≤
i ≤ N/4 and Ai,i−1 < 0, Ai,i > 0 for 3N/4 ≤ i ≤ N − 1. Again, using
H(l), H(r) ≤ 4N−1 and the second assumption of (4.6), we have

− ai− 1
2
/H(l) − bi− 1

2
> α1N/4−

∥∥b∥∥/2 > 0,

− ai+ 1
2
/H(r) − bi+ 1

2
> α2N/4−

∥∥b∥∥/2 > 0,

Math. Model. Anal., 23(2):167–189, 2018.



176 K. Mukherjee

which imply that Ai,i−1 < 0 for 1 ≤ i ≤ N/4 and Ai,i+1 > 0 for 3N/4 ≤ i ≤
N − 1. Moreover, for both 1 ≤ i ≤ N/4 and 3N/4 ≤ i ≤ N − 1, it is clear that
|Ai,i| − |Ai,i−1| − |Ai,i+1| ≥ 0.

Therefore, in both the cases under the assumptions (4.6), it can be shown
that the (N+1)×(N+1) matrix formed by the coefficients of the mesh function
Zi in (4.7) for i = 0, . . . , N is an M -matrix and therefore, the result follows.

Now, as an immediate consequence of the above discrete maximum princi-
ple, one can deduce the ε-uniform stability of the scheme (4.2)–(4.5) stated in
the following lemma. ut

Lemma 2. Let U be the solution of (4.2)–(4.5) and let the assumptions (4.6)
of Lemma 1 hold true. Then∥∥U∥∥

Ω
N ≤ max{|u0|, |u1|}+

1

η

∥∥f̃hyb∥∥ΩN ,

where η = min
{
α1/ξ, α2/(1− ξ)

}
.

5 Error Analysis

In this section, we establish the ε-uniform error estimate of the hybrid scheme
(4.2)–(4.5). Here, we decompose the discrete solution U into the smooth and
the non-smooth components as

Ui =

 VL,i +WL,i, for i = 1, . . . , N/2− 1,
VL,i +WL,i = VR,i +WR,i, for i = N/2,
VR,i +WR,i, for i = N/2 + 1, . . . , N − 1,

where the smooth components VL and VR (which approximate v respectively
to the left and to the right of the point of discontinuity x = ξ) are respectively
defined as the solutions of the discrete problems{

LNhybVL,i = f̃hyb
n+1

,i , for i = 1, . . . , N/2− 1,

VL,0 = v(0), VL,N/2 = v(ξ−)

and {
LNhybVR,i = f̃hyb,i, for i = N/2 + 1, . . . , N − 1,

VR,N/2 = v(ξ+), VR,N = v(1).

Hence, the non-smooth components WL and WR (which approximate w on
either side of x = ξ) must satisfy the following system of equations

LNhybWL,i = 0, for i = 1, . . . , N/2− 1,
LNhybWR,i = 0, for i = N/2 + 1, . . . , N − 1,

WL,0 = 0, WR,N = 0,
WR,N/2 + VR,N/2 = WL,N/2 + VL,N/2,
DFWR,N/2 +DFVR,N/2 = DBWL,N/2 +DBVL,N/2.

In the following sections, we analyze the errors separately in the outer region

(i.e., for xi ∈ Ω
N ⋂

[(0, ξ − σ]
⋃

[ξ + σ, 1)]) and in the interior layer region (i.e.,

for xi ∈ Ω
N ⋂

(ξ − σ, ξ + σ)).
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5.1 Error in the outer region

In the following lemma, we obtain the error bounds associated with the smooth
components.

Lemma 3. Under the assumptions (4.6) of Lemma 1, the errors associated
with the smooth components satisfy the following estimates{

|VL,i − v(xi)| ≤ CN−2, for 1 ≤ i ≤ N/2− 1,

|VR,i − v(xi)| ≤ CN−2, for N/2 + 1 ≤ i ≤ N − 1.

Proof. In this proof, we consider following two cases depending on the relation
between ε and N .

Case1. When ε > 2‖a‖N−1. Let 1 ≤ i ≤ N/2 − 1. Here, we define the
truncation error as

LNhyb
(
VL,i−v(xi)

)
=
(
Lε−LNε

)
v(xi)=ε

(
d2

dx2
−δ2

)
v(xi)+ai

(
d

dx
−D?

