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methods in the literature. Our results improve and generalize many existing results
in this direction.
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1 Introduction

Let H be a real Hilbert space equipped with inner product 〈·, ·〉 and norm ‖ · ‖.
A multi-valued mapping B : H → 2H is called monotone if for all x, y ∈ H,
u ∈ Bx and v ∈ By then 〈x− y, u− v〉 ≥ 0. A monotone mapping B : H → 2H

is maximal if the graph G(B) = {(x, y) ∈ D(B) : y ∈ Bx} is not properly
contained in the graph of any other monotone mapping. Let B : H → 2H be a
multi-valued maximal monotone mapping. The resolvent mapping JBλ : H →
H associated with B is defined by

JBλ (x) := (I + λB)−1(x), ∀ x ∈ H,

for some λ > 0, where I is the identity operator onH.We note that for all λ > 0,
the resolvent operator JBλ is single-valued, firmly nonexpansive, see e.g [2]. In
2011, Moudafi [14] introduced the following Split Variational Inclusion Problem
(shortly, SVIP): Find x† ∈ H1 such that

0 ∈ B1(x†) and 0 ∈ B2(Ax†), (1.1)

where H1 and H2 are real Hilbert spaces, B1 : H1 → 2H1 and B2 : H2 →
2H2 are multi-valued maximal monotone operators, A : H1 → H2 is a linear
bounded operator. We denote the set of solutions of (1.1) by SV IP (B1, B2).

In 2016, Chuang [7] studied the SVIP using the following descent projection
method:

Algorithm 1. Descent Projection Algorithm (DPA)

Step 0: Set n = 1 and choose x1 ∈ H1.
Step 1: Given xn ∈ H1, compute {yn} using

yn = JB1

λn
[xn − γnA∗(I − JB2

λn
)Axn],

where {λn} ⊂ (0,∞) and γn > 0 satisfying

γn‖A∗(I − JB2

λn
)Axn −A∗(I − JB2

λn
)Ayn‖ ≤ δ‖xn − yn‖, δ ∈ (0, 1).

Step 2: If xn = yn, STOP. Otherwise continue with Step 3.
Step 3: Compute xn+1 ∈ H1 using

xn+1 = JB1

λn
(xn − αnD(xn, yn)),

where

D(xn, yn) := xn − yn + γn[A∗(I − JB2

λn
)Ayn −A∗(I − JB2

λn
)Axn],

αn = 〈xn − yn, D(xn, yn)〉
/
‖D(xn, yn)‖2.

Then update n := n+ 1 and go to Step 1.
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For more details and recent results on SVIP and related optimization prob-
lems, one can refer the reader to [10,16,27].

The Equilibrium Problem (shortly, EP) introduced by Blum and Oetlli [5]
is defined as

find x ∈ C such that f(x, y) ≥ 0, ∀ y ∈ C, (1.2)

where f : C×C → R is a bifunction satisfying f(x, x) = 0 and C is a nonempty,
closed and convex subset of H. We denote the solution of Problem (1.2) by
EP (f). For more details and recent results on EP and related optimization
problems, see [3, 11,18].

The authors in [28] considered the following problem:

Find x∗ ∈ C : f(x∗, y) ≥ 0 ∀ y ∈ C, g(Ax∗) ≤ g(u) ∀ u ∈ H2, (1.3)

where g is a proper lower semicontinuous convex function on H2. They proposed
the following algorithm and proved its strong convergence to a solution of
Problem (1.3).

Algorithm 2. Mann-Krasnolselskii Proximal Algorithm (MKPA)

Initialization: Take positive parameters δ, ξ and real sequences {an}, {δn},
{βn}, {εn}, {ρn} satisfying

0 < a < an < b < 1, 0 < ξ < ρn ≤ 4− ξ,
δn > δ > 0, βn > 0, εn > 0, ∀ n ∈ N,

lim
n→∞

an =
1

2
,

∞∑
n=1

βn
an

= +∞,
∞∑
n=1

β2
n < +∞,

∞∑
n=1

βnεn
δn

< +∞.

Step 0: Choose x1 ∈ C and let n = 1.
Step n: Having xn ∈ C, take gn ∈ ∂εn2 f(xn, xn) and define

αn =
βn
γn

where γn = max{δn, ‖gn‖}.

Compute yn = PC(xn − αngn), i.e.,

〈yn − xn + αngn, x− yn〉 ≥ 0 ∀ x ∈ C.

Take

µn =

{
0, if ∇h(yn) = 0,

ρn
h(yn)

‖∇h(yn)‖2 , if ∇h(yn) 6= 0,

and compute

zn = PC(yn − µnA∗(I − proxλg)Ayn),

where proxλg(u) := argmin
{
g(u) + 1

λ‖v − u‖2 : v ∈ H2

}
, and ∇h(x) :=

A∗(I − proxλg)Ax. Let

xn+1 = anxn + (1− an)zn.

Math. Model. Anal., 27(2):179–198, 2022.
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Motivated by the works of Moudafi [14], Chuang [6] and Yen [28] and the
current research interest in this direction, we study the following problem:

Find x† ∈ C : f(x†, y) ≥ 0 ∀ y ∈ C, 0 ∈ B1(x†), 0 ∈ B2(Ax†), (1.4)

where B1 : H1 → 2H1 and B2 : H2 → 2H2 are multi-valued maximal monotone
operators, A : H1 → H2 is a bounded operator and f : C × C → R is a
bifunction satisfying f(x, x) = 0. We denote the set of solutions of (1.4) with
Γ, i.e., Γ := EP (f) ∩ SV IP (B1, B2). It is easy to see that Problem (1.4)
contains Problems (1.1), (1.2) and (1.3).

