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Abstract. In this paper, we introduce two new inertial extragradient algorithms
with non-monotonic stepsizes for solving monotone and Lipschitz continuous varia-
tional inequality problems in real Hilbert spaces. Strong convergence theorems of
the suggested iterative schemes are established without the prior knowledge of the
Lipschitz constant of the mapping. Finally, some numerical examples are provided
to illustrate the efficiency and advantages of the proposed algorithms and compare
them with some related ones.
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1 Introduction

Our interest in this paper is to investigate self-adaptive fast iterative algorithms
for solving variational inequality problems in real Hilbert spaces. Recall that
the variational inequality problem (in short, VIP) is expressed as follows:

find x∗ ∈ C, such that 〈Ax∗, x− x∗〉 ≥ 0, ∀x ∈ C, (VIP)
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where A : H → H is a nonlinear mapping, C is a nonempty convex closed set
in a real Hilbert space H embed with the inner product 〈·, ·〉 and the induced
norm ‖ · ‖. We denote the set of all such x∗ by VI(C, A) in this paper. Let
us recall some nonlinear mappings in functional analysis. For all x, y ∈ H, a
mapping A : H → H is said to be (i) L-Lipschitz continuous with L > 0 iff
‖Ax−Ay‖ ≤ L‖x−y‖; (ii) η-strongly monotone if there exists η > 0 such that
〈Ax−Ay, x− y〉 ≥ η‖x− y‖; (iii) monotone if 〈Ax−Ay, x− y〉 ≥ 0.

The theory of variational inequalities has become a suitable model to deal
with many practical problems in various areas, such as medical imaging, ma-
chine learning, economics, and optimal control; see, e.g., [4, 6, 13]. Recently,
many work of literature on iterative methods for solving variational inequal-
ity problems have been proposed and studied, see, e.g., [3, 9, 12, 17, 24, 27, 29]
and the references therein. Among these methods for solving variational in-
equalities, the projection-based methods and their variant forms play an im-
portant role. The simplest and oldest projection-type algorithm is the classical
projected-gradient method, which performs only one projection on the feasi-
ble set. However, the convergence of the method requires a strong hypothesis:
strong monotonicity or inverse strong monotonicity on mapping A. To avoid
this strong assumption, Korpelevich [14] proposed the following extragradient
method (EGM): {

yn = PC (xn − ϑAxn) ,

xn+1 = PC (xn − ϑAyn) , ∀n ≥ 1,
(EGM)

where ϑ ∈ (0, 1/L), the mapping A is monotone and L-Lipschitz continuous and
PC is the metric projection onto C. It is known that the sequence generated by
(EGM) converges weakly to a solution of (VIP) provided that VI(C, A) 6= ∅. It
is worth noting that the extragradient method needs to calculate two orthogonal
projections on the feasible set in each iteration. This method is particularly
useful if the feasible set is very simple so that projection can be performed easily.
However, if the feasible set is a general closed and convex set, then the minimum
distance problem must be solved twice to obtain the next iteration. This might
increase the computational burden of the computer and further seriously affect
the efficiency of the extragradient method. Next, we introduce two notable
methods to overcome this difficulty. The first is the Tseng’s extragradient
method proposed by Tseng [31]:{

yn = PC (xn − ϑAxn) ,

xn+1 = yn − ϑ (Ayn −Axn) , ∀n ≥ 1,
(TEGM)

where ϑ ∈ (0, 1/L) and the mapping A is monotone and L-Lipschitz contin-
uous. Another well-known method is the subgradient extragradient method
(SEGM) proposed by Censor, Gibali and Reich [5], which can be regarded as
an improvement of the EGM. Their method is of the form:

yn = PC (xn − ϑAxn) ,

Tn = {x ∈ H | 〈xn − ϑAxn − yn, x− yn〉 ≤ 0} ,
xn+1 = PTn

(xn − ϑAyn) , ∀n ≥ 1,

(SEGM)
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where ϑ ∈ (0, 1/L) and the mapping A is monotone and L-Lipschitz continuous.
They replaced the second projection onto the feasible set of EGM by a projec-
tion onto a specific constructible half-space. Note that both methods (TEGM)
and (SEGM) have proven to obtain weak convergence in real Hilbert spaces.
We know that strong convergence is preferable to weak convergence in infinite-
dimensional spaces. Recently, Kraikaew and Saejung [15] proposed a Halpern
subgradient extragraduent method (HSEGM) to solve (VIP) in real Hilbert
spaces. The method is inspired by the Halpern method and the (SEGM).
Indeed, their method is of the form:

yn = PC (xn − ϑAxn) ,

Tn = {x ∈ H | 〈xn − ϑAxn − yn, x− yn〉 ≤ 0} ,
xn+1 = ϕnx1 + (1− ϕn)PTn (xn − ϑAyn) , ∀n ≥ 1,