)
v(xi).

Then, the truncation error satisfies the following estimate

∣∣LNhyb (VL,i − v(xi)
)∣∣ ≤ {C[εĥi‖v(3)‖+ hihi+1‖v(3)‖

]
, for i = N/4,

C
[
εh2i ‖v(4)‖+ h2i ‖v(3)‖

]
, otherwise.

Now, using hi ≤ CN−1 and the bounds of the derivatives of v given in Theo-
rem 1, we obtain the following estimate

∣∣LNhyb(VL,i − v(xi)
)∣∣ ≤ {C[εN−1 +N−2

]
, for i = N/4,

CN−2, otherwise.

Afterwards, by choosing the following barrier function

ΨL,i = −CN−2θL(xi)− CN−2xi, for 0 ≤ i ≤ N/2,

where

θL(z) =

{
1, for ξ − σ ≤ z ≤ ξ,
z/(ξ − σ), for 0 ≤ z ≤ ξ − σ

and applying the discrete maximum principle (Lemma 1) to ΨL,i±
(
VL,i−v(xi)

)
over Ω

N ⋂
[0, ξ], yields the following estimate∣∣VL,i − v(xi)

∣∣ ≤ −ΨL,i ≤ CN−2, for 1 ≤ i ≤ N/2− 1.

Next, let N/2 + 1 ≤ i ≤ N − 1. Then, using the following barrier function

ΨR,i = −CN−2θR(xi)− CN−2(1− xi), for N/2 ≤ i ≤ N,

where

θR(z) =

 1, for ξ ≤ z ≤ ξ + σ,
1− z

1− (ξ + σ)
, for ξ + σ ≤ z ≤ 1
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and arguing similarly for (VR − v) on the right side of the discontinuity, one
can obtain that∣∣VR,i − v(xi)

∣∣ ≤ CN−2, for N/2 + 1 ≤ i ≤ N − 1.

Case2. When ε ≤ 2‖a‖N−1. Here, the truncation errors for 1 ≤ i ≤ N/2 − 1
and N/2 + 1 ≤ i ≤ N − 1 are respectively defined as

LNhyb
(
VL,i − v(xi)

)
=

{(
Lε − LNε

)
v(xi), for N/4 + 1 ≤ i ≤ N/2− 1,(

(Lεv)i−1/2 − LNε v(xi)
)
, for 1 ≤ i ≤ N/4,

LNhyb (VR,i − v(xi)) =

{(
Lε − LNε

)
v(xi), for N/2 + 1 ≤ i ≤ 3N/4− 1,(

(Lεv)i+1/2 − LNε v(xi)
)
, for 3N/4 ≤ i ≤ N − 1.

Now, using the assumption ε ≤ 2‖a‖N−1 and invoking Theorem 1 and
Lemma 1, by means of the barrier function approach as given in [1], one can
obtain the desired error estimate. Hence, this completes the proof. ut

In the following lemma, we obtain the error bounds associated with the
non-smooth components.

Lemma 4. Let γ = α/2. Then, under the assumptions (4.6) of Lemma 1, the
errors associated to the non-smooth components satisfy the following estimates{

|WL,i − w(xi)| ≤ CN−2, for 1 ≤ i ≤ N/4,
|WR,i − w(xi)| ≤ CN−2, for 3N/4 ≤ i ≤ N − 1.

Proof. To obtain the bound for WL, we consider the function ΦL as the solu-
tion of the following discrete problem{ (

εδ2 − γD−
)
ΦL,i = 0, for i = 1, . . . , N/2− 1,

ΦL,0 = 0, ΦL,N/2 = 1,

satisfying the properties

ΦL,i ≥ 0, for all i, D−ΦL,i ≥ 0, for 1 ≤ i ≤ N/2− 1,

and following the approach given in [ [3], Chapter 3], one can further deduce
that there exists some constant C such that ΦL,N/4 ≤ CN−2. We also have

LNhybΦL,i ≤ 0, for 1 ≤ i ≤ N/2− 1,

since,[
εδ2ΦL,i+aiD

?ΦL,i−biΦL,i
]