The inertial type algorithms which originated from the heavy ball method
of the two order time dynamical system can be regarded as a means of speeding
up the convergence rates of iterative schemes. Some recent results on inertial
algorithms can be found in [17,19].

In many practical problem in physical science, engineering and economics, it
is important to study the problem of finding a common solution of two or more
optimization problems due to its possible applications to mathematical models
whose constraints can be expressed as two or more optimization problems. This
happen, in particular, in the practical problems such as in signal processing,
network resource allocation, image recovery, see for instance [9, 13].

Our aim in this paper is to propose an inertial Mann-Krasnoelskii algorithm
which converges strongly to a common solution of split inclusion problem and
equilibrium problem with paramonotone bifunction. The algorithm is designed
in such a way that it stepsize is chosen self-adaptively, and its strong conver-
gence analysis does not require a prior estimate of the norm of the bounded
operator. We also present some numerical examples to illustrate the perfor-
mance and efficiency of our algorithm. The result in this paper improves and
generalizes many recent results on EP and SVIP in the literature.

Throughout this paper, we denote the strong convergence of the sequence
{xn} ⊂ H to a point x ∈ H by xn → x and the weak convergence by xn ⇀ x;
B−1(0) is the null set for a maximal monotone operator B : H → 2H , i.e.,
B−1(0) = {x ∈ H : 0 ∈ B(x)} and NC(x) is the normal cone of the set C at a
point x, i.e., NC(x) := {x∗ ∈ H : 〈x−z, x∗〉 ≥ 0, ∀z ∈ C}; Fix(T ) denotes the
set of fixed point of a mapping T : H → H, i.e., Fix(T ) = {x ∈ H : Tx = x}.

2 Preliminaries

In this section, we provide some basic definitions and results which will be
needed in the sequel. We recall that the metric projection PC from H onto a
nonempty, closed and convex subset C ⊆ H is defined by

PCx := argminy∈C‖x− y‖2, x ∈ H.

It is well known (see [10]) that PC is characterized by the inequality

〈x− PCx, y − PCx〉 ≤ 0 ∀y ∈ C. (2.1)

The following identities are well known in Hilbert spaces: For x, y ∈ H,

2〈x, y〉 = ‖x‖2 + ‖y‖2 − ‖x− y‖2, ‖x+ y‖2 ≤ ‖x‖2 + 2〈y, x+ y〉. (2.2)
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Definition 1. Let T : C → H be an operator. Then T is said to be demiclosed
at y ∈ H if for any sequence {xn} in C such that xn ⇀ x and Txn → y imply
Tx = y.

Lemma 1. [6] Let H be a real Hilbert space and B : H → 2H be a set-
valued maximal monotone operator. For each x ∈ H, λ > 0 and JBλ (x) =
(I + λB)−1(x), then

(i) JBλ is single-valued and firmly nonexpansive;

(ii) D(JBλ ) = H and Fix(JBλ ) = {x ∈ H : 0 ∈ B(x)};

(iii) ‖x− JBλ x‖ ≤ ‖x− JBγ ‖ for all 0 < λ < γ, x ∈ H;

(iv) Suppose B−1(0) 6= ∅. Then ‖x − JBλ x‖2 + ‖JBλ x − y∗‖2 ≤ ‖x − y∗‖2 for
each x ∈ H and y∗ ∈ B−1(0);

(v) Suppose B−1(0) 6= ∅. Then 〈x − JBλ x, JBλ x − y〉 ≥ 0 for each x ∈ H and
y ∈ B−1(0).

Lemma 2. (see [20], Lemma 2) Let {vn} and {δn} be nonnegative sequences
of real numbers satisfying vn+1 ≤ vn + δn with

∑∞
n=1 δn < +∞. Then, the

sequence {vn} is convergent.

Lemma 3. [4] Let H be a real Hilbert space, {an} be a sequence of real numbers
such that 0 < a < an < b < 1 for all n ≥ 1 and {vn}, {wn} be the sequences in
H such that

lim sup
n→∞

‖vn‖ ≤ c, lim sup
n→∞

‖wn‖ ≤ c,

and for some c > 0,

lim sup
n→∞

‖anvn + (1− an)wn‖ = c.

Then limn→∞ ‖vn − wn‖ = 0.

Lemma 4. [8] Let C be a nonempty closed convex subset of a real Hilbert
space H and let T : C → H be a nonexpansive mapping such that Fix(T ) 6= ∅.
Let {xn} be a sequence in C and z ∈ H such that xn ⇀ z and xn − Txn → 0
as n→∞. Then z ∈ Fix(T ).

3 Main results

In this section, we present our algorithm and its convergence analysis. We need
the following assumptions for our result:

Assumption 1 Let

(A1) H1 and H2 are real Hilbert spaces, and A : H1 → H2 is a bounded linear
operator with adjoint A∗ : H2 → H1.

