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Abstract. This work deals with statistical modeling and forecasting of telecom-
munications data. Main mobile traffic events (SMS, Voice calls, Mobile data) are
smoothed using B-spline functions and later analyzed in a functional framework.
Functional linear auto-regression models are fitted using both bottom-up and top-
down design methodologies. The advantages and disadvantages of both approaches
for the prediction of mobile telephone users’ habits are discussed.
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1 Introduction

Modelling and predicting telecommunication parameters is a common challenge
for over 20 years, see Frost and Melamed [12] and Meier-Hellstern et al. [14].
Any kind of new technology or new business approach requires new traffic mea-
surement models addressed to different problems (lack of known requirements,
not having enough data, etc.).

In this paper, telecommunications data are treated as observations of ran-
dom curves. Instead of traditional statistical approach, we can exploit Func-
tional Data Analysis (FDA) methods, which, according to Levitin et al. [13],
can answer a number of different implementation questions. An overview of
FDA is provided by Ramsay and Silverman [17], Ferraty and Vieu [11] and
more recently by Wang et al. [19]. To the best of our knowledge, only a few
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papers use functional approach for telecommunications data. Yu and Lam-
bert [20] analysed records for completed international calls. The objective of
the paper by Ben Slimen et al. [18] is to detect future malfunctions of a set
of cells, by only observing key performance indicators that are considered as
functional data. Aspirot et al. [2] study a non-parametric regression model,
where the explanatory variable is non-stationary dependent functional and the
response variable is scalar. There, this approach is applied to telecommunica-
tions, namely to estimate the quality of service for an end-to-end connection
on a network.

The data set under investigation in this paper contains three different types
of telecommunications data: the amount of SMS, Voice consumption, and Mo-
bile data consumption. All three components can be named Call Data Records
(CDR). This type of telecommunications data is used in a vast number of re-
search papers, Calabrese et al. [7], Ozgul et al. [15], Cecaj et al. [1] to name a
few.

Data set is obtained from Mobile Virtual Network Operator (MVNO), which
is defined as an entity, who offers telecommunications services similar to a mo-
bile network operator (MNO), however, the MVNO does not own any radio fre-
quency spectrum (see e.g., www.yozzo.com/mvno-wiki/mvno-definitions). In
other words, MVNO rents technical telecommunication tools (mobile network
towers, CRM, Billing system, etc.) in order to provide services. Moreover,
MVNOs purchase an amount of main mobile network products (SMS, Voice
calls, Mobile data) at wholesale prices from MNO and sell them to the cus-
tomers at their prices. Such business model is popular around the world (e.g.,
Brazile Telecom, Uno Mobile Italy, Carrefour Taiwan Mobile, Samatel Oman,
Equitel Kenya, etc.). However, this business model has limited profitability so
it is crucial to understand customer needs. Moreover, as price in the telecom-
munication business becomes more and more irrelevant, business owners must
understand their customer habits to operate successfully.

In this paper, usage of three mobile products, Voice calls, SMS and Mobile
data are investigated following functional data analysis methodology. Let X =
(X(t), t ≥ 0) be a real valued continuous time process, e.g., consumption in
continuous time of any of these mobile products. In order to study the behavior
of X within the time interval of length d (one month in this research), we set

Xk(t) = X((k − 1)d+ td)−X((k − 1)d), k ≥ 1, 0 ≤ t ≤ 1. (1.1)

This construction generates a time series Xk = (Xk(t), 0 ≤ t ≤ 1), k ≥ 0, of
random functions with values in a function space, say E. The main problem
discussed in the paper is forecasting of Xn+1 from observations of X1, . . . , Xn.
As a functional framework for paths of random processes under consideration
we fix two function spaces. The first one is E = L2(0, 1) the classical Lebesgue
space of square integrable functions on [0, 1], endowed with the inner product

〈x, y〉 =

∫ 1

0

x(t)y(t)dt, x, y ∈ L2(0, 1),

and the corresponding norm ||x|| =
√
〈x, x〉, x ∈ L2(0, 1). The second is the
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space E = C[0, 1] of continuous functions on [0, 1] endowed with the maximum
norm ||x|| = max0≤t≤1 |x(t)|. The choice of a functional framework in our
context provides instruments to measure forecasting accuracy.

