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Abstract. This paper proposes an efficient method for active unsupervised texture
segmentation. A new descriptor for texture features extractions based on Gaussian
and mean curvature is constructed. Then the optimization of a functional who uses
the Rényi divergence measure and our descriptor is proposed in order to design an
active contour model for texture segmentation. To get a global solution and efficient,
fast algorithm, the optimization problem is redefined. The algorithm associated with
this last optimization problem avoids local minimums and the run-time consuming
compared to the level-set representation of our active contour model. In order to
illustrate the performance of the technique, some results are presented showing the
effectiveness and robustness of our approach.
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1 Introduction

Texture image segmentation is an important research area in computer vi-
sion with a wide variety of applications. The texture can be regarded as a
similarity grouping in an image. The local sub-pattern properties give rise
to the perceived lightness, uniformity, density, roughness, regularity, linearity,
frequency, phase, directionality, coarseness, randomness, fineness, smoothness,
granulation, etc. [29,43]. Because texture is regarded as a rich source of visual
information, it is difficult to define the properties that can be used effectively
to characterize all textures and to find a set of properties that can be used to
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distinguish textures found in a given image. And it is also difficult to deter-
mine the texture region boundary accurately because the texture is a regional
property rather than a point property. There are many approaches to extract
the characteristic of textures. For instance, the statistical approach consists
to evaluate the statistical properties of a region or of a certain neighborhood
around a pixel [44,49]. In the frequency spectral approach, the periodicity of
texture is directly inferred from its power spectrum [39,43]. Texture features
generated by responses to Gabor filters [16] or by wavelet coefficients [15,33] are
very popular tools in spectral analysis to discriminate textures in different ori-
entations and scales. In this work, we adopt an approach based on differential
geometry to extract the features of the texture.

Active contours also, called snakes, are curves that move within domain of
an image to capture desired objects . There are two general types of active con-
tours: parametric and geometric active contours. Parametric snakes explicitly
move predefined snake points based on an energy minimization scheme, while
geometric active contours approaches, also called level set approaches, move
initial curve implicitly defined as the zero-level set of a higher-dimensional sur-
face. The parametric active contour models do not have large capture range:
we must initialize the snake close to the target boundary. Also, most of the
snake models lack topological properties: if we want to extract more than one
object in an image, then multiple snakes have to be initialized separately within
the neighborhood of each region of interest.

Segmentation by variational formulations and level set methods is able to
integrate different cues like shape prior [11,53] and region information [9, 46].
It also has the advantage to solve the problem of topological flexibility because
topological changes are naturally possible [6,32]. Moreover, level set methods
can be extended to the three dimensions case, and efficient approaches for nu-
merical solution exist [20,40]. For a complete and detailed presentation about
the image segmentation by variational formulations and level set methods, we
refer the reader to the excellent text [37]. Many variants model based level set
method for texture segmentation have been proposed. The variational level set
model proposed in [35], incorporates two terms to describe a texture descrip-
tor. The first term called the intensity term uses the global division algorithm
to construct novel regional based term, which can detect image objects with
big intensity difference. The second term called texture term can extract the
amplitude and frequency components of local intensity variation, which is used
to reflect the texture feature effectively. The terms of this descriptor are then
incorporated into a variational level set formulation that comes from [30], which
has the advantage of being able to use precise local image information for ac-
curate retrieval of the desired object boundary. In [31], two robust quantities:
the RIC-Index and the RIC-Factor are defined to quantitatively describe the
texture complexity of an image. Based on the RIC-Factor, a texture complex-
ity image (RIC-Image) and a significant edge descriptor are obtained. Then,
a novel active contour model is proposed to utilize the information provided
by the RIC-Image and the significant edge descriptor. Zhi and Shin in [54]
present a variational active contour model which uses both saliency informa-
tion and color intensity as energy to guide the active contour. However, this
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model seems not robust enough for images with complex texture.