Math. Model. Anal., 27(2):179–198, 2022.
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(A2) B1 : H1 → 2H1 and B2 : H2 → 2H2 are multi-valued maximal monotone
operators.

(A3) The bifunction f : H ×H → R satisfies the following:

(B1) For each x ∈ C, f(x, x) = 0 and f(x, ·) is lower semicontinuous and
convex on C;

(B2) ∂λ2 f(x, x) is nonempty for any λ > 0 and x ∈ C and is bounded on
any bounded subset of C, where ∂λ2 f(x, x) denotes λ-subdifferential
of the convex function f(x, ·) at x, that is

∂λ2 (x, x) := {η ∈ H1 : 〈η, y − x〉+ f(x, x) ≤ f(x, y) + λ, ∀ y ∈ C}.

(B3) f is pseudo-monotone on C with respect to every solution of the EP,
that is f(x, x∗) ≤ 0 for any x ∈ C, x∗ ∈ EP (f) and f satisfies the
following condition, which is called the para-monotonicity properly:

x∗ ∈ EP (f), y ∈ C, f(x∗, y) = f(y, x∗) = 0⇒ y ∈ EP (f).

(B4) For all x ∈ C, f(·, x) is weakly upper semicontinuous on C.

(A4) Problem (1.4) is consistent, i.e., its solution set Γ is nonempty.

Now we present an inertial Mann-Krasnolselskii algorithm with self adaptive
step-size for split variational inequality problem with para-monotone equilibria.

Algorithm 3. Inertial Mann-Krasnolselskii Algorithm

Initialization: Pick x0, x1∈H1, θ∈[0, 1), {εn}⊂[0,∞), {rn}, {an}, {ρn}, {βn},

{λn} satisfying the following conditions for each n ∈ N :

ρn > ρ > 0, 0 < a < an < b < 1, βn > 0, rn > 0, λn ≥ 0;
∞∑
n=1

εn <∞, lim
n→∞

an =
1

2
, lim inf

n→∞
rn > 0;

∞∑
n=1

βn
ρn

= +∞,
∞∑
n=1

β2
n = +∞,

∞∑
n=1

βnλn
ρn

< +∞.

Step 1: Given xn−1 and xn, choose αn such that 0 < αn ≤ ᾱn, where

ᾱn =

{
min

{
θ, εn/‖xn − xn−1‖2

}
, if xn 6= xn−1,

θ, otherwise.

Set
wn = xn + αn(xn − xn−1). (3.1)

Step 2: Compute

yn = JB1
rn [wn − ξnA∗(I − JB2

rn )Awn], (3.2)
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where ξn is chosen such that

ξn =


2‖(I−JB2

rn
)Awn‖2

‖A∗(I−JB2
rn )Awn‖2

, if JB2
rn Awn 6= Awn,

ξ, otherwise,
(3.3)

where ξ is any nonnegative value.
Step 3: Take ηn ∈ ∂λn

2 f(yn, yn) and define

τn =
βn
γn
, where γn = max{ρn, ‖ηn‖}.

Compute
zn = PC(yn − τnηn). (3.4)

Step 4: Let
xn+1 = anxn + (1− an)zn.

The following lemma can be obtained from Lemma 3.2 of [21].

Lemma 5. For every n ≥ 1, the following inequalities hold:

(i) τn‖ηn‖ ≤ βn, (ii) ‖zn − yn‖ ≤ βn.

Lemma 6. The choice of the step-size defined in (3.3) is well defined.

Proof. Take w ∈ SV IP (B1, B2), then JB1
r w = w and JB2

r Aw = Aw. Observe
that

‖(I − JB2
rn )Awn‖2 = 〈(I − JB2

rn )Awn, (I − JB2
rn )Awn〉

= 〈(I − JB2
rn )Awn, Awn −Aw + JB2

rn Aw − J
B2
rn Awn〉

= 〈(I − JB2
rn )Awn, Awn −Aw〉+ 〈(I − JB2

rn )Awn, J
B2
rn Aw − J

B2
rn Awn〉

= 〈A∗(I − JB2
rn )Awn, wn − w〉+ 〈(I − JB2

rn )Awn, J
B2
rn Aw − J

B2
rn Awn〉

≤ ‖A∗(I − JB2
rn )Awn‖ · ‖wn−w‖+ ‖(I−JB2

rn )Awn‖ · ‖JB2
rn Aw−J

B2
rn Awn‖.

Consequently, for n ∈ N, we get ‖A∗(I − JB2
rn )Awn‖ · ‖wn − w‖ ≥ 0 and

‖(I − JB2
rn )Awn‖ · ‖JB2

rn Aw − J
B2
rn Awn‖ ≥ 0. Since JB2

rn Awn 6= Awn, then we
obtain ‖A∗(I − JB2

rn )Awn‖ · ‖wn − w‖ > 0 and hence ‖A∗(I − JB2
rn )Awn‖ > 0.

This implies that ξn defined in (3.3) is well defined. ut

Lemma 7. Let x∗ ∈ Γ, then

‖yn − x∗‖2 ≤ ‖xn − x∗‖2 + αnc1‖xn − xn−1‖,

where c1 = ‖xn − x∗‖+ ‖xn−1 − x∗‖+ 2‖xn − xn−1‖.