(1.1)

where ϑ ∈ (0, 1/L), ϕn ⊂ (0, 1), limn→∞ ϕn = 0,
∑∞
n=1 ϕn = +∞ and the map-

ping A is monotone and L-Lipschitz continuous. They proved that the iterative
sequence {xn} defined by (1.1) converges to the unique solution of (VIP) in
norm. Note that all the above methods require to know the Lipschitz constant
of the mapping A. In 2017, Shehu and Iyiola [23] proposed a modification of
SEGM with adoption of Armijo-like step size rule for solving (VIP), that is,

yn = PC (xn − ϑnAxn) ,

Tn = {x ∈ H | 〈xn − ϑnAxn − yn, x− yn〉 ≤ 0} ,
zn = PTn

(xn − ϑnAyn) ,

xn+1 = ϕnf (xn) + (1− ϕn) zn, ∀n ≥ 1,

(1.2)

where the mapping A is monotone and L-Lipschitz continuous, the mapping
f : H → H is k-contraction, ϕn ⊂ (0, 1), limn→∞ ϕn = 0,

∑∞
n=1 ϕn = +∞,

ϑn = ρln and ln is the smallest nonnegative inter such that ϑn ‖Axn −Ayn‖ ≤
µ ‖xn − yn‖, ρ ∈ (0, 1) and µ ∈ (0, 1). Inspired by the work of [23], Thong
and Hieu in their work [30] introduced a modification of Tseng’s extragradient
method, that is, 

yn = PC (xn − ϑnxn) ,

zn = yn − ϑn (Ayn −Axn) ,

xn+1 = ϕnf (xn) + (1− ϕn) zn, ∀n ≥ 1,

(1.3)

where the mapping A is monotone and L-Lipschitz continuous, the mapping
f : H → H is k-contraction, ϕn ⊂ (0, 1), limn→∞ ϕn = 0,

∑∞
n=1 ϕn = +∞,

ϑn is chosen to be the largest ϑ ∈
{
γ, γl, γl2, . . .

}
satisfying ϑ ‖Axn −Ayn‖ ≤

µ ‖xn − yn‖, γ > 0, l ∈ (0, 1) and µ ∈ (0, 1). Both methods (1.2) and (1.3) can
work without the prior knowledge of the Lipschitz constant of the mapping, but
the Armijo-like step size may involve additional computation of the mapping
A. Recently, Yang et al. [33, 34] introduced two self-adaptive extragradient
algorithms for solving variational inequalities. The algorithms are inspired
by the subgradient extragradient method, the Tseng’s extragradient method,
the viscosity method and the new simple step size methods. Indeed, their
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algorithms generate two sequences {xn} by the following iterative schemes:
yn = PC (xn − ϑnAxn) ,

Tn = {x ∈ H | 〈xn − ϑnAxn − yn, x− yn〉 ≤ 0} ,
zn = PTn

(xn − ϑnAyn) ,

xn+1 = ϕnx1 + (1− ϕn) zn, ∀n ≥ 1,

(1.4)

where {ϑn} is updated by the following:

ϑn+1 =

 min

{
µ(‖xn−yn‖2+‖zn−yn‖2)

2〈Axn−Ayn,zn−yn〉 , ϑn

}
, if 〈Axn −Ayn, zn − yn〉 > 0,

ϑn, otherwise,

and 
yn = PC (xn − ϑnAxn) ,

zn = yn − ϑn (Ayn −Axn) ,

xn+1 = ϕnf (xn) + (1− ϕn) zn, ∀n ≥ 1,

(1.5)

where {ϑn} is updated by the following:

ϑn+1 =

{
min

{
µ‖xn−yn‖
‖Axn−Ayn‖ , ϑn

}
, if Axn −Ayn 6= 0,

ϑn, otherwise.

In Algorithms (1.4) and (1.5), the mapping A is L-Lipschitz continuous and
monotone, the mapping f : H → H is k-contraction, ϕn ⊂ (0, 1), limn→∞ ϕn =
0,
∑∞
n=1 ϕn = +∞, ϑ1 ∈ (0, 1) and µ ∈ (0, 1). It should be noted that

Algorithms (1.2)–(1.5) have established strong convergence theorems in real
Hilbert spaces. Moreover, the stepsizes used in Algorithms (1.4) and (1.5) are
non-increasing, which may affect the execution efficiency of such algorithms.

On the other hand, in recent years, there has been tremendous interest in
developing fast iterative algorithms. Many authors have used inertial tech-
nology to build a large number of iterative algorithms that can improve the
convergence speed; see, e.g., [2, 7, 10, 11, 21, 22, 25] and the references therein.
One of the common features of these algorithms is that the next iteration de-
pends on the combination of the previous two iterations. Note that this minor
change greatly improves the performance of the algorithms.

Motivated and inspired by the above work, in this paper, we present two
inertial extragradient algorithms with non-monotonic stepsizes for solving the
monotone variational inequality problem in real Hilbert spaces. Our algorithms
do not require the prior knowledge of the Lipschitz constant of the mapping.
Strong convergence theorems of our algorithms are established under some
suitable conditions. Finally, we provide some numerical experiments to support
the theoretical results. The two algorithms obtained in this paper improve and
extend some related results in this field [15,23,30,33,34].

The structure of the paper is as follows. In Section 2, we present some pre-
liminaries that will be needed in the sequel. In Section 3, we propose two algo-
rithms and analyze their convergence. In Section 4, some numerical examples
are provided to illustrate the numerical behavior of the proposed algorithms.
Finally, we conclude this paper with a brief summary in Section 5, the last
section.
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2 Preliminaries

Let C be a nonempty closed and convex subset of a real Hilbert space H. The
weak convergence and strong convergence of {xn}∞n=1 to x are represented by
xn ⇀ x and xn → x, respectively. For each x, y ∈ H and δ ∈ R, we have the
following facts:

1. ‖x+ y‖2 = ‖x‖2 + 2〈x, y〉+ ‖y‖2;

2. ‖x+ y‖2 ≤ ‖x‖2 + 2〈y, x+ y〉;

3. ‖δx+ (1− δ)y‖2 = δ‖x‖2 + (1− δ)‖y‖2 − δ(1− δ)‖x− y‖2.