As a parallel aim, we deal with the aggregation problem which is sometimes
referred to as the top-down versus bottom-up forecasting problem. It leads to
the question: what is better, to forecast the aggregate of top level quantity
directly, or to forecast the individual components separately and then aggregate
them to form the forecast of the total? We associate for each user of a mobile
product its own process Xj = (Xj(t), t ≥ 0), j = 1, 2, . . . , N, and construct the
functional time series in same manner as above thus, obtaining N functional
time series Xjk = (Xjk(t), 0 ≤ t ≤ 1), k ≥ 1; j = 1, . . . , N ,

Xjk(t) = Xj((k − 1)d+ td)−Xj((k − 1)d). (1.2)

Clearly Xk =
∑N

j=1Xjk. Hence, the forecast of Xn+1 can be obtained as well
from that of each Xj,n+1. The literature in statistical forecasting, and time
series analysis suggests that the question what is better, to forecast directly
Xn+1 or to aggregate the forecasts of each Xj,n+1, is far from settled at ei-
ther the theoretical or empirical levels. In our specific practical application, it
is difficult to argue on theoretical grounds what the correct approach should
be. Therefore, this question is settled empirically by trying both. Note, that
normalized sums

Yk =
1

N

N∑
j=1

Xjk (1.3)

model a behaviour of an ,,average” consumer.
For the process (Xk, k ≥ 1) we fit first order functional auto-regressive mod-

els both with deterministic and random coefficient. Point-wise multiplication
by a function and integral type operators are used on lagged time series. Pre-
dictions are made using rolling-window procedure and prediction residuals are
compared afterwards.

The rest of the paper is organized as follows. In Section 2, we present the
data under investigation. Section 3 contains the analysis of fitted two types
auto-regressive models whereas in Section 4 we discuss the top-down versus
bottom-up forecasting problem by using fitted models. Section 5 contains con-
clusions.

2 Data

Data consists of mobile products (SMS, Voice calls, Mobile data) usage by
almost 1500 users. Data are filtered by only taking subscribers that consumed
any of the three mobile products over 75% of all period under consideration.
Moreover, data are aggregated on daily level into total count of SMS measured
in units, total sum of Voice consumption measured in minutes, and total sum of
Mobile data consumption in MB. Finally, after filtering out inactive subscribers
we have data from 39 Mobile data consumers, 791 SMS consumers and 714
Voice calls consumers.

Math. Model. Anal., 27(1):117–133, 2022.
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As the aim is to predict monthly patterns of consumers we use monthly
segmentation of the data under consideration. The segmented data then are of
the form

x
(`)
jk = (x

(`)
jki, i = 1, · · · , I), k = 1, . . . , n; j = 1, . . . , N`,

where ` = 1, 2, 3 corresponds to the three metrics (SMS, Voice, Mobile data),
j corresponds to a consumer and k indicates month as time series unit. These

data are interpreted as measurements of monthly curves x
(`)
jk = (x

(`)
jk (t), t ∈

[0, 1]),

x
(`)
jki = x

(`)
jk (ti) + ε

(`)
jk (ti),

where t1, . . . , tI denotes the reference points (corresponds to days of a month

in our case) and ε
(`)
jk (ti) are measurement errors.

In order to get a better understanding of consumption curves, the following
graphs are presented. Figure 1 provides one subscriber consumption for all
months.
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Figure 1. Mobile product consumption: one subscriber all months

Figure 2 provides one month curve for 10 randomly selected subscribers.
As a next step in data preparation B-splines smoothing was applied in

order to reconstruct functions x
(`)
jk (t), t ∈ [0, 1]. This gave the three functional

samples

x
(`)
jk = (x

(`)
jk (t), t ∈ [0, 1]), k = 1, . . . , n; j = 1, . . . , N`,

corresponding to SMS (` = 1), Voice (` = 2) and Mobile data (` = 3) of j’th
consumer during k’th month. An example of data transformation from raw to
functional sample is presented in Figure 3.