The most first contribution of this paper is the construction of a new tex-
ture descriptor based on differential geometry and Beltrami representation in-
troduced in [48], then we develop an active contour model based on the level
set representation and region statistics. More precisely, we integrate the proba-
bility density function (pdf) generated from our descriptor to the level set rep-
resentation to carry out the segmentation task. In the [9,27], the authors use
other statistical moments like the average or the variance, these two statistics
give good results if the computations are done on piecewise smooth images [9]
or on a vector of Gabor responses if the images are textured [46]. However, it
was proven that the probability density function is more efficient for the seg-
mentation task because it provides a complete description of the variation of
the intensity or features distribution in a given image. The region competition
approach introduced by Zhu and Yuille [55] is probably the leading approach
currently to segmentation. This approach at the same model the foreground
and background regions statistically and perform a competition between image
regions through the minimization of an energy functional by evolving an initial-
ized curve. In the first competition region model, the snake evolution equation
was obtained by minimizing a Bayes criterion inspired from the Mumford-Shah
model [38]. In our work, a probability density function competition approach
based on the Rényi divergence distance which measures the diversity between
two probability density functions is offered: we propose to maximize the Rényi
divergence measure between the probability density function inside and out-
side the snake, i.e., the distance between the probability density function of the
interest object and the background.

The most principal drawbacks of level sets techniques in image segmenta-
tion problems lie in the fact that the computing time and cost are considerable,
as well as the efficiency is not high: the minimization process may be stuck
in a local minimum. The existence of these local minimums means that the
segmentation result highly depends on the initial condition: an inappropriate
initial contour might lead to failure of segmentation. In general, the Euler-
Lagrange equation associated with the variational model for segmentation is
discretized using an explicit scheme, which produces a slow convergence, and
therefore a lot of time and resources are spent to reach the convergence. In this
paper, to overcome the previous drawbacks, and in order to avoid the problems
of the existence of local minimums, we propose a reformulation of our model
in a convex optimization problem where no initialization of the active contour
is necessary: the iterations of the proposed algorithm start automatically from
the characteristic image obtained by our descriptor. Then, we propose to solve
our model by a split Bregman scheme [19], as compared to the explicit or the
graph-cuts schemes [20], the split Bregman scheme is isotropic (better than
the anisotropic approximations employed by graph-cut strategies) and conse-
quently it is more accurate, it does not require a 3d memory, and it has a
fast convergence. In [51], X.-C. Tai and C. Wu, show that the split Bregman
method and the augmented Lagrangian method are almost equivalent. The
most contributions of this paper are:

e Construction of a texture descriptor based on the curvatures.
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e The proposition of a variational segmentation model based on the Rényi
distance whose solution is found in the BV spaces.

e An adaptation of an efficient numerical scheme with rapid convergence
to solve our segmentation problem.

The outline of this paper is as follows: in Section 2, we recall some def-
initions on probability and information theory that will be used later in the
segmentation process. In Section 3, an intrinsic texture descriptor based on
Gaussian and mean curvatures is introduced, then in Section 4, we propose a
variational framework for an active contour model based on the Rényi distance
and we prove the existence of a minimizer. In Section 5, a fast algorithm based
on split Bregman method [19] to extract the minimizing solution is described.
Finally, in Section 6, experimental results are shown and discussed.

2 Probability density function and Rényi divergence
measure

2.1 Probability density function for estimation

In image processing, the probability density function is widely used to describe
features and consistent properties of textures: the gray value image or the ob-
tained measures of texture features are considered as a realization (or observa-
tion) of a real random variable having a distribution which can be estimated via
a probability density function. In the literature, there are two general types of
probability density function estimation: parametric and non-parametric. The
parametric estimation assumes that the characteristics of the texture follow a
probability law that is often chosen as Gaussian distribution where the mean
and variance parameters of the distribution are estimated from the sample. A
complete analysis of the parametric segmentation methods is presented in [11].
In the non-parametric estimation, no assumption on the probability density
function is made, which gives a more precise description. The most simple
non-parametric estimation method used in image processing to obtain the gray
or feature value distribution is the use of the histogram [14]: for each value of
gray-level or of feature in an image, we associate the number of occurrences of
this value. This method is efficient, however, when the number of elements is
low, it can give a sparse result. An improvement of this method consists to
perform a local smoothing of the histogram using a Gaussian kernel. Thus, the
probability p(KC;) of a characteristic observation K; for a fixed region {2 can
be calculated via Parzen method [41] as:

1
p(]C[) = |_Q|/_QK(’CI — IC[(:L'))dJS,

where [£2| is the area of region {2 and K(:) is the 1-D Gaussian kernel with 0
mean and variance o2. This estimation is very effective for all images types

and it is widely used in computer vision.
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2.2 Rényi divergence measure

In statistics, the divergence is a function that measures the difference between
two probability distributions. The most popular divergence used in signal and
image processing is the divergence of Kullback-Leibler [28], this divergence
tends to give good results in classification or segmentation domains, but it
shows certain limits [23,34] in its ability to discriminate optimally two proba-
bility density function. In particular, the Kullback-Leibler divergence can be
suboptimal when two densities are difficult to dissociate [36]. For example,
in the case where the Kullback-Leibler divergence is used to approximate an
unknown distribution p; by another known distribution ps by a minimization,
Minka shows in [36] that the result is a rough inclusive approximation when the
densities are too close. This type of limits illustrates the interest of searching
alternative divergences. The properties of the Rényi divergence [45] explained
in [10,17] such as its convexity and continuity and also its monotony seem to
be a solution. The Rényi divergence measure between two probability density
functions p and ¢ is expressed by:

DRé(p(’CI),q(ICI)) = ﬁ IH/HRP(KI)QQ(ICI)l_O‘d’CI, a € IR\ {0,1}.