For every point x ∈ H, there exists a unique nearest point in C, denoted
by PC(x) such that PC(x) := argmin{‖x − y‖, y ∈ C}. PC is called the metric
projection of H onto C. It is known that PC has the following basic properties:

• 〈x− PC(x), y − PC(x)〉 ≤ 0, ∀y ∈ C;

• ‖PC(x)− PC(y)‖2 ≤ 〈PC(x)− PC(y), x− y〉 , ∀y ∈ H.

We state the following well-known lemmas which will be used in the sequel.

Lemma 1. ( [26]) Let C be a nonempty, convex and closed subset of a real
Hilbert space H and A : C → H be a continuous and monotone mapping.
Then, x∗ is a solution of VI(C, A) if and only if 〈Ax, x− x∗〉 ≥ 0, ∀x ∈ C.

Lemma 2. ( [15]) Let A : H → H be a monotone and L-Lipschitz continuous
mapping on C. Let S = PC(I − µA), where µ > 0. If {xn} is a sequence in H
satisfying xn ⇀ q and xn − Sxn → 0, then q ∈ VI(C, A) = Fix(S).

Lemma 3. ( [20]) Let {an} be a sequence of nonnegative real numbers, {τn}
be a sequence of real numbers in (0, 1) with

∑∞
n=1 τn = ∞, and {bn} be a

sequence of real numbers. Assume that an+1 ≤ bnτn + (1− τn) an, ∀n ≥ 1. If
lim supk→∞ bnk

≤ 0 for every subsequence {ank
} of {an} satisfying lim infk→∞

(ank+1 − ank
) ≥ 0, then limn→∞ an = 0.

3 Main results

In this section, we propose two new inertial algorithms for monotone variational
inequalities, which are based on the subgradient extragradient method, the
Tseng’s extragradient method and the viscosity method. First, we assume that
our algorithms satisfy the following conditions.

(C1) The feasible set C is a nonempty, closed and convex subset of H.

(C2) The solution set of the (VIP) is nonempty, that is VI(C, A) 6= ∅.

(C3) The mapping A : H → H is monotone and L-Lipschitz continuous on H.

(C4) The mapping f : H → H is k-contraction with constant k ∈ [0, 1).

(C5) Let {εn} be a positive sequence such that limn→∞
εn
ϕn

= 0, where sequence

{ϕn} ⊂ (0, 1) satisfies limn→∞ ϕn = 0 and
∑∞
n=1 ϕn =∞.

Math. Model. Anal., 27(1):41–58, 2022.
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3.1 The self adaptive viscosity-type inertial subgradient extragra-
dient algorithm

Now, we introduce a self adaptive viscosity-type inertial subgradient extragra-
dient algorithm to solve (VIP). The Algorithm 3.1 is described as follows.

Algorithm 3.1. Viscosity-type inertial subgradient extragradient algorithm
Initialization: Set % > 0, ϑ1 > 0, µ ∈ (0, 1). Choose a nonnegative real
sequence {ξn} such that

∑∞
n=1 ξn < +∞. Let x0, x1 ∈ H be arbitrarily.

Iterative Steps: Calculate xn+1 as follows:

un = xn + %n (xn − xn−1) ,

yn = PC (un − ϑnAun) ,

Tn = {z ∈ H : 〈un − ϑnAun − yn, z − yn〉 ≤ 0} ,
zn = PTn

(un − ϑnAyn) ,

xn+1 = ϕnf (xn) + (1− ϕn) zn, ∀n ≥ 1,

where {%n} and {ϑn} are updated by (3.1) and (3.2), respectively.

%n =

 min

{
εn

‖xn − xn−1‖
, %

}
, if xn 6= xn−1;

%, otherwise.
(3.1)

ϑn+1 =

 min

{
µ ‖un − yn‖
‖Aun −Ayn‖

, ϑn + ξn

}
, if Aun −Ayn 6= 0;

ϑn + ξn, otherwise.
(3.2)

Remark 1. It follows from (3.1) that

lim
n→∞

%n
ϕn
‖xn − xn−1‖ = 0 .

Indeed, we have %n ‖xn−xn−1‖≤εn for all n, which together with limn→∞
εn
ϕn

=
0 implies that

lim
n→∞

%n
ϕn
‖xn − xn−1‖ ≤ lim

n→∞

εn
ϕn

= 0 .

The following lemmas are quite helpful to analyze the convergence of the algo-
rithm.

Lemma 4. Suppose that Assumptions (C1)–(C3) hold. The sequence {ϑn}
generated by (3.2) is well defined and limn→∞ ϑn = ϑ and
ϑ ∈

[
min

{
µ
L , ϑ1

}
, ϑ1 +Ξ

]
, where Ξ =

∑∞
n=1 ξn.