=
[ai

2
hiδ

2ΦL,i+(γ + ai)D
−ΦL,i − biΦL,i

]
≤ 0,

when ε > 2‖a‖N−1, and[
εδ2ΦL,i+ai− 1

2
D−ΦL,i−bi− 1

2
ΦL,i− 1

2

]
=
[
(γ + ai)D

−ΦL,i − bi− 1
2
ΦL,i− 1

2

]
≤ 0,
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when ε ≤ 2‖a‖N−1. Therefore, applying the discrete maximum principle

(Lemma 1) to −|WL,N/2|ΦL,i ±WL,i, over Ω
N ⋂

[0, ξ], we have

|WL,i| ≤ |WL,N/2|ΦL,i ≤ CΦL,N/4 ≤ CN−2, for 1 ≤ i ≤ N/4.

Using Theorem 1, we thus obtain for 1 ≤ i ≤ N/4 that

|WL,i − w(xi)| ≤ |WL,i|+ |w(xi)| ≤ CN−2 + C exp(−γσ/ε) ≤ CN−2.

On the other hand, for 3N/4 ≤ i ≤ N − 1, by considering the function ΦR as
the solution of the following discrete problem{

(εδ2 + γD+)ΦR,i = 0, for i = N/2 + 1, . . . , N − 1,
ΦR,N/2 = 1, ΦR,N = 0

and arguing similarly for (WR − w) on the right side of the discontinuity, one
can obtain that

|WR,i − w(xi)| ≤ CN−2, for 3N/4 ≤ i ≤ N − 1.

Hence, this completes the proof. ut

Thus, in the outer region, the bound for
∣∣Ui−u(xi)

∣∣ in the following lemma
can be easily obtained from Lemmas 3 and 4, by decomposing the error (U−u)
into the smooth and the non-smooth components as

(Ui − u(xi)) = (VL,i − v(xi)) + (WL,i − w(xi)), for 1 ≤ i ≤ N/4,
(Ui − u(xi)) = (VR,i − v(xi)) + (WR,i − w(xi)), for 3N/4 ≤ i ≤ N − 1.

Lemma 5. Let γ = α/2. Then, under the assumptions (4.6) of Lemma 1, the
error associated with the hybrid scheme (4.2)–(4.5), satisfies that

|Ui − u(xi)| ≤ CN−2, for 1 ≤ i ≤ N/4 and 3N/4 ≤ i ≤ N − 1.

5.2 Error in the interior layer region

On Ω
N

= {xi}N0 , we define the following two mesh functions

Si =

i∏
j=1

(
1 +

γhj
ε

)
, for 1 ≤ i ≤ N/2,

Qi =

N∏
j=i+1

(
1 +

γhj
ε

)
, for N/2 ≤ i ≤ N − 1

(with the usual convention that S0 = 1 and QN = 1) where γ is a positive
constant.
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Lemma 6. On Ω
N

= {xi}N0 , the mesh functions Si and Qi satisfy the follow-
ing inequalities:{

exp
(
− γ(ξ − xi)/ε

)
≤
(
Si/SN/2

)
, for 1 ≤ i ≤ N/2− 1,

exp
(
− γ(xi − ξ)/ε

)
≤
(
Qi/QN/2

)
, for N/2 + 1 ≤ i ≤ N − 1.

Proof. The proof follows from [ [8], Lemma 5.7]. ut

Lemma 7. Let γ = α/2. Then, for some constant C, the mesh functions Si
and Qi satisfy that

−LNhybSi ≥
C

ε+ γh
Si, for N/4 + 1 ≤ i ≤ N/2− 1,

−LNhybQi ≥
C

ε+ γh
Qi, for N/2 + 1 ≤ i ≤ 3N/4− 1.

Proof. A straightforward calculation yields that

−LNhybSi ≥ −
γ

ε
Si−1(γ + ai)− ai

γ2h

2ε2
Si−1,

≥ C

ε+ γh
Si, for N/4 + 1 ≤ i ≤ N/2− 1,

−LNhybQi ≥
γ

ε
Qi+1(ai − γ) + ai

γ2h

2ε2
Qi+1,

≥ C

ε+ γh
Qi, for N/2 + 1 ≤ i ≤ 3N/4− 1.

Hence the proof. ut

In the following lemma, the above technical lemmas are used to obtain the
bound for

∣∣Ui − u(xi)
∣∣ in the interior layer region.