Proof. Let x∗ ∈ Γ. Then

‖yn − x∗‖2 = ‖JB1
rn [wn − ξnA∗(I − JB2

rn )Awn]− JB1
rn x

∗‖2

Math. Model. Anal., 27(2):179–198, 2022.
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≤ ‖wn − x∗ − ξnA∗(I − JB2
rn )Awn‖2

= ‖wn − x∗‖2 − 2ξn〈A∗(I − JB2
rn )Awn, wn − x∗〉+ ξ2n‖A∗(I − JB2

rn )Awn‖2

= ‖wn−x∗‖2−2ξn〈(I − JB2
rn )Awn, Awn −Ax∗〉+ ξ2n‖A∗(I − JB2

rn )Awn‖2

≤ ‖wn − x∗‖2 − ξn[2‖(I − JB2
rn )Awn‖2 + ξn‖A∗(I − JB2

rn )Awn‖2]. (3.5)

By the choice of ξn, we have

‖yn − x∗‖2 ≤ ‖wn − x∗‖2. (3.6)

Also from (3.2), we have

‖wn − x∗‖2 = ‖xn + αn(xn − xn−1)− x∗‖2 = ‖xn − x∗‖2

+ 2αn〈xn − x∗, xn − xn−1〉+ α2
n‖xn − xn−1‖2 = ‖xn − x∗‖2

+ αn(−‖xn−1 − x∗‖2 + ‖xn − x∗‖2 + ‖xn − xn−1‖2) + α2
n‖xn − xn−1‖2

≤ ‖xn − x∗‖2 + αn(‖xn − x∗‖2 − ‖xn−1 − x∗‖2) + 2αn‖xn − xn−1‖2

= ‖xn−x∗‖2+αn(‖xn−x∗‖+‖xn−1−x∗‖)‖xn−xn−1‖+2αn‖xn−xn−1‖2

= ‖xn−x∗‖2+αn(‖xn−x∗‖+‖xn−1−x∗‖+ 2‖xn − xn−1‖)‖xn − xn−1‖
≤ ‖xn − x∗‖2 + αnc1‖xn − xn−1‖, (3.7)

where c1 = ‖xn− x∗‖+ ‖xn−1− x∗‖+ 2‖xn− xn−1‖. From (3.6) and (3.7), we
have

‖yn − x∗‖2 ≤ ‖xn − x∗‖2 + αnc1‖xn − xn−1‖.

ut

Lemma 8. Let x∗ ∈ Γ. Then for each n ≥ 1, we have

‖zn − x∗‖2 ≤ ‖wn − x∗‖2 + 2τnf(yn, x
∗) + 2τnλn + 2β2

n.

Proof. From (2.2), we get

‖zn − x∗‖2 = ‖zn − yn + yn − x∗‖2 ≤ ‖yn − x∗‖2 + 2〈yn − zn, x∗ − zn〉. (3.8)

From (2.1) and (3.4), we have

〈zn − yn + τnηn, x− zn〉 ≥ 0, ∀ x ∈ C.

Taking x = x∗, we have

〈zn − yn + τnηn, x
∗ − zn〉 ≥ 0⇔ 〈τnηn, x∗ − zn〉 ≥ 〈yn − zn, x∗ − zn〉.

Hence from (3.8), we have

‖zn − x∗‖2 ≤ ‖yn − x∗‖2 + 2〈τnηn, x∗ − zn〉
= ‖yn − x∗‖2 + 2〈τnηn, x∗ − yn〉+ 2〈τnηn, yn − zn〉. (3.9)
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Since ηn ∈ ∂λn
2 f(yn, yn), we have

f(yn, x
∗)−f(yn, yn) ≥ 〈ηn, x∗−yn〉−λn⇔f(yn, x

∗)+λn≥〈ηn, x∗−yn〉. (3.10)

On the other hand, from Lemma 5 it holds that

〈τnηn, yn − zn〉 ≤ τn‖ηn‖‖yn − zn‖ ≤ β2
n. (3.11)

Combining (3.9), (3.10) and (3.11), we get

‖zn − x∗‖2 ≤ ‖yn − x∗‖2 + 2τnf(yn, x
∗) + 2τnλn + 2β2

n,

which together with (3.6) yields

‖zn − x∗‖2 ≤ ‖wn − x∗‖2 + 2τnf(yn, x
∗) + 2τnλn + 2β2

n.

ut

We now give the convergence analysis of Algorithm 3 to solution of Prob-
lem (1.4).

Theorem 1. Suppose Assumption 1 holds and the sequence {xn} is generated
by Algorithm 3. Then, the sequence {xn} strongly converges to a solution of
Problem (1.4).

Proof. Claim 1: The sequence {‖xn − x∗‖2} is convergent for all x∗ ∈ Γ.
Since x∗ ∈ EP (f), and f is pseudomonotone on C with respect to every solution
of EP, we have f(yn, x

∗) ≤ 0. By the definition of xn+1, we have

‖xn+1 − x∗‖2 = ‖anxn + (1− an)zn − x∗‖2

≤ an‖xn − x∗‖2 + (1− an)‖zn − x∗‖2. (3.12)

From Lemma 8 and (3.7), we have

‖xn+1 − x∗‖2 ≤ an‖xn − x∗‖2 + (1− an)[‖wn − x∗‖2 + 2τnf(yn, x
∗)

+ 2τnλn + 2β2
n] ≤ ‖xn − x∗‖2 + (1− an)αnc1‖xn − xn−1‖+ Λn, (3.13)

where Λn = 2(1− an)(τnλn + β2
n).