Although eight basis functions produced good enough approximation, in
order to keep the roughness of curves, estimation with the penalty was ap-
propriately used. The best penalty parameter was calculated by generalized
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Figure 2. Mobile product consumption: ten subscribers during one month.
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Figure 3. SMS consumption for 10 subscribers: raw vs smoothed. Different color
represents different subscriber.

cross-validation measure as developed by Craven and Wahba [9]. Below we will
simplify the notation by omitting the mobile product index `.

As widely accepted in functional data analysis the obtained functional sam-
ple (xjk) is interpreted as observations of a sequence of stochastic processes
(Xjk), Xjk = (Xjk(t), 0 ≤ t ≤ 1) defined above by (1.2). The aggregated
sample xk = (xk(t), 0 ≤ t ≤ 1), k = 1, . . . , n, is obtained by setting

xk(t) =

N∑
j=1

xjk(t)

and is interpreted as observations of the functional time series (Xk) defined in
(1.1).

Math. Model. Anal., 27(1):117–133, 2022.
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Graphical illustration for aggregated Voice consumption is presented in Fig-
ure 4.
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Figure 4. Aggregated Voice consumption: raw vs smoothed. Different color represents
different month.

3 Fitting the functional time series models

One of the most popular and frequently used functional time series models is a
functional auto-regressive first order ( FAR(1) ) model introduced by Bosq [6].
This model has been successfully used by many authors, including Cavallini et
al. [8], Besse and Cardot [4], Besse et al. [5], Bernard [3], and Damon and Guil-
las [10] for forecasting of electricity consumption, traffic, climatic variations,
electrocardiograms, and ozone concentration respectively.

We found two auto-regressive models appropriate for the functional time
series (Xk, k ≥ 1), defined in (1.1). The first one is a (possibly random coeffi-
cient) FAR(1) model

Xk − µ = ρ(Xk−1 − µ) + εk, k ≥ 1, (3.1)

where X0 = 0, µ = E(Xk) is the mean function, ρ is a (possibly random)
bounded linear operator in the space under consideration and (εk) is a white
noise. ρ is used in equations only as the general model operator. The second
model is a (possibly random coefficient) FAR(1) model for differences:

Xk −Xk−1 = ρ(Xk −Xk−1) + εk, k ≥ 1, (3.2)

where ρ is a (possibly random) bounded linear operator in the space under
consideration. We use two types of operators ρ in (3.1) and (3.2). First one
corresponds to L2(0, 1) framework and is specified as a convolution kernel op-
erator

(ρx)(t) =

∫ 1

0

κ(t, s)x(s)ds, t ∈ [0, 1],
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where the function κ(t, s) satisfies∫ 1

0

∫ 1

0

κ2(t, s)dtds <∞,

whereas the second type of ρ corresponds to C[0, 1] framework and is specified
as multiplication by a function:

(ρx)(t) = β(t)x(t), t ∈ [0, 1],

where β(t), t ∈ [0, 1], is a continuous function. The choice of a functional
framework for functional sample in our context fixes a distance used to measure
the forecasting accuracy. Note also that point-wise models for Hilbert space
valued time series does not make sense in general. Since we have prepared the
data as continuous curves we can exploit both functional spaces L2(0, 1) and
C[0, 1]. For estimation procedures of FAR(1) models we refer to Ramsay et
al. [16].