Lemma 8. Let γ = α/2. Then, under the assumptions (4.6) of Lemma 1, the
error associated with the hybrid scheme (4.2)–(4.5) satisfies that

|Ui − u(xi)| ≤ C
(
N−2 ln2N

)
, for N/4 + 1 ≤ i ≤ 3N/4− 1.

Proof. Here, for N/4 + 1 ≤ i ≤ N/2 − 1 and N/2 + 1 ≤ i ≤ 3N/4 − 1, the
truncation error is defined as

LNhyb (VL,i − v(xi)) =
(
Lε − LNε

)
v(xi) = ε

(
d2

dx2
− δ2

)
v(xi)

+ ai

(
d

dx
−D?

)
v(xi).

Then, following the arguments given in [1], one can deduce that the truncation
error satisfies the following estimates∣∣LNhyb(Ui − u(xi)

)∣∣ ≤ C(h2 +
h2

ε3
exp

(
− (ξ − xi)α1/ε

))
,∣∣∣LN,Mhyb

(
Ui − u(xi)

)∣∣∣ ≤ C(h2 +
h2

ε3
exp

(
− (xi − ξ)α2/ε

))
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for N/4 + 1 ≤ i ≤ N/2− 1 and N/2 + 1 ≤ i ≤ 3N/4− 1, respectively. Next, at
the mesh point xN/2 = ξ, we define the truncation error as

LNhyb
(
UN/2 − u(xN/2)

)
=

h/2

λ− haN/2−1
fN/2−1 +

h/2

µ+ haN/2+1
fN/2+1

− LNhybu(xN/2)

and also, we have the following estimate∣∣∣LNhyb(UN/2 − u(xN/2)
)∣∣∣ ≤ h/2

λ− haN/2−1

∣∣∣LNhyb(UN/2−1 − u(xN/2−1)
)∣∣∣

+
h/2

µ+ haN/2+1

∣∣∣LNhyb(UN/2+1 − u(xN/2+1)
)∣∣∣

+
∣∣∣(DF −DB

)
u(xN/2)−

[du
dx

]
(xN/2)

∣∣∣ ≤ Ch2
ε3
.

Again, from Lemma 5, we have

|Ui − u(xi)| ≤ CN−2, for i = N/4, 3N/4.

We now define the following discrete function

ϕi =


−CN−2

(
1 +

[
xi − (ξ − σ)

])
− C

(
N−2 ln2N

)(
Si/SN/2

)
,

for N/4 ≤ i ≤ N/2,
−CN−2

(
1 +

[
(ξ + σ)− xi

])
− C

(
N−2 ln2N

)(
Qi/QN/2

)
,

for N/2 ≤ i ≤ 3N/4,

where C is chosen sufficiently large. Then, a straightforward calculation using
Lemmas 6 and 7 together with the assumptions (4.6), implies that

LNhybϕi ≥


Cα1N

−2 + C(ε−1N−2 ln2N) exp
(
− (ξ − xi)α1/ε

)
,

for N/4 + 1 ≤ i ≤ N/2− 1,

Cα2N
−2 + C(ε−1N−2 ln2N) exp

(
− (xi − ξ)α2/ε

)
,

for N/2 + 1 ≤ i ≤ 3N/4− 1

and

LNhybϕN/2 ≥ 2CN−2 + 2C(ε−1N−2 ln2N) ≥
∣∣LNhyb(UN/2 − u(xN/2)

)∣∣ .
Therefore, applying the discrete maximum principle to ϕi ±

(
Uni − u(xi, tn)

)
over the domain Ω

N ⋂
[ξ − σ, ξ + σ], we obtain the desired result. Hence, the

proof. ut

5.3 The main convergence result

Theorem 2. Assume that N ≥ N0, satisfies the conditions given in (4.6).
Then, if γ = α/2, the error associated with the hybrid scheme (4.2)–(4.5)
satisfies that∣∣Ui − u(xi)

∣∣ ≤ {CN−2, for 1 ≤ i ≤ N/4 and 3N/4 ≤ i < N − 1,

CN−2 ln2N, for N/4 + 1 ≤ i ≤ 3N/4− 1.
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Proof. The proof follows from Lemma 5 and Lemma 8. ut

Remark 1. It is to be noted that the the hybrid scheme given in [1] satisfies
the above error estimate under the restrictive assumption that the perturba-
tion parameter ε < CN−1. In fact, the numerical experiments performed in
Section 6 also demonstrate that the scheme given in [1] is first-order uniformly
convergent with respect to ε in the discrete supremum norm.