Proof. Since mapping M is L-Lipschitz continuous, one has,

µ ‖un − yn‖
‖Aun −Ayn‖

≥ µ ‖un − yn‖
L ‖un − yn‖

=
µ

L
, if Aun 6= Ayn .

Thus, ϑn ≥ min
{
µ
L , ϑ1

}
. It follows from the definition of ϑn+1 that ϑn+1 ≤

ϑ1 +Ξ. Consequently, the sequence {ϑn} defined in (3.2) is bounded
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and ϑn ∈
[
min

{
µ
L , ϑ1

}
, ϑ1 +Ξ

]
. For simplicity, we define (ϑn+1 − ϑn)

+
=

max {0, ϑn+1 − ϑn} and (ϑn+1 − ϑn)
−

= max {0,− (ϑn+1 − ϑn)}. By the defi-
nition of {ϑn}, one obtains

∑∞
n=1 (ϑn+1 − ϑn)

+ ≤
∑∞
n=1 ξn < +∞, which im-

plies that the series
∑∞
n=1 (ϑn+1 − ϑn)

+
is convergent. Next we show the con-

vergence of the series
∑∞
n=1 (ϑn+1−ϑn)

−
. Suppose that

∑∞
n=1 (ϑn+1−ϑn)

−
=

+∞. Note that ϑn+1 − ϑn = (ϑn+1 − ϑn)
+ − (ϑn+1 − ϑn)

−
. Therefore,

ϑk+1 − ϑ1 =

k∑
n=1

(ϑn+1 − ϑn) =

k∑
n=1

(ϑn+1 − ϑn)
+ −

k∑
n=1

(ϑn+1 − ϑn)
−
.

Taking k → +∞ in the above equation, we get limk→+∞ ϑk → −∞. That is a
contradiction. Hence, we obtain limn→∞ ϑn = ϑ, ϑ ∈

[
min

{
µ
L , ϑ1

}
, ϑ1 +Ξ

]
.

ut

Remark 2. The idea of the step size ϑn defined in (3.2) is derived from [16]. It
is worth noting that the step size ϑn generated in Algorithm 3.1 is allowed to
increase when the iteration increases. Therefore, the use of this type of step
size reduces the dependence on the initial step size ϑ1. On the other hand,
because of

∑∞
n=1 ξn < +∞, which implies that limn→∞ ξn = 0. Consequently,

the step size ϑn may not increase when n is large enough. If ξn = 0, then the
step size ϑn in Algorithm 3.1 is similar to the approaches in [1, 2, 33].

The following Lemma 5 plays an important role in the convergence analysis
of the Algorithm 3.1 and it can be easily obtained by using the same statement
as Lemma 3.2 in [28].

Lemma 5. ( [28]) Assume that Conditions (C1)–(C3) hold. Let {zn} be a
sequence generated by Algorithm 3.1. Then

‖zn − p‖2 ≤ ‖un − p‖2 −
(

1− µ ϑn
ϑn+1

)
(‖yn − un‖2 + ‖zn − yn‖2)

for all p ∈ VI(C, A).

Theorem 1. Assume that Conditions (C1)–(C5) hold. Then the sequence
{xn} created by Algorithm 3.1 converges to an element p ∈ VI(C, A) in norm,
where p = PVI(C,A)(f(p)).

Proof. According to Lemma 4, it follows that

lim
n→∞

(
1− µϑn/ϑn+1

)
= 1− µ > 0.

Hence, there exists n0 ∈ N, such that

1− µϑn/ϑn+1 > 0, ∀n ≥ n0 . (3.3)

Combining Lemma 5 and (3.3), we obtain

‖zn − p‖ ≤ ‖un − p‖ , ∀n ≥ n0 . (3.4)

Math. Model. Anal., 27(1):41–58, 2022.
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Claim 1. The sequence {xn} is bounded. Indeed, from the definition of un,
we have

‖un − p‖ ≤ ‖xn − p‖+ ϕn(%n/ϕn) ‖xn − xn−1‖ . (3.5)

By Remark 1, we have %n
ϕn
‖xn − xn−1‖ → 0 as n → ∞. Thus, there exists a

constant M1 > 0 such that

%n
ϕn
‖xn − xn−1‖ ≤M1, ∀n ≥ 1 . (3.6)

From (3.4), (3.5) and (3.6), we find that

‖zn − p‖ ≤ ‖un − p‖ ≤ ‖xn − p‖+ ϕnM1, ∀n ≥ n0 . (3.7)

Using the definition of xn+1 and (3.7), we get

‖xn+1 − p‖ = ‖ϕn (f (xn)− p) + (1− ϕn) (zn − p)‖
≤ ϕn ‖f (xn)− f(p)‖+ ϕn‖f(p)− p‖+ (1− ϕn) ‖zn − p‖
≤ ϕnκ ‖xn − p‖+ ϕn‖f(p)− p‖+ (1− ϕn) ‖zn − p‖

≤ (1− (1− κ)ϕn) ‖xn − p‖+ (1− κ)ϕn
M1 + ‖f(p)− p‖

1− κ

≤ max
{
‖xn − p‖ ,

M1 + ‖f(p)− p‖
1− κ

}
≤ · · · ≤ max

{
‖xn0

− p‖ , M1 + ‖f(p)− p‖
1− κ

}
.

This implies that {xn} is bounded. So {un}, {zn} and {f (xn)} are also
bounded.
Claim 2.