The main motivation for selecting this divergence lies in the fact that we
want to propose a general model of flexible segmentation that would be robust
for an image with a rich of visual information (texture with complex probability
density function) as well as in the different contexts of noise. The metric of
Rényi divergence can be parameterized via the value of the parameter o and
therefore adapted to the statistical distributions of the regions of the image to
be segmented, thus, we will not need to model the statistical distributions of
the data.

3 Texture descriptor based on curvatures

Texture is a concept easy to recognize, but difficult to mathematically define,
thus it exists different choices of texture representation [25]. In this paper, we
are interested in the simplest Beltrami representation introduced in [48]. In this
representation the standard scalar image I : IR> — IR can be considered as a
surface embedded in TR?, i.e., as a function X : (z,y) — (a:, y, I(z, y)), which
offers the advantage to use differential geometry in image processing. In this
work, we exploit the idea that the textures contain hidden details that repeat
with some periodicity and some oscillation to define our texture descriptor.
Indeed, we thought using the fluctuations of the curvature in the Beltrami
representation as textural information. In differential geometry, the notion of
the curvature of a surface is a great deal more complicated than the notion of
curvature of a curve, because the rate of departure of a surface from one of its
tangent planes depends on the direction. Thus, there are several competing
notions for the curvature of a surface in R? [21]:

e The normal curvature k: Given a tangent vector v, to a surface M,
the normal curvature k(vp) is a real number that measures how M bends

Math. Model. Anal., 27(3):429-451, 2022.
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in the direction v,,.

e The principal curvatures k;,k2: The maximum and minimum of
the normal curvature x; and ko at a given point on a surface are called
the principal curvatures. They measure respectively the maximum and
minimum bending of a regular surface M at each point p € M.

e The mean curvature H: is defined as the mean of the two principal
curvatures, i.e., H(p) = 1 (ki(p) + k2(p)).

e The Gaussian curvature K: it is equal at point p to the the product
of the two principal curvatures K = k1 - k2. Note that the sign the mean
curvature H depend on the choice of unit normal U of a surface M, the
Gaussian curvature K is independent of that choice.

The most important curvature functions of a surface in R?® are the Gaussian
curvature and the mean curvature. For the special case of a surface defined as
a function of two coordinates (Beltrami representation), i.e., z = I(z,y), the
Gaussian curvature can be expressed as [50]:

2
K = (Ingl,, — I )/(1+1§+1§) ,

and the mean curvature expression is [50]:

(L+ 1)1,y — 211,01, + (1+ Ij)[m
(1+ 12+ I;)%

We can remarque that the two precedent formulas use only the derivatives
of image intensity. When the intensity of the background is different from
that of texture object, the use of intensity information will be advantageous in
the segmentation process. In order to use the information provided by mean,
Gaussian and image intensity, we propose to use the following formula for our
texture descriptor:

o = K|+ |+ 1(T +1,)|.

Figure 1(f) shows the result of our texture descriptor, where the fish is
more discernible from the background, as well as, almost each texture in the
background has been set to a constant value. By summing the absolute value
of the three components (a), (b), (c¢) of Figure 1, the texture (fish) becomes
more apparent and distinguished.

Intuitively, it is easy to notice, for example, that the fish in the Figure 1(a)
contains small regions with certain curvatures in the boundaries. The curvature
of a curve measures the failure of a curve to be a straight line and by extension
the mean and Gaussian curvature can be used as a texture descriptor. Indeed,
we are convinced that for a given texture pattern, the obtained values of our
descriptor at this pattern are repeated inside the texture region with some
similarity and periodicity.
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Figure 1. The different components used to find our descriptor.