Since τn = βn

γn
with γn = max{ρn, ‖ηn‖},

∞∑
n=1

τnλn =

∞∑
n=1

βn
γn
λn ≤

∞∑
n=1

βn
ρn
λn < +∞.

Note that
∑∞
n=1 β

2
n < +∞ and 0 < a < an < b < 1 and thus, we have

∞∑
n=1

Λn < 2(1− a)

∞∑
n=1

(τnλn + β2
n) < +∞.

Also, we have from (3.1) that

αn‖xn − xn−1‖2 ≤ ᾱn‖xn − xn−1‖2 ≤ εn,

Math. Model. Anal., 27(2):179–198, 2022.
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and therefore
∞∑
n=1

αn‖xn − xn−1‖2 <∞.

Now using Lemma 2 and (3.13), we see that {‖xn − x∗‖2} is convergent for
all x∗ ∈ Γ. Hence, the sequence {xn} is bounded. Consequently, the sequences
{wn}, {yn} and {zn} are bounded.

Claim 2: lim supn→∞ f(yn, x
∗) = 0 for all x∗ ∈ Γ.

From (3.13), we see that

−2(1− an)τnf(yn, x
∗) ≤‖xn − x∗‖2 − ‖xn+1 − x∗‖2

+ Λn + (1− an)αnc1‖xn − xn−1‖. (3.14)

Summing up (3.14), we get

∞∑
n=1

−2(1− an)τnf(yn, x
∗) < +∞.

On the other hand, using Assumption (A2) and the fact that {xn} is bounded,
we get that ‖ηn‖ is bounded. Thus, there is a constant L > δ such that
‖ηn‖ ≤ L for every n ≥ 1, and hence

γn
ρn

= max

{
1,
‖ηn‖
ρn

}
≤ L

ρ
.

Therefore

τn =
βn
γn
≥ ρ

L

βn
ρn
.

Since x∗ ∈ Γ, it follows from the pseudomonotonicity of f that −f(yn, x
∗) ≥ 0

which together with 0 < a < an < b < 1 implies

∞∑
n=1

(1− b)βn
ρn

[−f(yn, x
∗)] < +∞.

Since
∑∞
n=1

βn

ρn
=∞, it implies that lim supn→∞ f(yn, x

∗) = 0.

Claim 3: For any x∗ ∈ Γ, let {ynj
} be a subsequence of {yn} such that

lim sup
n→∞

f(yn, x
∗) = lim

j→∞
f(ynj , x

∗)

and y∗ be a weak cluster point of {ynj
}. Then y∗ belongs to EP (f).

Without loss of generality, we can assume that ynj
⇀ y∗ as j → ∞. Since

f(·, x∗) is upper semi-continuous and by Claim 2, we have

f(y∗, x∗) ≥ lim sup
j→∞

f(ynj , x
∗) = 0.

Since x∗ ∈ Γ and f is pseudomonotone, we have f(y∗, x∗) ≤ 0 and so f(y∗, x∗) =
0. Again, by the pseudomonotonicity of f , f(x∗, y∗) ≤ 0 and hence f(y∗, x∗) =
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f(x∗, y∗) = 0. Then, by the paramonotonicity (i.e., Assumption (A3)), we can
conclude that y∗ is also a solution of EP (f).
Claim 4: Every weak cluster point x̄ belongs to the solution set SV IP (B1, B2).
Let {xnj} be a subsequence of {xn} such that xnj ⇀ x̄. Observe that

∞∑
n=1

‖wn − xn‖ =

∞∑
n=1

αn‖xn − xn−1‖ <∞.

Hence
lim
n→∞

‖wn − xn‖ = 0. (3.15)

This implies that wnj
⇀ x̄, where {w

j
} is the subsequence of {wn}. From (3.5)

and (3.12), we have

‖xn+1 − x∗‖2 ≤ ‖xn − x∗‖2 − (1− an)ξn[2‖(I − JB2
rn )Awn‖2

+ ξn‖A∗(I − JB2
rn )Awn‖2] + (1− an)αnc1‖xn − xn−1‖+ Λn, (3.16)

where c1 and Λn are defined as in Lemma 7 and (3.13), respectively.
Put Θn = 2‖(I − JB2

rn )Awn‖2 + ξn‖A∗(I − JB2
rn )Awn‖2. It follows that

(1−an)ξnΘn ≤ ‖xn−x∗‖2−‖xn+1−x∗‖2 + (1− an)αnc1‖xn − xn−1‖+ Λn.

This implies that

(1−b)
∞∑
n=1

ξnΘn < ‖x0−x∗‖2+(1−a)c1

∞∑
n=1

αn‖xn − xn−1‖+

∞∑
n=1

Λn < +∞.

Hence
lim
n→∞

ξnΘn = 0.

Moreover, from the choice of ξn, for a small ε > 0, we have

ξn <
2‖(I − JB2

rn )Awn‖2

‖A∗(I − JB2
rn )Awn‖2

− ε.