(1− ϕn)
[(

1− µ ϑn
ϑn+1

)
‖yn − un‖2 +

(
1− µ ϑn

ϑn+1

)
‖zn − yn‖2

]
≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + ϕnM4

for some M4 > 0. Indeed, in view of (3.7), one sees that

‖un − p‖2 ≤ (‖xn − p‖+ ϕnM1)
2

= ‖xn − p‖2 + ϕn
(
2M1 ‖xn − p‖+ ϕnM

2
1

)
≤ ‖xn − p‖2 + ϕnM2

(3.8)

for some M2 > 0. Combining Lemma 5 and (3.8), we obtain

‖xn+1 − p‖2 ≤ ϕn ‖f (xn)− p‖2 + (1− ϕn) ‖zn − p‖2

≤ ϕn (‖f (xn)− f(p)‖+ ‖f(p)− p‖)2 + (1− ϕn) ‖zn − p‖2

≤ ϕn (‖xn − p‖+ ‖f(p)− p‖)2 + (1− ϕn) ‖zn − p‖2

= ϕn ‖xn − p‖2 + (1− ϕn) ‖zn − p‖2

+ ϕn
(
2 ‖xn − p‖ · ‖f(p)− p‖+ ‖f(p)− p‖2

)
≤ ϕn ‖xn − p‖2 + (1− ϕn) ‖zn − p‖2 + ϕnM3

≤ ‖xn − p‖2 − (1− ϕn)
[(

1− µϑn/ϑn+1

)
‖yn − un‖2

+
(
1− µϑn/ϑn+1

)
‖zn − yn‖2

]
+ ϕnM4 ,
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where M4 := M2 + M3. We can get the desired result through a simple con-
version.
Claim 3.

‖xn+1−p‖2 ≤ (1−(1−κ)ϕn) ‖xn − p‖2+(1−κ)ϕn ·
[ 3M

1− κ
· %n
ϕn
‖xn−xn−1‖

+
2

1− κ
〈f(p)− p, xn+1 − p〉

]
, ∀n ≥ n0

for some M > 0. Indeed, we have

‖un − p‖2 = ‖xn + %n (xn − xn−1)− p‖2

≤ ‖xn − p‖2 + 2%n‖xn − p‖‖xn − xn−1‖+ %2n‖xn − xn−1‖2

≤ ‖xn − p‖2 + 3M%n‖xn − xn−1‖ ,
(3.9)

where M := supn∈N{‖xn − p‖, %‖xn − xn−1‖} > 0. Using (3.4) and (3.9), we
obtain

‖xn+1 − p‖2 = ‖ϕn (f (xn)− f(p)) + (1− ϕn) (zn − p) + ϕn(f(p)− p)‖2

≤ ‖ϕn (f (xn)− f(p)) + (1− ϕn) (zn − p)‖2 + 2ϕn 〈f(p)− p, xn+1 − p〉

≤ ϕn ‖f (xn)− f(p)‖2 + (1− ϕn) ‖zn − p‖2 + 2ϕn 〈f(p)− p, xn+1 − p〉

≤ ϕnκ ‖xn − p‖2 + (1− ϕn) ‖un − p‖2 + 2ϕn 〈f(p)− p, xn+1 − p〉

≤ (1− (1− κ)ϕn) ‖xn − p‖2 + (1− κ)ϕn ·
[ 3M

1− κ
· %n
ϕn
‖xn − xn−1‖

+
2

1− κ
〈f(p)− p, xn+1 − p〉

]
, ∀n ≥ n0 .

Claim 4. {‖xn − p‖2} converges to zero. Indeed, from Lemma 3 and Re-
mark 1, it suffices to show that lim supk→∞〈f(p)− p, xnk+1 − p〉 ≤ 0 for every
subsequence {‖xnk

− p‖} of {‖xn − p‖} satisfying

lim inf
k→∞

(‖xnk+1 − p‖ − ‖xnk
− p‖) ≥ 0 .

For this purpose, we assume that {‖xnk
− p‖} is a subsequence of {‖xn − p‖}

such that lim infk→∞ (‖xnk+1 − p‖ − ‖xnk
− p‖) ≥ 0. Then

lim inf
k→∞

(
‖xnk+1 − p‖2 − ‖xnk

− p‖2
)

= lim inf
k→∞

[(‖xnk+1 − p‖ − ‖xnk
− p‖) (‖xnk+1 − p‖+ ‖xnk

− p‖)] ≥ 0 .

It follows from Claim 2 and Condition (C5) that

lim sup
k→∞

{
(1− ϕnk

)
[(

1− µ ϑnk

ϑnk+1

)
‖ynk

− unk
‖2 +

(
1− µ ϑnk

ϑnk+1

)
× ‖znk

− ynk
‖2
]}
≤ lim sup

k→∞

[
‖xnk

− p‖2 − ‖xnk+1 − p‖2 + ϕnk
M4

]
≤ lim sup

k→∞

[
‖xnk

− p‖2 − ‖xnk+1 − p‖2
]

+ lim sup
k→∞

ϕnk
M4

= − lim inf
k→∞

[
‖xnk+1 − p‖2 − ‖xnk

− p‖2
]
≤ 0 ,
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which implies that

lim
k→∞

‖ynk
− unk

‖ = 0 and lim
k→∞

‖znk
− ynk

‖ = 0 .