6 Numerical Experiments

In this section, we present the numerical results obtained by the newly pro-
posed scheme (3.1)–(3.3) and also compare the numerical results obtained by
the proposed scheme with the hybrid scheme-II. To do this, we conduct the
numerical experiments for various types of test examples which includes the
BVPs of the form (1.1)–(1.2).

6.1 Hybrid Scheme-II

Here, we describe the hybrid scheme proposed by Cen in [1] for the BVP of the
form (1.1)–(1.2) and the numerical scheme takes the following form:

εδ2Ui + aiD
0Ui − biUi = fi, for i = N/4 + 1, . . . , N/2− 1, N/2 + 1, . . . ,

3N/4− 1,
εδ2Ui + ai− 1

2
D−Ui − bi− 1

2
Ui− 1

2
= fi− 1

2
, for 1, . . . , N/4,

εδ2Ui + ai+ 1
2
D+Ui − bi+ 1

2
Ui+ 1

2
= fi+ 1

2
, for 3N/4, . . . , N − 1,

−Ui+2 + 4Ui+1 − 3Ui
2h(r)

− Ui−2 − 4Ui−1 + 3Ui
2h(l)

= 0, for i = N/2,

U0 = u0, UN = u1,

where, for a given mesh function Z(xi) = Zi, Zi± 1
2
, the finite difference opera-

tors δ2, D−, D+ are defined in Section 3 and the central difference operator D0

is defined by
D0Zi = (Zi+1 − Zi−1)/ĥi.

6.2 Test example in which exact solution is known

Example 1. Consider the following BVP of the form (1.1)–(1.2):
εu′′(x)− (1 + x(0.5− x))u′(x)− (1 + x)u(x) = f(x), x ∈ (0, 0.5),
εu′′(x) + (1 + x(x− 0.5))u′(x)− (1 + x)u(x) = f(x), x ∈ (0.5, 1),

[u](0.5) = 0,

[
du

dx

]
(0.5) = 0,

u(0) = 0, u(1) = 0,

(6.1)

where the source function f(x) has been chosen to fit

u(x) =
1− exp(−(0.5− x)/ε)

1− exp(−0.5/ε)
− cos(πx),
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as the exact solutions of the above problem. In Figure 1, we display the exact
solution u of the BVP (6.1) which clearly shows that the gradient of the solution
u steepens near the point of discontinuity x = 0.5 as the parameter ε decreases.

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

x

u

 

 

 ε = 10
−1

 ε = 10
−4

Figure 1. Exact solution for Example 1 on the mesh Ω
N

for N = 128.

For each ε, we calculate the maximum point-wise error by

eNε = max
xi∈Ω

N

∣∣∣u(xi)− UNi
∣∣∣,

where u and UN denote the exact and the numerical solution obtained on
the mesh Ω

N
. In addition to this, we determine the corresponding order of

convergence by
pNε = log2

(
eNε /e

2N
ε

)
.

Now, for each N , we define eN = max
ε
eNε as the ε-uniform maximum point-wise

error and the corresponding ε-uniform order of convergence is defined by

pN = log2

(
eN/e2N

)
.

For various values of ε and N , the maximum point-wise errors eNε and the
corresponding order of convergence pNε computed using the newly proposed
scheme (3.1)–(3.3) and the hybrid scheme-II for Example 1 are presented in
Table 1. We also display the ε-uniform errors eN and the corresponding order
of convergence pN computed using both the hybrid schemes in Table 1.

In spite of this, for clarity of the presentation, the errors associated with the
numerical solutions of the BVP (6.1) computed using both the hybrid schemes
for ε = 10−1 and the corresponding zoomed view of the errors near x = 0.5 for
ε = 10−4 are depicted in Figure 2.

6.3 Test examples in which exact solutions are not known

Example 2. Consider the following BVP of the form (1.1)–(1.2):
εu′′(x)− u′(x) = 0.5, x ∈ (0, 0.5),
εu′′(x) + u′(x) = 1, x ∈ (0.5, 1),
[u](0.5) = 0,

[
du/dx

]
(0.5) = 0,

u(0) = 0, u(1) = 1.