This implies that

ξn‖A∗(I − JB2
rn )Awn‖2 < 2‖(I − JB2

rn )Awn‖2 − ε‖A∗(I − JB2
rn )Awn‖2

and thus

ε‖A∗(I − JB2
rn )Awn‖2 < 2‖(I − JB2

rn )Awn‖2 − ξn‖A∗(I − JB2
rn )Awn‖2.

Hence
ε‖A∗(I − JB2

rn )Awn‖2 < Θn → 0, as n→∞.
Therefore

lim
n→∞

‖A∗(I − JB2
rn )Awn‖2 = 0. (3.17)

Similarly from (3.16), we have

lim
n→∞

‖(I − JB2
rn )Awn‖2 = 0. (3.18)
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Furthermore from (3.2) and (3.5), we have

‖yn − x∗‖2 = ‖JB1
rn [wn − ξnA∗(I − JB2

rn )Awn]− JB1
rn x

∗‖2

≤ 〈yn − x∗, wn − ξnA∗(I − JB2
rn )Awn − x∗〉

=
1

2

{
‖yn − x∗‖2 + ‖wn − ξnA∗(I − JB2

rn )Awn − x∗‖2

− ‖(yn − x∗)− [wn − ξnA∗(I − JB2
rn )Awn − x∗]‖2

}
=

1

2

{
‖yn−x∗‖2+‖wn−x∗‖2−‖yn − wn + ξnA

∗(I − JB2
rn )Awn‖2

}
≤ 1

2

{
‖yn−x∗‖2+‖wn−x∗‖2 − [‖yn − wn‖2

+ ξ2n‖A∗(I−JB2
rn )Awn‖2−2ξn‖yn−wn‖ · ‖A∗(I−JB2

rn )Awn‖]
}
.

Hence

‖yn − x∗‖2 ≤‖wn − x∗‖2 − ‖yn − xn‖2

+ 2ξn‖yn − wn‖ · ‖A∗(I − JB2
rn )Awn‖. (3.19)

From (3.6), (3.15) and (3.19), we have

‖xn+1 − x∗‖2 ≤ an‖xn − x∗‖2 + (1− an)‖zn − x∗‖2

≤ an‖xn − x∗‖2 + (1− an)‖yn − x∗‖2 + Λn

≤ an‖xn − x∗‖2 + (1− an)[‖wn − x∗‖2 − ‖yn − wn‖2 + Λn

+ 2ξn‖yn − wn‖ · ‖A∗(I − JB2
rn )Awn‖] + Λn

≤ ‖xn − x∗‖2 − (1− an)‖yn − wn‖2 + (1− an)αnc1‖xn − xn−1‖
+ 2(1− an)ξn‖yn − wn‖ · ‖A∗(I − JB2

rn )Awn‖+ Λn.

This implies that

(1− an)‖yn−wn‖2≤‖xn−x∗‖2−‖xn+1−x∗‖2+(1− an)αnc1‖xn − xn−1‖
+ 2(1− an)ξn‖yn − wn‖ · ‖A∗(I − JB2

rn )Awn‖+ Λn. (3.20)

It follows from (3.20) that

(1− b)
∞∑
n=1

‖yn − wn‖2 < ‖x0 − x∗‖2 + (1− a)c1

∞∑
n=1

αn‖xn − xn−1‖2

+ 2(1− a)

∞∑
n=1

ξn‖yn − wn‖| · ‖A∗(I − JB2
rn )Awn‖+

∞∑
n=1

Λn <∞.

Hence
lim
n→∞

‖yn − wn‖ = 0. (3.21)

From (3.15) and (3.21), we have

lim
n→∞

‖yn − xn‖ ≤ lim
n→∞

[‖yn − wn‖+ ‖wn − xn‖] = 0.
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Let {ynj
} be a subsequence of {yn}, then ynj

⇀ x̄ as j → ∞. Since ynj
=

JB1
rnj

(wnj
− ξnj

A∗(I − JB2
rnj

)Awnj
), we can write

(wnj
− ynj

) +A∗(I − JB2
rnj

)Awnj

rnj

∈ B1(ynj
). (3.22)

By passing to limit j → ∞ in (3.22) and by taking into account (3.17) and
(3.21), and the fact that the graph of a maximal monotone operator is weakly-
strongly closed, we obtain 0 ∈ B1(x̄). Furthermore since ‖xnj

− wnj
‖ → 0 and

xnj
⇀ x̄ as j → ∞, then wnj

⇀ x̄. Moreover since A is a bounded operator,
then it is continuous and hence Awnj

⇀ Ax̄. Again by (3.18) and the fact
that the resolvent JB2

rn is nonexpansive and Lemma 4, we obtain Ax̄ ∈ B2(Ax̄).
Hence x̄ ∈ SV IP (B1, B2). This completes the proof of Claim 4.
Note that since ‖yn−xn‖ → 0, as n→∞, it follows from Claim 3 and Claim 4
that x̄ ∈ Γ.

Claim 5: Finally, we show that {xn} converges strongly to x̄ ∈ Γ.
By Claim 1, we can assume that

lim
n→∞

‖xn − x̄‖ = c < +∞.

From Lemma 5(ii) and (3.6), we have

‖zn − x̄‖ ≤ ‖yn − x̄‖+ ‖zn − yn‖ ≤ ‖wn − x̄‖+ βn

≤ ‖xn − x̄‖+ |αn‖|xn − xn−1‖+ βn.