Therefore, we obtain

lim
k→∞

‖znk
− unk

‖ ≤ lim
k→∞

‖znk
− ynk

‖+ lim
k→∞

‖ynk
− unk

‖ = 0 . (3.10)

Moreover, using Remark 1 and Condition (C5), we have

‖xnk
− unk

‖ = %nk
‖xnk

− xnk−1‖ = ϕnk
· %nk

ϕnk

‖xnk
− xnk−1‖ → 0 ,

‖xnk+1 − znk
‖ = ϕnk

‖znk
− f (xnk

) ‖ → 0 .

Thus, we conclude that

‖xnk+1 − xnk
‖ ≤ ‖xnk+1 − znk

‖+ ‖znk
− unk

‖+ ‖unk
− xnk

‖ → 0 . (3.11)

Since the sequence {xnk
} is bounded, there exists a subsequence {xnkj

} of

{xnk
} such that xnkj

⇀ z. Furthermore,

lim sup
k→∞

〈f(p)− p, xnk
− p〉 = lim

j→∞
〈f(p)−p, xnkj

−p〉 = 〈f(p)−p, z−p〉 . (3.12)

We get unk
⇀ z since ‖xnk

− unk
‖ → 0. This together with limk→∞ ‖unk

−
ynk
‖ = 0 and Lemma 2, yields z ∈ VI(C, A). From the definition of p and (3.12),

one sees that

lim sup
k→∞

〈f(p)− p, xnk
− p〉 = 〈f(p)− p, z − p〉 ≤ 0 . (3.13)

Combining (3.11) and (3.13), we can show that

lim sup
k→∞

〈f(p)− p, xnk+1 − p〉 ≤ lim sup
k→∞

〈f(p)− p, xnk
− p〉 ≤ 0 . (3.14)

Thus, from Remark 1, (3.14), Claim 3 and Lemma 3, we conclude that xn → p
as n→∞. That is the desired result. ut

3.2 The self adaptive viscosity-type inertial Tseng extragradient
algorithm

In this subsection, we introduce a self adaptive viscosity-type inertial Tseng
extragradient algorithm for solving (VIP). The Algorithm 3.2 is stated as
follows.

Algorithm 3.2. Viscosity-type inertial Tseng extragradient algorithm
Initialization: Set % > 0, ϑ1 > 0, µ ∈ (0, 1). Choose a nonnegative real
sequence {ξn} such that

∑∞
n=1 ξn < +∞. Let x0, x1 ∈ H be arbitrarily.

Iterative Steps: Calculate xn+1 as follows:
un = xn + %n (xn − xn−1) ,

yn = PC (un − ϑnAun) ,

zn = yn − ϑn (Ayn −Aun) ,

xn+1 = ϕnf (xn) + (1− ϕn) zn, ∀n ≥ 1,

where {%n} and {ϑn} are updated by (3.1) and (3.2), respectively.
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The following Lemma 6 can be easily obtained by using the same statement
as Lemma 3.3 in [28].

Lemma 6. ( [28]) Assume that Conditions (C1)–(C3) hold. Let {zn} be a
sequence generated by Algorithm 3.2. Then

‖zn − p‖2 ≤ ‖un − p‖2 −
(

1− µ2ϑ2n/ϑ
2
n+1

)
‖un − yn‖2 , ∀p ∈ VI(C, A) ,

‖zn − yn‖ ≤ µ
ϑn
ϑn+1

‖un − yn‖ .

Theorem 2. Assume that Conditions (C1)–(C5) hold. Then the sequence
{xn} formed by Algorithm 3.2 converges to an element p ∈ VI(C, A) in norm,
where p = PVI(C,A)(f(p)).

Proof. Since limn→∞
(
1−µ2ϑ2n/ϑ

2
n+1

)
= 1−µ2 > 0, there exists n0 ∈ N such

that
1− µ2ϑ2n/ϑ

2
n+1 > 0, ∀n ≥ n0 . (3.15)

Combining Lemma 6 and (3.15), we get

‖zn − p‖ ≤ ‖un − p‖ , ∀n ≥ n0 .

Claim 1. The sequence {xn} is bounded. Using the same arguments with
the Claim 1 in the Theorem 1, we get that the sequence {xn} is bounded.
Consequently, the sequences {un}, {zn} and {f(xn)} are also bounded.
Claim 2.

(1−ϕn)
(
1−µ2ϑ2n/ϑ

2
n+1

)
‖yn − un‖2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + ϕnM4 .

Indeed, from Lemma 6 and (3.8), we can immediately get

‖xn+1 − p‖2 ≤ ϕn ‖xn − p‖2 + (1− ϕn) ‖zn − p‖2 + ϕnM3

≤ ‖xn − p‖2 − (1− ϕn)
(
1− µ2ϑ2n/ϑ

2
n+1

)
‖yn − un‖2 + ϕnM4 ,

where M4 := M2 +M3, both M2 and M3 are defined in Claim 2 of Theorem 1.
Claim 3.

‖xn+1−p‖2 ≤ (1−(1−κ)ϕn) ‖xn−p‖2+(1−κ)ϕn

[ 3M

1− κ
%n
ϕn
‖xn−xn−1‖

+
2

1− κ
〈f(p)− p, xn+1 − p〉

]
, ∀n ≥ n0 .