3.1 Point-wise autoregressive model

3.1.1 Non random coefficient

For the functional time series (Xk, k ≥ 1) defined in (1.1) consider first the
point-wise FAR(1) model

Xk(t)− µ(t) = β(t)(Xk−1(t)− µ(t)) + εk(t), t ∈ [0, 1], (3.3)

where β(t), t ∈ [0, 1] is an unknown continuous function. β(t) is used only
in point-wise non-differentiated models. We estimate µ(t) and β(t) from the
functional sample x0(t) = 0, x1(t), x2(t), . . . , xn(t) by

µ̂(t) =
1

n

n∑
k=1

xk(t), β̂(t) =

∑n
k=1(xk−1(t)− µ̂(t))(xk(t)− µ̂(t))∑n

k=1(xk−1(t)− µ̂(t))2
.

The function β̂(t) is shown in Figure 5.
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Figure 5. β̂(t) function for model (3.3) with Voice, SMS, and Mobile data consumption
data.
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The values of β̂(t) varies in the interval [0.85, 1.05]. This indicates either
random walk behavior of the centered process (Xk(t)−µ(t), k ≥ 1) or random-
ness of the function β(t) in (3.3). The first option leads to the model

Xk(t)−Xk−1(t) = γ(t)(Xk−1(t)−Xk−2(t)) + εk(t), t ∈ [0, 1] (3.4)

with OLS estimator of γ(t) (γ(t) is used only in point-wise differentiated mod-
els) given by

γ̂(t) =

∑n
k=1(xk−1(t)− xk−2(t))(xk(t)− xk−1(t))∑n

k=1(xk−1(t)− xk−2(t))2
.

We see in Figure 6, that the values of γ̂(t) are in the interval [−0.7, 0.4]
which means point-wise stationarity of the solution of (3.4).
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Figure 6. γ̂(t) function for differentiated model (3.4) with Voice, SMS, and Mobile data
consumption data.

3.1.2 Random coefficient

To introduce randomness for β(t) in (3.3) we consider for each j = 1, . . . , N,
the point-wise FAR(1) model

Xjk(t)− µj(t) = βj(t)(Xj,k−1(t)− µj(t)) + εj,k(t), t ∈ [0, 1], (3.5)

where µj = E(Xjk) and βj(t) is unknown continuous function on [0, 1].
Recall for each k = 1, . . . , n and each j = 1, . . . , N the curve xjk =

(xjk(t), 0 ≤ t ≤ 1) is interpreted as observation of the random process Xj,k =
(Xj,k(t), 0 ≤ t ≤ 1) considered as random element in the Banach space C[0, 1].
The mean µj then is estimated by sample mean µ̂j(t):

µ̂j(t) =
1

n

n∑
k=1

xjk(t)
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for each t ∈ [0, 1]. Next for each j = 1, . . . , N we estimate the function βj in
(3.5) by OLS obtaining

β̂j(t) =

∑n
k=1(xj,k−1(t)− µ̂j(t))(xj,k(t)− µ̂j(t))∑n

k=1(xj,k−1(t)− µ̂j(t))2
,

where xj,0(t) = 0 for any j = 1, . . . , N . We interpret these functions as observa-
tions of the random function (β(t), t ∈ [0, 1]) in (3.3). Hence, all distributional

parameters of β(t) can be estimated from the sample β̂1(t), . . . , β̂N (t).

Functions β̂j(t), j = 1, . . . , N, are shown in Figure 7 together with the
sample mean, median and mean ± two standard deviations. As the mean and
standard deviation are estimated point-wise, the estimation of median uses the
integration of a univariate depth along the time axis.
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Figure 7. Functions β̂j(t) in light blue for Voice, SMS, and Mobile data consumption
data presented in (3.5) together with sample mean in blue, two standard deviations in

dotted blue and median in green.

We estimate the function β(t), t ∈ [0, 1], in (3.3) by

β̂(t) =
1

N

N∑
j=1

β̂j(t), t ∈ [0, 1].