(6.2)

Math. Model. Anal., 23(2):167–189, 2018.



184 K. Mukherjee

Table 1. Maximum point-wise errors and order of convergence for Example 1.

ε Number of mesh intervals, N

32 64 128 256

new scheme new scheme new scheme new scheme
scheme II scheme II scheme II scheme II

1 6.951e-05 4.780e-03 1.739e-05 2.315e-03 4.354e-06 1.141e-03 1.088e-06 5.662e-04
1.998 1.045 1.997 1.020 2.000 1.011 2.000 1.005

10−1 3.209e-03 9.582e-03 7.955e-04 4.822e-03 1.984e-04 2.434e-03 4.962e-05 1.221e-03
2.012 0.990 2.003 0.986 1.999 0.995 2.000 0.997

10−2 2.314e-02 2.314e-02 7.825e-03 7.825e-03 2.594e-03 2.594e-03 8.179e-04 8.179e-04
1.564 1.564 1.593 1.593 1.665 1.665 1.488 1.703

10−3 2.364e-02 2.364e-02 8.123e-03 8.123e-03 2.741e-03 2.741e-03 8.881e-04 8.881e-04
1.541 1.541 1.567 1.567 1.626 1.626 1.668 1.668

10−4 2.371e-02 2.371e-02 8.171e-03 8.1717e-03 2.767e-03 2.767e-03 9.023e-04 9.023e-04
1.537 1.537 1.562 1.562 1.616 1.616 1.655 1.654

10−5 2.372e-02 2.372e-02 8.176e-03 8.176e-03 2.769e-03 2.769e-03 9.038e-04 9.038e-04
1.536 1.536 1.561 1.561 1.615 1.615 1.653 1.653

10−6 2.372e-02 2.372e-02 8.177e-03 8.177e-03 2.770e-03 2.770e-03 9.040e-04 9.040e-04
1.536 1.536 1.561 1.561 1.615 1.615 1.653 1.653

10−7 2.372e-02 2.372e-02 8.177e-03 8.177e-03 2.770e-03 2.770e-03 9.040e-04 9.040e-04
1.536 1.536 1.561 1.561 1.615 1.615 1.653 1.653

10−8 2.372e-02 2.372e-02 8.177e-03 8.177e-03 2.770e-03 2.770e-03 9.040e-04 9.040e-04
1.536 1.536 1.561 1.561 1.615 1.615 1.653 1.653

eN 2.372e-2 2.372e-02 8.177e-03 8.177e-03 2.770e-03 2.770e-03 9.042e-04 1.221e-03
pN 1.536 1.536 1.561 1.561 1.615 1.181 1.632 0.997

Example 3. Consider the following BVP of the form (1.1)–(1.2):
εu′′(x)−(1 + x(0.5−x))u′(x)−x(1−x)u(x)=− (1 + 2x), x ∈ (0, 0.5),

εu′′(x)+(1 + x(x−0.5))u′(x)−x(1−x)u(x)=(1+2x), x ∈ (0.5, 1),

[u](0.5) = 0,
[
du/dx

]
(0.5) = 0,

u(0) = 0, u(1) = 0.

(6.3)

In Figure 3 we display the respective numerical solutions U of the BVPs (6.2)
and (6.3) computed using the newly proposed scheme (3.1)–(3.3), which clearly
shows the presence of interior layers near the point of discontinuity x = 0.5 as
the parameter ε decreases.

As the exact solution of the BVPs (6.2) and (6.3) are not known, in order
to compute the maximum point-wise error ENε and the corresponding order
of convergence PNε for Examples 2 and 3, we use the following interpolation
technique.