The desired result can be obtained by using the same arguments as in Claim 3
of Theorem 1.
Claim 4. The sequence {‖xn − p‖2} converges to zero. According to Claim 4
in Theorem 1, we suppose that {‖xnk

− p‖} is a subsequence of {‖xn − p‖}
satisfying lim infk→∞ (‖xnk+1 − p‖ − ‖xnk

− p‖) ≥ 0. From Claim 2 and Con-
dition (C5), one obtains

lim sup
k→∞

(1− ϕnk
)
(

1− µ2 ϑ2nk

ϑ2nk+1

)
‖unk

− ynk
‖2 ≤ 0 .
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By (3.15), it follows that limk→∞ ‖ynk
−unk

‖ = 0. According to Lemma 6, one
has limk→∞ ‖ynk

− znk
‖ = 0. Using the same facts as (3.10)–(3.13), we obtain

lim sup
k→∞

〈f(p)− p, xnk+1 − p〉 ≤ 0 . (3.16)

Therefore, using Claim 3, Condition (C5), (3.16) and Lemma 3, one concludes
that limn→∞ ‖xn − p‖ = 0. The proof is completed. ut

Remark 3. We have the following observations for the Algorithms 3.1 and 3.2.

(i) Notice that the algorithm proposed by Kraikaew and Saejung [15] is a
fixed-step method, i.e., the update of the step size requires the prior in-
formation of the Lipschitz constant of the mapping. The algorithms sug-
gested in [23, 30] apply an Armijo-type criterion to update the step size,
which increases its computational burden by spending a lot of computa-
tion in each iteration to find a suitable step size. However, the step size
of our two iterative schemes can be updated adaptively without any line
search process. In other words, our algorithms do not require the Lipschitz
constant as input parameter. In addition, our Algorithms 3.1 and 3.2 em-
bed a new non-monotonic stepsize criterion that overcomes the drawback
of non-increasing stepsize sequences generated by the algorithms offered
in [1, 2, 33].

(ii) The algorithms presented in this paper obtain strong convergence theo-
rems in real Hilbert spaces by applying the viscosity-type method. How-
ever, the strongly convergent methods presented in [12, 29] are obtained
by projection-type methods. It is known that projection-based methods
are not easy to implement. Therefore, the iterative schemes provided in
this paper are more useful.

(iii) The suggested iterative schemes are embedded with inertial effects, which
allow them to accelerate the convergence speed of the algorithms [15, 23,
30,33,34] (cf. Section 4).

4 Numerical examples

This section reports some numerical results to illustrate the effectiveness of
the proposed algorithms in comparisons with some known Algorithms (1.1)–
(1.5). All the programs were implemented in MATLAB 2018a on a Intel(R)
Core(TM) i5-8250U CPU @ 1.60GHz computer with RAM 8.00 GB.

Our parameters are set as follows. For all algorithms, we set ϕn = 1/(n+1)
and f(x) = 0.9x. In our proposed algorithms, we choose ϑ1 = 1, µ = 0.9,
ξn = 1/(n + 1)1.1, % = 0.5 and εn = 100/(n + 1)2. Take ϑ = 0.99/L in
Kraikaew and Saejun’s Algorithm (1.1). For Shehu and Iyiola’s Algorithm (1.2),
we set ρ = 0.5 and µ = 0.4. For Thong and Hieu’s Algorithm (1.3), we take
γ = l = 0.5 and µ = 0.4. In Yang et al.’s Algorithm (1.4) and Yang and
Liu’s Algorithm (1.5), we select ϑ1 = 1 and µ = 0.9. We use Dn = ‖xn − x∗‖
to measure the n-th iteration error of all algorithms, where x∗ represents the
solution to our problems.
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Example 1. Consider the linear mapping A : Rm → Rm (m = 5, 10) in the form
A(x) = Mx+q, where q ∈ Rm and M = NNT+U+D, N is a m×m matrix, U
is a m×m skew-symmetric matrix, and D is a m×m diagonal matrix with its
diagonal entries being nonnegative (hence M is positive symmetric definite).
The feasible set C is given by C = {x ∈ Rm : −2 ≤ xi ≤ 5, i = 1, . . . ,m}. It is
clear that A is monotone and Lipschitz continuous with constant L = ‖M‖.
In this experiment, all entries of N,D are generated randomly in [0, 2] and U
is generated randomly in [−2, 2]. Let q = 0, then the solution set is x∗ =
{0}. The maximum number of iterations 400 as the stopping criterion and the
initial values x0 = x1 are randomly generated by rand(m,1) in MATLAB. The
numerical results are shown in Figure 1.
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Figure 1. Numerical results for Example 1.

Example 2. In the second numerical experiment, we consider an example in
the Hilbert space H = L2([0, 1]) associated with the inner product 〈x, y〉 :=∫ 1

0
x(t)y(t)dt and the induced norm ‖x‖ := (

∫ 1

0
|x(t)|2dt)1/2,∀x, y ∈ H. Let

the feasible set be the unit ball C := {x ∈ H : ‖x‖ ≤ 1}. Define a mapping
A : C → H by

(Ax)(t) =

∫ 1

0

(x(t)−G(t, s)g(x(s))) ds+ h(t), t ∈ [0, 1], x ∈ C,

where

G(t, s) =
2tset+s

e
√

e2 − 1
, g(x) = cosx , h(t) =

2tet

e
√

e2 − 1
.