Similarly randomness of the function γ(t), t ∈ [0, 1], in (3.4) comes from pro-
cesses (Xjk, k ≥ 1), j = 1, . . . , N . So that we first fit the model

Xj,k(t)−Xj,k−1(t)=γj(t)(Xj,k−1(t)−Xj,k−2(t))+εj,k(t), t∈[0, 1], j=1, . . . , N

with OLS estimator of γj(t) given by

γ̂j(t) =

∑n
k=1(xj,k−1(t)− xj,k−2(t))(xj,k(t)− xj,k−1(t))∑n

k=1(xj,k−1(t)− xj,k−2(t))2
.

Math. Model. Anal., 27(1):117–133, 2022.
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All γ̂j(t) values are in the interval [−0.6, 0.5]. This indicates the point-wise
stationarity of the first differences of each of the process (Xjk, k ≥ 1).

Now we estimate the function γ(t), t ∈ [0, 1], in (3.4) by

γ̂(t) =
1

N

N∑
j=1

γ̂j(t), t ∈ [0, 1].

A number of insights can be brought from β̂j(t) and γ̂j(t) graphs. First of
all, socio-economic insights - subscribers tend to live on calendar month cycles.
The main activity is monitored at the beginning and the end of the month
while the middle is less active. Second insight - cultural. The most active
subscribers from this operator are ethnic minorities from Middle East, Africa,
Central America where communication intensity is higher. These groups also
tend to be more active on Voice and SMS consumption rather than Mobile
data due to sufficient bundle offerings (free or lower price calls and SMS to
African countries, Cuba, etc.) from the operator. Moreover, these groups tend
to transfer money to their relatives in their home countries after they collect
them - during the start or end of the month. This leads to communication
increase before and after money transfers.

β̂j(t) graphs in Figure 7 indicates that consumption is not connected to
any mobile bundle (fixed amount of mobile products for a certain price with
one month validity) renewal time. Despite the small number of more active
months for a small number of subscribers, the majority values of Mobile data
consumption are relatively small (up to 1024 MB) and there is no proof that
the bundle is on average fully exhausted during the month. Regarding Voice
and SMS, consumption exceeds bundle limits so most probably subscriber pur-
chased add-on (one time add-on of certain mobile product) or continue actions

with non-bundled prices. This can be identified in graphs where β̂j(t) values
fluctuate several times. Despite if an add-on is purchased or not after the
bundle is exhausted, β̂j(t) stays under a stable shape of one fluctuation. To
conclude, the bundle can be renewed any time of the month so stable shape
whole month shows no direct link between bundle renewal and consumption.

Voice and SMS consumption habits are quite similar as it is seen from γ̂j(t)

and β̂j(t) graphs. The main difference is the start and end of the calendar
month. It can be explained by an increase in arriving technical SMS on certain
periods. In other words, subscribers receive info about certain services (ex. low
balance, utility cost, etc.) or commercial offerings (ex. new bundle, new offer,
etc.) during the start and end of the month. This info is usually provided by
SMS, not by Voice call. On the contrary, Mobile data consumption during that
period is used more for entertainment. It can seen from stable average function
of γ̂j(t) for Mobile data in Figure 8.

To conclude, cultural and socio-economic insights can explain the shape of
β̂j(t) and γ̂j(t) graphs. Moreover, technical communication features can ex-
plain certain moments of the month and the difference between mobile product
consumption.
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Figure 8. Functions γ̂j(t) in light blue for Voice, SMS, and Mobile data consumption
data presented in (3.4) together with sample mean in blue, two standard deviations in

dotted blue and median in green.

3.2 Integral type autoregressive model

In this subsection we consider the functional time series (Yk, k ≥ 1) where Yk
is defined by (1.3). Eventually, we fit the model

Yk(t)− Yk−1(t) =

∫ 1

0

κ(t, s)(Yk−1(s)− Yk−2(s))ds+ εk(t), t ∈ [0, 1].

There exist several methods to estimate the kernel κ(t, s). We used fit
of fully functional linear model. Fit was implemented using functional basis
representation:

κ(t, s) =
∑
k

∑
l

bklvk(s)θl(t) = v(s)′Bθ(t)

with K basis functions vk and L basis functions θl. Furthermore, least squares
method is used to estimate coefficients bkl. This method was briefly presented
by Ramsey et al. [17].