Let UN denote the numerical solution obtained on the mesh Ω
N

and U
4096

denote the linear interpolation to UN on the mesh Ω
N

. Then for each ε, we
calculate the maximum point-wise error by

ENε = max
xi∈Ω

N

∣∣∣UNi − U4096

i

∣∣∣
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Figure 2. Comparison of error=
∣∣u− UN

∣∣ obtained for ε = 10−1, 10−4 and N = 128 on

the mesh Ω
N
, for Example 1. In part (b) the zoomed view near x = 0.5 is presented.
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Figure 3. Numerical solutions for: a) Example 2 on the mesh Ω
N

for N = 128, b)

Example 3 on the mesh Ω
N

for N = 128.

and the corresponding order of convergence by PNε = log2

(
ENε /E

2N
ε

)
. Now,

for each N , we define EN = max
ε
ENε as the ε-uniform maximum point-wise

error and PN = log2

(
EN/E2N

)
as the corresponding ε-uniform order of con-

vergence.
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Figure 4. Comparison of error=
∣∣UN − U

4096∣∣ obtained for ε = 10−1, 10−4 and N = 128

on the mesh Ω
N
, for Example 2. In part (b) the zoomed view near x = 0.5 is presented.

For various values of ε and N , the maximum point-wise errors ENε and the
corresponding order of convergence PNε computed using the newly proposed
scheme (3.1)–(3.3) and the hybrid scheme-II are presented in Tables 2 and 3,
respectively for Examples 2 and 3. We also display the ε-uniform errors EN and
the corresponding order of convergence PN computed using both the hybrid
schemes in Tables 2 and 3, respectively for Examples 2 and 3.

In spite of this, for clarity of the presentation, the errors associated with the
numerical solutions of the BVPs (6.2) and (6.3) for ε = 10−1, 10−4 computed

Math. Model. Anal., 23(2):167–189, 2018.
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Table 2. Maximum point-wise errors and order of convergence for Example 2.

ε Number of mesh intervals, N

32 64 128 256

new scheme new scheme new scheme new scheme
scheme II scheme II scheme II scheme II

1 8.837e-05 4.944e-04 2.235e-05 2.267e-04 5.619e-06 1.071e-04 1.405e-06 5.075e-05
1.982 1.124 1.992 1.082 1.999 1.077 2.014 1.114

10−1 1.571e-03 3.875e-03 4.260e-04 1.914e-03 1.116e-04 9.403e-04 2.859e-05 4.550e-04
1.883 1.017 1.932 1.025 1.964 1.047 1.996 1.099

10−2 9.256e-03 9.256e-03 3.202e-03 3.202e-03 1.096e-03 1.086e-03 3.579e-04 3.568e-04
1.531 1.531 1.545 1.560 1.615 1.605 1.700 1.698

10−3 9.055e-03 9.055e-03 3.122e-03 3.122e-03 1.048e-03 1.048e-03 3.429e-04 3.429e-04
1.536 1.536 1.573 1.573 1.612 1.612 1.693 1.693

10−4 9.032e-03 9.032e-03 3.112e-03 3.112e-03 1.044e-03 1.044e-03 3.414e-04 3.413e-04
1.537 1.537 1.575 1.575 1.612 1.613 1.690 1.691

10−5 9.030e-03 9.030e-03 3.111e-03 3.111e-03 1.044e-03 1.044e-03 3.415e-04 3.415e-04
1.537 1.537 1.575 1.575 1.612 1.612 1.688 1.688

10−6 9.029e-03 9.029e-03 3.110e-03 3.110e-03 1.043e-03 1.043e-03 3.410e-04 3.408e-04
1.537 1.537 1.575 1.576 1.613 1.614 1.691 1.694

10−7 9.029e-03 9.029e-03 3.110e-03 3.110e-03 1.043e-03 1.043e-03 3.410e-04 3.410e-04
1.537 1.537 1.575 1.575 1.613 1.613 1.691 1.691

10−8 9.029e-03 9.029e-03 3.110e-03 3.110e-03 1.043e-03 1.043e-03 3.410e-04 3.408e-04
1.537 1.537 1.575 1.576 1.613 1.614 1.692 1.694

EN 9.256e-03 9.256e-03 3.202e-03 3.202e-03 1.096e-03 1.086e-03 3.579e-04 4.550e-04
PN 1.531 1.531 1.545 1.560 1.615 1.255 1.700 1.099
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Figure 5. Comparison of error=
∣∣UN − U

4096∣∣ obtained for ε = 10−1, 10−4 and N = 128

on the mesh Ω
N
, for Example 3. In part (b) the zoomed view near x = 0.5 is presented.

using both the hybrid schemes are depicted, respectively in Figures 4 and 5.