3.1 New model for texture image segmentation

In this section, we assume that the images are composed of the background
and an object of interest. Now, we can exploit the idea of the region competi-
tion approach introduced in [55], we propose to maximize the Rényi divergence
between the probability density functions inside and outside the evolving con-
tour, represented in what follows by p and g, respectively. Let 2 = (2, (resp
Dour = 20\ 2) be the inside (resp the outside) region of the active contour
and {2y the image domain. With this notation we have:

p(IC],Q) = ﬁ/ﬂK(K{ — IC[(Q?))CLT,
1

q(Kr, 2) K(K; = Ki(z))dx.

20\ 2| 20\

The Rényi divergence measure between p(Ky, £2) and ¢(Ky, §2) is expressed as
follows:

Dre(p(K1, 2), 4(K1, 2))=——1n /R (K1, Q)4 (K1, Q)dKr, 0€R \ {0,1}.

a—1
(3.1)
We want to maximize the functional (3.1) in order to obtain two regions that
have the probability density functions as distinct as possible. To do that, we
differentiate the Rényi divergence with respect to the region (2. Using the
shape derivative tool [3,27], the Euler derivative of Rényi divergence in the
direction ( is then given by (see Appendix A):

(Dre,C) = [ Vre - ({(s),N)ds,

o9
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where:
Vee = ((a—1) /HRp Kr,2)%q(Ky, )liadlcl)_
{|9| IR <§E£j’g;) K (K = Ki(s)) = p(Kr, 2)]dKs (3.2)

1 p(Kr, 2)
"ol m<l‘“>(q<z@,m) (= K (K= Ka9) +allr, D]k

where 942 is the boundary of the region 2, N is the unit inner normal to 812, ds
is the arc length element. To decrease the functional Dgg (p(ICI, 2),q(Ky, Q))
we can use the gradient descent flow formula:

oC
or

where C' = 0f2, 7 is an artificial time and « the curvature of C. Ak is added to
the below equation in order to make the active contour C' smooth. A physicist
might interpret (3.3) as a force that drives the active contour. This resultant
force is composed of a Rényi force and a regularization force. When the re-
sultant force is zero (so % = 0), the active contour reaches its equilibrium
position and we obtain the desired active contour location as well as a local

minimum of the following energy functional:

F(Q) = ﬁ In (/mp(/c,, 2)*q(Kr, Q)l‘“dICI> H/&Q,f

RE(2) L(£2)

= (~Vae + M0)N,  A>0, (3.3)

Sometimes, the tunable parameter A can be computed automatically ( [2]) to
suitably balance this type of energy. To proof the existence of a minimum
of our functional F', we reformulate F' with the characteristic function xg, as
follows:

F(xa) = Ré(xa) + AL(xa),

1, ifze2ecl, B
xe _{ 0, otherwise, L(xe) = /QO|VXQ|d$7

and
p(Kr,xe) = / K(Kr — Kr(2))xe(x)ds/ [ xadz,
20 o (3.4)
oK1, x) = /Q K(Kr — Ki(@))(1 - xal))dz/ / 1 - xo)de,

where U is the set of regular bounded open sets of (2.

Theorem 1. Our segmentation model is mathematically well-posed

i Ré AL , A>0 3.5
amin - {Ré(xa) +ML(xa), A> 0} (35)

has a solution in BV (£2y).

Proof. See Appendix A. 0O
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3.2 Level set representation and efficient numerical solution

Level set methods are widely used in active contour evolutions, because they
allow the change of topology. The level set approaches move the initial curve
implicitly as a particular level of a function by replacing the unknown curve
C by the level set function ¢(z,y), considering that ¢(x,y) > 0 if the point
(x,y) is inside C, ¢(z,y) < 0 if (z,y) is outside C, and ¢(z,y) = 0 if (x,y)
is on C'. The level set formulation and active contour evolution equation is
equivalent [47] :

aC J¢

9 = VN <~ 9 = VIVl (3.6)
The three principal drawbacks of level set techniques are the considerable com-
putational cost, the convergence to a local minimum and during the minimiza-
tion process a periodical re-initialization of the level set function to a signed
distance function is needed to avoid numerical instabilities. Also, as we said,
the level set formulation (3.6) is a non-convex energy minimization problem.
This means that the final solution depends on the initial contour. In other
words, a bad initial position can lead to a bad solution. In our case, the level
set formulation for equation (3.3) is equivalent to:

¢ Vo

L= (= Wre+ V(o) ) IV9l 3.7
2 — (v + 9 (2 ) vl 3.7)
To overcome the above drawbacks of level set methods, we propose to convex-
ify (3.7) to compute a global minimizer, independently of the initial contour

position. The active contour stop evolution when % =0, i.e., when:
Vo
Ve + v()) Vo| = 0. 3.8
( voi) )1V 35

Since |V¢| > 0 we can remove this function in (3.8) without changing the
optimality condition:
Vo
~A\Vae + v<—) ~0.
‘ Vol
The previous optimality condition is associated with the energy (we change
the notation ¢ into u to avoid any confusion with level set methods):

E(u) = A ( — AVpgeu + |VU|)d:E.