The model provides sufficient insights about Voice consumption. Estimated
κ(t, s) indicated that accumulated history s has less power than current moment
t. Moreover, the effect on consumption changes from negative to positive (or
stays close to zero depending on accumulated consumption history ) at the end
of the month.

On contrary, estimated κ(t, s) of SMS consumption indicates that the his-
tory of consumption needs to be accumulated at least until the second part of
the month to have an actual effect. When a significant part of consumption
is accumulated, it can be indicated that accumulated history has a positive
impact during the start of the month (t < 0.2) and a negative impact at the
end of the month (t > 0.8).

The estimated model provides sufficient insights into Mobile data consump-
tion as well. Accumulated history influences consumption during three periods.

Math. Model. Anal., 27(1):117–133, 2022.
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After the start of the month (t < 0.2) κ(t, s) is rising as more history is ac-
cumulated. During the month (t ∈ [0.2, 0.8]), the accumulated consumption
history effect fluctuates between positive and negative values but remains more
or less stable. The end of the month (t > 0.8) is similar to the start of the
month where accumulated history is rising. κ(t, s) surfaces are presented in
Figure 9.

Voice SMS Mobile data

Figure 9. κ̂(t, s) for Voice, SMS, and Mobile data consumption.

4 Forecasting

The focus of this section is forecasting. We seek to predict the future values
xn+1 of the functional process (Xk, k ≥ 1) as a function of data x1, . . . , xn, so as
to minimize the mean squared forecast error. Using the auto-regressive model
(3.1) under the assumption that εk is a strong white noise, the conditional
expectation of Xn+1 − µ given X1, X2, . . . , Xn equals to ρ(Xn − µ). Hence,
for known ρ, the best predictor is given by ρ(Xn − µ). Since ρ is unknown an
approximation to the solution is ρ̂(Xn − µ̂), where ρ̂ is a consistent estimator
of ρ and µ̂ is the empirical mean. Thence, model (3.1) leads to

X̂n+1 = µ̂+ ρ̂(Xn − µ̂).

If ρ is deterministic, we take its estimator as discussed above. If ρ is random,
we take ρ̂ an estimator of the mean Eρ. Likewise, using the model (3.2) we
have

X̂n+1 = Xn + ρ̂(Xn −Xn−1). (4.1)

By de-aggregated (bottom-up) approach we have

X̂n+1 = µ̂+

N∑
j=1

ρ̂j(Xj,n − µ̂j),

where µ̂j = n−1
∑n

k=1Xjk, and

X̂n+1 = Xn +

N∑
j=1

ρ̂j(Xj,n −Xj,n−1). (4.2)
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The corresponding mean square prediction errors are

∆1:=E
(∫ 1

0

(X̂n+1(t)−Xn+1(t))2dt
) 1

2

, ∆2 := E[ max
0≤t≤1

|X̂n+1(t)−Xn+1(t)|].

To see how accurately predictive models perform we use rolling-window proce-
dure. The procedure starts with choosing rolling window set (sequence of obser-
vations) and its length p :{ x1, x2, . . . , xp}. Rolling-window is taken from data
sample, so p depends on sample size T : {x1, x2, . . . , xp} ⊂ {x1, x2, . . . , xT }.
Afterwards, forecast horizon length h is defined. Horizon is the last period
in rolling-window and it is used to measure the quality of predictions. As
data under consideration contains 36 months of mobile products consumption
(T=36), we choose rolling-window length p equal to 31 months and horizon
length h equal to 1 (horizon set is {xp}). Rolling-window is implemented by
going month forward for every partition. Hence, six partitions of data set are
constructed : {x1+p, x2+p, . . . , x31+p}, p = 0, . . . , 5. These date sets are used to
fit the models. Residuals are presented in the Table 1 below.