6.4 Observations and concluding remarks

From the numerical experiments, we made the following observations about the
newly proposed scheme for solving a class of singularly perturbed BVPs of the
form (1.1)–(1.2):

• It is observed that the ε-uniform errors (i.e., eN or EN ) obtained in Ta-
bles 1, 2 and 3, decrease monotonically as N increases. This ensures that
the newly proposed scheme is ε-uniformly convergent.
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Table 3. Maximum point-wise errors and order of convergence for Example 3.

ε Number of mesh intervals, N

32 64 128 256

new scheme new scheme new scheme new scheme
scheme II scheme II scheme II scheme II

1 2.434e-04 1.225e-03 6.123e-05 5.635e-04 1.534e-05 2.663e-04 3.829e-06 1.262e-04
1.990 1.120 1.996 1.081 2.002 1.077 2.016 1.114

10−1 3.273e-03 6.858e-03 8.143e-04 3.480e-03 2.036e-04 1.733e-03 5.078e-05 8.451e-04
2.007 0.978 1.999 1.005 2.003 1.036 2.016 1.094

10−2 2.132e-02 2.131e-02 7.314e-03 7.313e-03 2.448e-03 2.447e-03 8.013e-04 8.006e-04
1.543 1.543 1.578 1.579 1.611 1.612 1.717 1.687

10−3 2.074e-02 2.074e-02 7.109e-03 7.108e-03 2.376e-03 2.375e-03 7.754e-04 7.751e-04
1.545 1.545 1.581 1.581 1.615 1.615 1.691 1.692

10−4 2.067e-02 2.067e-02 7.076e-03 7.076e-03 2.362e-03 2.362e-03 7.695e-04 7.696e-04
1.546 1.546 1.582 1.582 1.618 1.618 1.695 1.695

10−5 2.066e-02 2.066e-02 7.072e-03 7.072e-03 2.360e-03 2.360e-03 7.687e-04 7.684e-04
1.546 1.546 1.583 1.583 1.618 1.619 1.696 1.697

10−6 2.066e-02 2.066e-02 7.072e-03 7.072e-03 2.360e-03 2.360e-03 7.682e-04 7.681e-04
1.546 1.546 1.583 1.583 1.619 1.619 1.698 1.698

10−7 2.066e-02 2.066e-02 7.074e-03 7.074e-03 2.363e-03 2.363e-03 7.715e-04 7.712e-04
1.546 1.546 1.581 1.582 1.615 1.615 1.686 1.687

10−8 2.066e-02 2.066e-02 7.073e-03 7.072e-03 2.361e-03 2.360e-03 7.694e-04 7.684e-04
1.546 1.546 1.582 1.583 1.617 1.619 1.694 1.697

EN 2.132e-02 2.131e-02 7.314e-03 7.313e-03 2.448e-03 2.447e-03 8.013e-04 8.451e-04
PN 1.543 1.543 1.578 1.579 1.611 1.534 1.717 1.094

• On the other hand, from the numerical results displayed in Tables 1,
2 and 3, it is clear that the ε-uniform order of convergence of the hy-
brid scheme-II is nearly one as N increases, whereas the proposed hybrid
scheme converges ε-uniformly with almost second-order accuracy. These
observations are in excellent agreement with the theoretical results ob-
tained for the proposed hybrid scheme and the hybrid scheme-II. As a
complement of these observations, the ε-uniform errors computed using
both the hybrid schemes for Examples 1, 2 and 3 are plotted in Figure 6.

• More precisely, we notice that the current hybrid scheme yields higher-
order accurate numerical results, particularly for larger values of ε (e.g.,
ε = 10−1), in comparison with the hybrid scheme-II; although the maxi-
mum point-wise errors caused by both the hybrid schemes for the smaller
values of ε (e.g., ε = 10−4) decrease with same order of accuracy as N
increases.

Therefore, based on the above mentioned observations we can conclude that
the newly proposed scheme is at worst almost second-order accurate, whereas
the hybrid scheme-II is at worst first-order accurate, irrespective of the per-
turbation parameter ε, which reflects a significant improvement in the current
hybrid scheme in comparison with the hybrid scheme-II.
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Figure 6. Loglog plot of ε-uniform maximum point-wise errors.
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