This implies that

lim sup
n→∞

‖zn − x̄‖ ≤ lim sup
n→∞

(‖xn − x̄‖+ |αn‖|xn − xn−1‖+ βn) = c.

By applying Lemma 3, with vn = xn − x̄, un = zn − x̄, we obtain

lim
n→∞

‖zn − xn‖ = 0.

Following similar argument as in the proof of Theorem 1 in [28], we see that

lim
n→∞

xn = x̄.

Hence, the sequence {xn} converges strongly to x̄. This completes the proof.
ut

4 Applications and numerical examples

In this section, we give some applications of the main result in Section 3 to the
approximation of solutions of some certain nonlinear optimization problems in
real Hilbert spaces. Also, we carry out some numerical experiments to test the
accuracy and efficiency of our algorithm. All computational tests are carried
out using MATLAB 2019a on a 8 GB RAM personal computer.
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4.1 Split Minimization Problem:

Let H1 and H2 be real Hilbert spaces, A : H1 → H2 be a bounded linear
operator. Given some proper, lower semicontinuous and convex functions g1 :
H1 → R ∪ {+∞} and g2 : H2 → R ∪ {+∞}, the Split Minimization Problem
(SMP) is define as

Find x̄ ∈ H1 suh that x̄ ∈ argmin g1 and Ax̄ ∈ argmin g2. (4.1)

We denote the set of solution of the SMP (4.1) with ΩSMP . The SMP was first
introduced by Moudafi and Thakur [15] and has attracted lots of attention in
recent years, see for instance [1, 15] and reference therein.

Recall that the subdifferential of g1 : H1 → R ∪ {+∞} is defined by

∂g1(x) := {x̄ ∈ H1 : g1(x) + 〈y − x, x̄〉 ≤ g1(y) for each y ∈ H1}

for each x ∈ H1. The proximity operator with respect to g1 is defined by

proxλ,g1(x) := argminz∈H1

{
g1(z) +

1

2λ
‖x− z‖2

}
,

for all x ∈ H1 and λ > 0. It is well known that ∂g1 is maximal monotone and

0 ∈ ∂g1(x̄)⇔ x̄ = proxλg1(x̄).

By setting B1 = ∂g1 and B2 = ∂g2 in Algorithm 3, we obtain an algorithm for
solving the SMP.

4.2 Split Feasibility Problem:

Let C and Q be nonempty, closed and convex subsets of real Hilbert spaces H1

and H2 respectively, and let A : H1 → H2 be bounded linear operator. Recall
that the Split Feasibility Problem (SFP) is defined as

Find x∗ ∈ C such that Ax∗ ∈ Q. (4.2)

We denote the set of solution of the SFP (4.2) by ΩSFP . Several iterative
methods have been introduced for solving the SFP in Hilbert and Banach
spaces, see for instance [12,22,24,25,26].

It is well known that the indicator function of the convex subset C (i.e.,
iC(x) = x if x ∈ C and iC(x) = +∞, if x /∈ C,) is proper, convex and lower
semicontinuous and ∂iC is maximal monotone. Also, the resolvent operator
J∂iCλ = PC for all λ > 0, where PC is the metric projection onto C. Then
Algorithm 3 clearly reduces to the algorithm for solving the SFP (4.2).

4.3 Numerical examples

Example 1. Let H = Rm and C be a box defined by C = {x ∈ Rm : −1 ≤ xi ≤
1, i = 1, 2, . . . ,m}. Define the bifunction f on C × C by

f(x, y) = (Px+Qy + q)T (y − x) ∀ x, y ∈ C,
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where q ∈ Rm and P,Q are two matrices of order m such that Q is symmetric
positive semidefinite and Q−P is negative semidefinite. It is easy to check that
f satisfies conditions (B1)–(B4). Precisely, in our example, we work with the
Euclidean norm Rm (with m = 50, 200, 500 and 1000). The vector q is the zero
vector in Rm and the two matrices P,Q are generated randomly such that their
properties are satisfied using the ’gallery (’gcdmat’,m)’ function in MATLAB.
The entries of matrix A ∈ Rm × Rm are randomly generated in the interval
[0, 1], B1 : Rm → 2R

m

, B2 : Rm → 2R
m

are define by B1(x) = {2x} and
B2(x) = {−5x}. The sequences {βn}, {an}{ρn}, {rn}, {εn}, {λn} are chosen
such that

βn =
5

2n+ 1
, an =

n− 1

2n+ 5
, rn =

1

2
, εn =

1

(n+ 1)4
, λn = 0, ρn = 4,

τn = max{4, ‖ηn‖}

for each n ≥ 1. We compare the numerical results of Algorithm 3 and Algo-
rithm 3 with αn = 0 choosing m = 50, 200, 500 and 1000. In each case, the
initial vectors x0 and x1 are also generated using rand(m, 1) and the stopping

criteria used in each case is ‖xn+1−xn‖
max{1,‖xn‖} < 10−6.

The numerical computations for Example 1 are reported in Table 1, Figure 1
and Figure 2. The horizontal and vertical axes show iteration n, as well as
error(n) := ‖xn − xn+1‖, respectively. In particular, Figure 1 shows the case
where m = 50 and m = 200, while Figure 2 shows the case when m = 500 and
m = 1000.