Table 1. Summary of prediction errors ∆1 and ∆2. SMS are in units, Voice in min, Mobile
Data in MB.

∆1 SMS ∆2 SMS ∆1 Voice ∆2 Voice ∆1 Mobile data ∆2 Mobile data

Eq. (4.1) 2 4 5 8 125 176
Eq. (4.2) 4 7 6 11 106 152

Prediction visualization for example month is provided in Figure 10.
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Figure 10. Point-wise model predictions for all three consumption metrics. Red line
indicates top-down approach (4.1), green line indicates bottom-up approach (4.2), black

line - actual data. Presented predictions are made from models with 1 − 30 window months.

In order to understand the variation of prediction, bootstrap intervals were
created. Bootstrapping for top-down approach was implemented by three steps:

1. Randomly sampling subscribers with replacement

Math. Model. Anal., 27(1):117–133, 2022.
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2. Averaging consumption for sampled subscribers

3. Creating model and prediction for one step ahead

Sampling was done 200 times. An example graph is provided in Figure 11.
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Figure 11. Prediction (black line) with bootstrap values (gray lines) for top-down (4.1)
approach using 1 − 30 months window

Bootstrapping for bottom-up approach was almost identical to top-down.
The only difference - 2. and 3. swap their positions:

1. Randomly sampling subscribers with replacement

2. Creating model and prediction for one step ahead

3. Averaging consumption for sampled subscribers

An example graph is provided below in Figure 12.
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Figure 12. Prediction (black line) with bootstrap values (gray lines) for bottom-up
approach (4.2) model using 1 − 30 months window.
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Models predict consumption quite well for most cases. Few models for
Mobile data consumption prediction did perform poorly, which enlarged ∆1

and ∆2 errors. This led to the conclusion, that the higher number of mobile
product users, the better is accuracy. Moreover, forecasts are stable for the
whole month, no significant fluctuations can be identified during the month.

Overall, forecasts manage to recognize socio-economic and cultural effects
presented before. Point-wise models with top-down design performed better
for SMS and Voice cases. On the contrary, Mobile data consumption predic-
tions were better with the bottom-up design. Finally, bootstrapped intervals
suggested that the bottom-up approach is less robust in comparison to the
top-down.

5 Conclusions

Analysis manages to identify models and make predictions for mobile product
consumption. Two types of strategies, Top-down and Bottom-up, help to guide
through model creation. Two types of models, point-wise and integral-wise,
provided insights about mobile product consumption.

The data set is analyzed as a functional data object. All mobile products
acted more or less stable despite which rolling window was used. Almost all
coefficient β̂j(t) and γ̂j(t) functions are in the interval (−1, 1) identifying itself
as trend stationary for bottom-up design. Top-down design γ̂(t) functions also

fluctuate in the same interval after amendments. Coefficient functions β̂j(t)
and γ̂j(t) provide socio-economic (monthly business cycle) and cultural (ethnic
minorities consumption habits) insights about subscriber habits. Analysis of

β̂j(t) explains stable consumption shape while analysis of γ̂j(t) explains the
difference between Voice and SMS consumption for our data set. Insights
from β̂j(t) and γ̂j(t) suggest that mobile operator successfully targeted ethnic
minorities during the period. After averaging consumption data, integral-wise
models with stationary κ̂(t, s) are created. κ̂(t, s) surfaces identifies different
history effect on averaged mobile product consumption. The surface analysis
reveals that accumulated history affects Mobile data consumption more than
it does for SMS and Voice consumption.

Predictions calculated for both point-wise model designs. Top-down mod-
els outperform bottom-up models in SMS and Voice consumption cases. For
Mobile data cases, the bottom-up model performs better. It indicates that
the Top-down approach is suitable when the subscriber base is larger. More-
over, the Top-down approach requires less data preparation and computational
power. Finally, both approaches provide stable results during the month.

To conclude, functional data analysis can be a sufficient tool to investigate
telecommunications data. Both designs can be used to analyze and predict the
consumption of main telecommunication products.
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