Like the energy of [1,9], we must constrain the solution to lie in the interval
[0,1] (0 < u(z) < 1) to have a stationary solution because E is homogeneous
of degree 1 in u, it has no unique global minimizer. Thus, our minimization
problem is:
min F(u) = / (= AVgeu + |Vu|)dz. (3.9)
u€l0,1] 20
Note that the functional F is convex with respect to function u but not
with respect to p, ¢ which must be updated at each iteration of the minimiza-
tion process. Also, the value of @ must be updated at each iteration of the

Math. Model. Anal., 27(3):429-451, 2022.
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minimization process, which will allow the active contour to adapt quickly to
the data evolution.

The previous energy can be globally minimized using dual approach reg-
ularization as in [5,7], however, this method has a lot of disadvantages [19],
in particulary it is a slow convergence method and due to the regularization,
the final result of w is near to the objects boundaries and therefore the seg-
mentation results are not very accurate. Before giving our global minimization
algorithm based on the split Bregman method [19], let’s see how to compute
the optimal parameter a that optimize the Rényi divergence measure between
the inside and the outside the of the active contour at each iteration:

CLopt = min (DRé (p(K1,92),q(Kr1, Q))).

The previous equation can be solved using a standard gradient descent method
as follows:

Drge 12), 2
ntl _ on —678 re(p(K1,92),q(K1, £2))

o o , (3.10)
where:
aDRé(p(ICI7‘Q)7q(ICI7‘Q)) -1 </ 1— )
= 1 K1, 2)%q(Ky, 2)dK
aa (OZ—].)2 n HRp( I, ) q( I, ) I
_ K1, )
K, $2)%q(Ky, 2)11 (p(“)dic
) [ ptcr 2yt ) (B i

(a — 1>/HRp<IC[, .Q)aq(K:], Q)l_ad’(:j

Like in [42] and knowing that lim,_,1 Dges(p,q) = KL(p,q), two strategies
of « initialization are possible. On the first one, we take ap > 1 or ap < 1,
such initialization need prior statistical information. In the second strategy,
we assume the absence of statistical knowledge, in order to let it gradually
appear during the optimization process. In this situation we take a — 1. In
our case, the second scenario seems to be the most relevant because we assume
the absence of statistical knowledge.

Our variational model (3.9) can be quickly minimized using the split Breg-
man method [19], this method has the advantage of having a quadratic con-
vergence contrary to the most projection methods which can have a linear
convergence, particulary the split Bregman method is faster than graph-cuts
method [20]. Tt has also the advantage that it does not require regularization,
continuation, or the enforcement of inequality constraints, which prevents a
fine segmentation. In split Bregman method, rather than solve (3.9) directly,
we introduce a new auxiliary variable d «+— Vu and we reformulate the problem
(3.9) as follows:

min / — AVgeu + |d|, such that d = Vu.
u€[0,1],d 2

The iteration scheme of the split Bregman method for our optimization problem
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is given by (more detail of the split Bregman method can be found in [1,19,20]):

<uk+1,dk+1> = arg min |d| + AVgeu + é|d —Vu— bk|2dx,
w€[0,1],d 2 2

PEHL = b 4 Yyt — gkt (3.1)

with d*=0 = pF=0 = ¢#=0 = 0. The minimizing solution u**! of (3.11) is
characterized by the optimality condition:

BAU = AVge + Bdiv(dF —b*), u € [0,1]. (3.12)

A fast approximated solution of (3.12) is given by a Gauss-Seidel iterative
scheme, for n > 0:

o gxk x,k z,k x,k v,k v,k y,k y,k
Vig = dily g —dyy =0T by Ay —dy = b 07

1 k,n k,n k,n k,n A
Mig = Z(“iq,j T UG T U T Uy BVRé + ’Yi,j)v

k+1,n+1

Ui 5

= max{min{y, ;,1},0}.

Finally, the minimizing solution of (3.11) is performed using the soft-wavelet-
thresholding :

d" 1 = sign(VuF ! + bF) max(|Vuf ! 4+ 0% — A71,0).