It is known that A is monotone and L-Lipschitz continuous with L = 2 and
x∗(t) = {0} is the solution of the corresponding variational inequality problem.
Note that the projection on C is inherently explicit, that is,

PC(x) =

{ x
‖x‖ , if ‖x‖ > 1 ,

x, if ‖x‖ ≤ 1 .

We choose the maximum number of iterations 50 as a common stopping cri-
terion. Figure 2 shows the numerical behaviors of all the algorithms with two
starting points.

Math. Model. Anal., 27(1):41–58, 2022.



54 B. Tan and X. Qin

0 10 20 30 40 50 60 70

# Elapsed Time [sec]

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

Our Alg. 3.1

Our Alg. 3.2

Yang and Liu Alg. (1.5)

Thong and Hieu Alg. (1.3)

Shehu and Iyiola Alg. (1.2)

Yang et al. Alg. (1.4)

Kraikaew and Saejun Alg. (1.1)

(a) x0(t) = x1(t) = e2t

0 5 10 15 20 25 30 35 40 45 50

# Elapsed Time [sec]

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Our Alg. 3.1

Our Alg. 3.2

Yang and Liu Alg. (1.5)

Thong and Hieu Alg. (1.3)

Shehu and Iyiola Alg. (1.2)

Yang et al. Alg. (1.4)

Kraikaew and Saejun Alg. (1.1)

(b) x0(t) = x1(t) = t2

Figure 2. Numerical results for Example 2.

Remark 4. From Example 1 and Example 2, we see that our proposed algo-
rithms are outperformance some existing algorithms. The reasonable use of
inertial terms and new step size greatly improves the computational perfor-
mance of our algorithms. Note that the Algorithm (1.2) and the Algorithm
(1.3) require more execution time because they use an Armijo-like line search
method to adaptively calculate the step size.

Next, we use the proposed Algorithms 3.1 and 3.2 to solve variational in-
equalities that appears in optimal control problems. Recently, many scholars
have proposed different methods to solve it. We recommend readers to refer
to [8, 19,32] for the algorithms and detailed description of the problem.

Example 3. (Control of a harmonic oscillator, see [18])

minimize x2(3π)

subject to ẋ1(t) = x2(t) ,

ẋ2(t) = −x1(t) + u(t), ∀t ∈ [0, 3π] ,

x(0) = 0 , u(t) ∈ [−1, 1] .

The exact optimal control of Example 3 is known:

u∗(t) =

{
1, if t ∈ [0, π/2) ∪ (3π/2, 5π/2) ,

−1, if t ∈ (π/2, 3π/2) ∪ (5π/2, 3π] .

In the suggested Algorithms 3.1 and 3.2, we set N = 100, µ = 0.1, ϑ1 = 0.4,
ξn = 1/(n+ 1)1.1, % = 0.3, εn = 10−4/(n+ 1)2, ϕn = 10−4/(n+ 1) and f(x) =
0.1x. The initial controls u0(t) = u1(t) are randomly generated in [−1, 1], and
the stopping criterion is ‖un+1 − un‖ ≤ 10−4 or maximum iteration 1000 times.
Algorithm 3.1 and Algorithm 3.2 take 0.14205 seconds and 0.045983 seconds to
reach the allowable error, respectively. Figure 3 shows the approximate optimal
control and the corresponding trajectories of Algorithm 3.1.

We now consider an example in which the terminal function is not linear.
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Figure 3. Numerical results for Example 3.

Example 4. (Rocket car [19])

minimize
1

2

(
(x1(5))

2
+ (x2(5))

2
)
,

subject to ẋ1(t) = x2(t) , ẋ2(t) = u(t), ∀t ∈ [0, 5] ,

x1(0) = 6, x2(0) = 1 , u(t) ∈ [−1, 1] .

The exact optimal control of Example 4 is

u∗(t) =

{
1, if t ∈ (3.517, 5] ,

−1, if t ∈ (0, 3.517] .

In this example, the parameters of our algorithms are set the same as in Exam-
ple 3. Algorithm 3.1 ran 644 iterations and Algorithm 3.2 ran 1000 iterations,
which take 0.28734 seconds and 0.39556 seconds, respectively. The approxi-
mate optimal control and the corresponding trajectories of Algorithm 3.2 are
plotted in Figure 4.
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Figure 4. Numerical results for Example 4.
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Remark 5. As can be seen from Examples 3 and 4, the algorithms proposed
in this paper can work well on optimal control problems. It is worth noting
that when the objective function is linear rather than nonlinear, our suggested
algorithms can work better (cf. Figures 3 and 4).

5 Conclusions

In this paper, we proposed two new algorithms for solving the variational
inequality problem with a monotone and Lipschitz continuous mapping but
the Lipschitz constant is unknown. The algorithms are inspired by the iner-
tial method, the subgradient extragradient method, the Tseng’s extragradient
method and the viscosity method. Strong convergence theorems of the pro-
posed algorithms were obtained under some mild and standard conditions.
Finally, some numerical experiments arise in finite- and infinite-dimensional
spaces are performed to show the efficiency and advantages of our suggested
iterative schemes over the existing ones.
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