Table 1 presents the CPU times in seconds and the number of iterations for
the four different cases of m.

Table 1. Computation results for Example 1.

Algorithm 3 Algorithm 3 with
αn = 0

m = 50 CPU time (sec) 1.1185 1.15799
No. of Iter. 22 32

m = 200 CPU time (sec) 1.7821 2.1582
No. of Iter. 23 33

m = 500 CPU time (sec) 3.4738 10.7083
No. of Iter. 24 35

m = 1000 CPU time (sec) 8.2317 12.5352
No. of Iter. 24 35

Next, we give an example in an infinite dimensional Hilbert space.

Example 2. Let H1 = H2 = L2([a, b]) with norm ‖x‖L2 =
(∫ a
b
|x(t)|dt

) 1
2 . De-

fine C ⊆ H1 and Q ⊆ H2 by C := {x ∈ L2([a, b]) : 〈u, x〉 ≤ z}, where
0 6= u ∈ L2([a, b]) and z ∈ R, Q = {y ∈ L2([a, b]) : ‖y − d‖L2

≤ r}, where
d ∈ L2([a, b]) and radius r > 0. The projection on C and Q are define by

PC(x) =

{
z−〈u,x〉
‖u‖2L2

u+ x, 〈u, x〉 > z,

x, 〈u, x〉 ≤ z,
PQ(y) =

{
d+ r y−d

‖y−d‖ , y /∈ Q,
y, y ∈ Q.
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Figure 1. Example 1. Left: m = 50; Right: m = 200.
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Figure 2. Example 1. Left: m = 500; Right: m = 1000.

In this example, we consider B1 ≡ ∂iC and B2 ≡ ∂iQ, where iC and iQ are
the indicator functions on the sets C and Q respectively. Then, the resolvent
operators with respect to B1 and B2 are the metric projections PC and PQ
respectively.

In particular, we choose

C = {x ∈ L2([0, 1]) : ‖x(t)‖L2
≤ 1},

Q = {x ∈ L2([0, 1]) :

∫ 1

0

|x(t)− cos(t)|2dt ≤ 25}.

Define an operator F : C → L2([0, 1]) by

F (x)(t) =

∫ 1

0

(x(t)−B(t, s)p(x(s)))ds+ q(t),

for all x ∈ C and t ∈ [0, 1], where

B(t, s) =
2tset+s

e
√
e2 − 1

, p(x) = cos(x), q(t) =
2tet

e
√
e2 − 1

.
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Table 2. Computation results for Example 2.

Algorithm 3 MKPA 2 DPA 1

Case I CPU time (sec) 1.3210 2.9709 6.1351
No. of Iter. 17 23 40

Case II CPU time (sec) 10. 4288 20.2761 34.9238
No. of Iter. 21 28 48

Case III CPU time (sec) 1.5861 2.9477 6.1550
No. of Iter. 22 30 48

Case IV CPU time (sec) 2.3602 9.7439 17.3865
No. of Iter. 19 26 45
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Figure 3. Example 2. Left: Case I; Right: Case II.
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Figure 4. Example 2. Left: Case III; Right: Case IV.

As shown in [23], F is monotone and L-Lipschitz continuous with L = 2.

Let f
(
x(t), y(t)

)
= 〈Fx(t), y(t) − x(t)〉, and Ax(t) = 3x(t). We consider the

problem

Find x∗ ∈ C such that f(x∗, y) ≥ 0 ∀ y ∈ C, and y∗=Ax∗ ∈ Q. (4.3)

Clearly, Problem (4.3) is a subclass of (1.4), hence, we can apply Algorithm 3
to solving Problem (4.3). We choose the sequences {an}, {εn}, {βn}, {λn}, {ρn}
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such that

an =
1

2
, λn = 0.5, βn =

2n

7n+ 3
, εn =

1

(n+ 1)2
, ρn = 3.

The numerical computations for Example 2 are reported in Table 2, Figure 3
and Figure 4.

Using ‖xn+1−xn‖
‖x2−x1‖ < 10−4 as stopping criterion with different choices of x0

and x1 given below, we compare the numerical results of Algorithm 3 with
MKPA (2) and DPA (1): (i) x1 = t2 − 2t + 1 and x0 = 3 sin(2t); (ii) x1 =
2 − exp(−2t) and x0 = 2t2 − 3t; (iii) x1 = 3t

4 + 5t
2 + 1 and x0 = cos(5t); (iv)

x1 = 12t2

5 − 2 and x0 = exp(−2t)/7.
Table 2 presents the CPU times in seconds and the number of iterations for

the four different cases.
Figure 3 reports Cases I and II, while Figure 4 reports Cases III and IV.

Remark 1. In conclusion, Example 1 shows that Algorithm 3 converges faster
than its non-inertial type algorithm (that is, with αn = 0). Also from Exam-
ple 2, we see that Algorithm 3 performs better than Algorithm 1 and Algo-
rithm 2 in terms of number of iteration and cpu-time taken.

5 Conclusions

In this paper, we introduce an inertial Mann-Krasnoselskij algorithm for ap-
proximating a common solution of split variational inclusion and equilibrium
problem with paramonotone bifunction. We proved a strong convergence theo-
rem without using prior information of the norm of the bounded linear operator.
More so, we provide some applications and numerical examples to illustrate the
performance and applicability of the proposed method.
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