The split Bregman method is easy to code, it is very efficient, it requires little
memory compared to second order methods that require explicit representa-
tions of the Hessian matrix. The split Bregman algorithm uses Gauss-Seidel
method which is easily parralelisable. Both of these characteristics make split
Bregman a practical algorithm for large scale problems.

In summary, our algorithm for segmenting textured images is given by:

Algorithm 1. Our algorithm for segmenting textured images
1. Kr(x) calculation.
2. Initialization: a,p: < ap.

3. Repeat until convergence:

e Fix u and update p, ¢ and Vgs using an adapted version from (3.4) and
(3.2).

e Fix V¢ and update v using (3.11).

e Fix p and ¢ and update o« with an adapted version from the iterative
optimization scheme (3.10).

4. Final active contour:

e The final active contour is given by the boundary of the set:

{z € 2 | /™ (z) > 0.5}

Math. Model. Anal., 27(3):429-451, 2022.
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We can take as a convergence criterion: ||uf*! —u*||2 < e. The speed of the
previous algorithm depends on the number of executions of the do-while loop.
We have verified through the examples carried out that this loop has executed
a small number of times. Also, it is not necessary to solve each unconstrained
sub-problem with high precision.

4 Results

We have implemented the Algorithm 1 in C language, and we have compiled
it\called it through Matlab using a mex commande and the GCC compiler.
Our processeur is: Intel(R) Core(TM) i3-2330M CPU @ 2.20GHz 2.20GHz.

Figure 2. Left column: Real images which presents textured features. Column two:
results of our descriptor. Column three: our segmentation results. Right column: final
inside probability density function (red plot) and final outside probability density function
(blue plot).

As shown in Figure 2, our model for texture segmentation is able to distin-
guish the textured objects from the background, because they have a different
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probability density function. For all images in the left column of Figure 2,
the final solution is reached after only a few iterations (less than 20 iterations)
and the run-time of all test not exceed 4 seconds. For example, the second
image in column 1 (bear), which size is 321 x 474, is segmented in less than 3
seconds (including descriptor and the updated estimation of probability den-
sity functions). The number of split Bregman iterations, as well as the mean
Gauss-Seidel iteration number on all split Bregman iterations and CPU time
for each test are reported in Table 1.

Table 1. Quantitative results of Figure 2. The convergence criterion in all steps of the
algorithm is 10~ 1.

Image: Panther Bear Tiger Cheetah Zebras
Number of split Bregman Iter- 15 5 9 17 11
ation:

Average of the Gauss-Seidel it- 6.13 6.4 4.22 8 4.64
erations on all split Bregman

iterations

CPU times(s) 3.79 2.84 3.12 3.47 3.56

Our segmentation results allow to say that our texture descriptor is partic-
ularly appropriate for natural images. Indeed, the flexibility of the divergence
and the relevance of our descriptor allow the adaptation of the segmentation
process to different types of textures. We can deduce that our descriptor is
powerful in discriminating different texture regions and also our active contour
model is robust.

a parameter

R EEERE]
-
|
Rény divergence measure
!
y
L

FRERCE CECERD
Iteration Iteration

() (d)

Figure 3. (a) Synthetic image, (b) our segmentation result, (c) evolutoin of the o
parameter along the segmentation process, (d) evolution of the Reny divergence measure
along the segmentation process.

We now present an example, which makes possible to see the evolution of the
Rényi divergence as well as the value of the alpha according to the iterations.

Math. Model. Anal., 27(3):429-451, 2022.
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The synthetic textural image in this example in Figure 3 is generated from the
Brodatz database [26].

As illusttrated in the Figure 3, the evolution of the Rényi divergence accord-
ing to the iterations allows to conclude that this divergence adapts iteratively,
quickly and monotonously to the statistical characteristics of textures. At each
iteration, the alpha parameter gives more weight to the Rényi divergence to
converge. Thanks to this joint optimization, it is possible to achieve interesting
segmentation performance without any intervention.

In order to assess the relevance and efficiency of our descriptor, we decided
to compare it with another descriptor widely used in the literature, this de-
scriptor [46] use a coupling between an edge detector function based on Gabor
responses with a region detector coming from the vectorial Chan-Vese model [8].
Tough this last descriptor gives good results, the calculation of its region part
requires a quite large time of calculation. Figure 4, presents some results of
this comparison.

Figure 4. Left column: Original images coming from the Berkeley database which
presents textured features. Central column: our segmentation results based on the
descriptor coming from [46]. Right column: our segmentation results based on our

descriptor.

In Figure 4, with our descriptor, we manage to capture objects with more
precision and regularity, which reflects its good quality to represent the natu-
ral textures. Indeed, our descriptor was stimulated from the Beltrami repre-
sentation which offers a logical, correct and natural framework for searching
characteristics based on the differential geometry. This is why it is possible to
integrate it into a solid platform to segment textures.
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As a comparison between our algorithm and other state-of-the-art methods,
we have implemented the dictionary based image segmentation model [13] of
Anders and Vedrana, which uses a deformable model using a probabilistic dic-
tionary of image patches. We modified their deformable model by convexifying
their level set evolution equation as is done in subsection 3.2, then we apply the
augmented Lagrangian iterative scheme for minimizing as done in [52]. The
texture descriptor [12] used in this model exploits the patch which is a less
local version than the value of a pixel. Thus, the local information is extracted
on a close neighborhood around a given pixel to make improvements. Figure 5
gives illustrative examples of this comparison.

Figure 5. Left column: Original images coming from the Berkeley database which
presents textured features. Central column: segmentation results based on the [13]. Right
column: our segmentation results.

To evaluate the difference in performance of these last two descriptors with
our descriptor, we can use the similarity coefficient as a standard measure using
Dice and Jaccard scores. We recall that:

Jaccard(X,Y) =|XNY|/|XUY],
Dice(X,Y)=2-1XNY|/|X|+ Y],

where | X| denotes the cardinal of set X. In our situation, X are the regions
of textures obtained by our model and Y are the regions of textures obtained
with the descriptor coming from [46] (Leopard, Fish, Boat) or by the modified
model of [13] (Octopus, Lions, Snake). Table 2 shows the obtained results.
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Table 2. Comparison results based on similarity coefficients.

Image: Leopard Fish Boat Octopus  Lions Snake

Jaccard value 0.9342 0.9779  0.9472 0.8103 0.8230 0.9143

Dice value 0.8842 0.968  0.9389 0.74 0.7826  0.8893

In [46], Sagiv, Sochen and Zeevi used the determinant of the metric tensor
calculated on a sum of the Gabor responses to extract and measure the texture
characteristics. The same calculation was done in [24], but this time on the
patches coming from the three primary color spaces (red, green, blue), which
made it possible to define a color texture descriptor. This latter descriptor is
then used in a region competition approach using the Kullback-Leibler distance
to accomplish the segmentation task. We decided to compare this last segmen-
tation model with our model. We propose as our a texture color descriptor the

Euclidean norm N = \/Z?:1 K2, where K; is our descriptor from the plane i
of the RGB color space.

Figure 6. Left column: Original images coming from the Berkeley database which
presents textured features. Central column: segmentation results obtained from the model
in [24], right column: our segmentation results.

Figure 6 shows that our model gives quite promising results and allows
more precise detection of textured objects. Note that in the third image in
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column 1 (woman), the segmentation model proposed in [24] could not detect
the texture which has a grid pattern, which led to bad segmentation, this is
mainly due to the size of the patch which is equal to 9 in the examples in column
2 of the Figure 6. The patch should be large enough to contain discriminative
information. However, with a larger patch the segmentation results can be not
very accurate in the borders.

5 Conclusions

This paper, aimed at proposing two new ideas in active unsupervised texture
segmentation domain. The first one focuses on extracting pertinent features
of textures using a new descriptor based on curvatures, while the second one
considers an efficient and an easy new region competition approach that use
the Rényi divergence measure and a fast algorithm for resolution to design an
active contour model for texture segmentation. This algorithm automatically
adapts the o parameter to the split Bregman optimization method, which pro-
duces a good optimization of the Rényi divergence, and thus, obtaining two
regions with different probability density functions as disjoint as possible. Our
experiments using non trivial real texture images give promising results without
any intervention operation.

There are some directions that this work may be taken from the baseline
established in this paper. The extension of the proposed model to the multi-
region active contour segmentation can be promising. As well as the extension
of histograms of PDFs to the two-dimensional case, this latter extension must
take into account the information on statistical properties of neighbors of pixels
as well as their positions, which will further improve the segmentation results.
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Appendix A

A.1 Shape derivation details for Rényi divergence measure

Using the shape derivative tool proposed in [3,27], we want to differentiate the
functional:

)= 2 1m/mpa(/c],Q)ql—a(/cf,rz)d/cj, a e IR\ {0,1}.

o —

The difficulty here is that we can not differentiate ”naturally” because the
variable is {2 which is not an element of a vector space. The idea is to deform
the domain {2 by a vector field V : IR*> —s IR?, we pose

) ={X+7V(X),X € 2}
and the Gataux derivative of F({2) in the direction V is given by:

<F’(Q),V> — lim F(Q(T)) _F(‘Q)

T—0 T

In our situation, using the logarithm properties, the Gataux derivative of F'({2)
in the direction of V is given by:

(), vy = L EWDV) (A1)

where

E(2) = /HRPD‘(/CI,Q)ql_"(ICLQ)dICL aelR\ {0,1}.

As it has been shown in the shape derivative tool proposed in [3,27], the
Géteaux derivative of a functional M (£2) = / k(x, 2)dz is:
[0

AM(2,V) = /

o2, V) - / k(2. 2)(V(s), N')ds,

o8

where N is the unit inward normal to 92, ds is the arc length element and
ks(z, 2,V) =lim, o (k(z, 2(7)) — k(x, 2))/7 if the limits exists. We have:

p(Kr, Q7)) = /Q R ~ Ki(a))dz / /Q(T)dx N m

Using the quotient rule for derivatives, the Gateaux derivative of the previous
functional is given by:
Hi(2),V)  Hi(2){Hy(2),V)

/ _
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Our descriptor K (IC 1— K I(:c)) is not dependent on the region. Consequently
using the previous tool, the Gataux derivative of the Hy({2) is reduced to:

H(@.V) == [ K(Ky = Kr() (V). s,

likewise
(HL(2), V) = — /8 V() A

As a conclusion, we have:

(' (K1, 92),V) :ﬁ<— /mK(ICI — K1(s))(V(s),N)ds
0(r.2) [ (V(s).A)ds)

In the same way, we have:

(K1, 2),V) :Woil\ﬂl(/m K (K1 — K1(5)) (V(5), N} ds

k) /6 (Vi) A)s).

Using the product and power rule for derivative, the Gateaux derivative of the
functional E({2) is given by:

@) = [ (o[BEg] Wi v)
+(1-a) [mr@’(/cl, 2),V))dis.

By replacing the previous equation in (A.1) we obtain (3.2).

A.2 Existence of the minimum
‘We remind hereafter some results that we will need in the demonstration:

DEFINITION 1. [4,22].
Let 2y C IR™ un open set and let f € L'(£2y), The TV norm of the function
f is defined as follows:

TV(5) = [ Vslde = sup { [ f@)div o)},
0 QSG(P 0

where

o= {0 Ci (2, IR /l6(a)| <1, on 2y }.

A function f € L'(£2) is said to have bounded variation in 2y if TV (f) <
+00. BV(§2) is defined as the space of all functions in L'(£29) with bounded
variation:

BV (1) = {f e LY(20); TV (f) < +oo}.
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Theorem 2. [/, 18,22]. Let 2y CIR™ an open set and let f € L*(£2).

e BV (()) is a Banach space endowed with the norm:

1BV (20) = I fllLr(20) + TV ().

o Let €U, xo € BV () if and only if 2 has a finite perimeter. In this
situation we have:

Per(2) =TV (xq) = [Vxo| < .

o Let 2 € U, for every uniformly bounded sequences {uy}r>1 i BV (£2)
we can extract a subsequence {uy, } of {ur} and a function u, € BV (£2),
such that {uy;} converge strongly in LP(§2) to u, for1 <p < 15, n>1
and

TV (uy) < liminf TV (ug; ).

k?j‘)+00

Proof. Let {xq, }x>0 be a minimizing sequence of (3.5), i.e.,

i (Rexa) 4 AL0a)) = i {Réxa) +AL0) o (3> 0)

Since the Rényi divergence is greater than 0 [17], we can effectively deduce
that  min {Ré(XQ) —i—)\L(XQ)} > 0, thus, it exist a constant M > 0 such
X2€BV (£2)
that L(xo,) = [[Vxa.llLr(2) < M, Yk > 0, therefore, we conclude that x g, is
a bounded sequence on BV (£2y). Using the previous theorem, we can extract
a subsequence {Xij} that converge to a function x g, strongly in L(£2).
Since p(xgn) and q(xg) in (3.4) are continuous with respect to the BV (§2y)
topology, we have i lim Ré(xgk_j) = Ré(xn,), thus using the previous theo-

j—too
rem, we conclude that:

Ré(xn,)+AL(xa,) < %im inf (Ré(Xij) + AL(x ., ),

j—>+0o0
SO

3 L —  inf 3 L .
Ré(xo,) + A(xa.) )meanvmo)(RB(XQ)+A (x0))
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