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Abstract. The boundary value problem for the steady Navier–Stokes system is con-
sidered in a 2D bounded domain with the boundary having a power cusp singularity
at the point O. The case of a boundary value with a nonzero flow rate is studied. In
this case there is a source/sink in O and the solution necessarily has an infinite Dirich-
let integral. The formal asymptotic expansion of the solution near the singular point
is constructed and the existence of a solution having this asymptotic decomposition
is proved.
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1 Introduction

In the paper we consider the boundary value problem for the steady Navier-
Stokes system [2]  −ν∆u + (u · ∇)u +∇p = f , x ∈ Ω,

divu = 0,
u|∂Ω = a(x),

(1.1)

in a two-dimensional1 bounded domain Ω = Ω0 ∪ GH (see Figure 1), where
GH =

{
x ∈ R2 : |x1| < γ0x

λ
2 , x2 ∈ (0, H]

}
for some γ0 > 0 and λ > 1, γ0 =

�
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1 The proposed algorithm of constructing an asymptotic representation of a solution does
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const, λ > 1, and ∂Ω∩∂Ω0 is C2. In (1.1), u = (u1, u2) stands for the velocity
field, p stands for the pressure and ν > 0 is a coefficient of the kinematic
viscosity.
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Figure 1. Domain Ω.

We assume that the support of the boundary value a ∈ W 1/2,2(∂Ω) is
separated from the cusp point O, i.e. suppa ⊂ Λ ⊂ ∂Ω0 ∩ ∂Ω, where Λ is a
connected set, and that ∫

Λ

a · n dS = F, F 6= 0.

Then the velocity part u of the solution to problem (1.1) necessarily has
the nonzero flux −F : ∫

σ(R)

u · n dS = −F, (1.2)

where the interval σ(R) = (−ϕ(R), ϕ(R)) is a cross section of GH by the
straight line x2 = R and we use the notation γ0x

λ
2 = ϕ(x2). So the compati-

bility condition ∫
σ(R)

u · n dS +

∫
Λ

a · n dx = 0

holds. Notice that a vector field u satisfying (1.2) necessarily has infinite Dirich-
let integral

∫
Ω

|∇u(x)|2dx =∞. Indeed, using the Cauchy and Poincaré inequal-

ities, we have

|F |2 =
∣∣∣ ∫
σ(x2)

u · n dS
∣∣∣2 ≤ |σ(x2)|

∫
σ(x2)

|u|2 dx1 ≤ cϕ2(x2)

∫
σ(x2)

|∇u|2 dx1.

From this it follows that

|F |2
∫ H

ε

dx2

ϕ2(x2)
≤ c

∫ H

ε

∫
σ(x2)

|∇u|2 dx1dx2.

The left-hand side of the last inequality tends to infinity as ε → 0 and so∫
GH
|∇u|2 dx =∞.
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The point source/sink approach is widely used in physics and astronomy.
Fluid point sources/sinks also are commonly used in fluid and aerodynamics.
Point source-sink pairs are often used as simple models for driving flow through
a gap in a wall, the use of localized suction to control vortices around aerofoil
sections also is one of such problems. In oceanography, it is common to use
point sources to model the influx of fluid from channels and holes. There are
also many others applications of point source/sink models.

The asymptotic behaviour of solutions to the Stokes and Navier–Stokes
equations in singularly perturbed domains became of growing interest during
the last fifty years. There is an extensive literature concerning these issues
for various elliptic problems, e.g., [2, 5, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27].
In particular, the steady Navier–Stokes equations are studied in a punctured
domain Ω = Ω0 \ {O} with O ∈ Ω0 assuming that the point O is a sink or
source of the fluid [10, 30, 31] (see also [11] for the review of these results).
We also mention the papers [7, 8, 9] where the existence of a solution (with an
infinite Dirichlet integral) to the Navier–Stokes problem with a sink or source
in the cusp point O was proved for arbitrary data and the papers [12, 13, 14]
where the asymptotics of a solution to the nonstationary Stokes problem is
studied in domains with conical points and conical outlets to infinity.

In recent papers the authors have studied existence of singular solutions
to the time-periodic and initial boundary value problems for the linear Stokes
equations [3, 4] and an initial boundary value problem for the Navier–Stokes
equations [28,29] in domains having a power-cusp (peak type) singular point on
the boundary. The case when the flux of the boundary value is nonzero was con-
sidered. Therefore, there is a sink or source in the cusp point O and a solution
is necessarily singular. In constructing the formal asymptotic decomposition of
the solution the considered problems with singular data were reduced to ones
with regular right-hand sides and then the well known methods of proving the
solvability were applied. In constructing the asymptotic representation we fol-
lowed the ideas proposed in the paper [25] where the asymptotic behaviour of
solutions to the stationary Stokes and Navier–Stokes problems was studied in
unbounded domains with paraboloidal outlets to infinity. In turn, the method
used in [25] was a variant of the algorithm of constructing the asymptotic rep-
resentation of solutions to elliptic equations in slender domains (see [16,20] for
arbitrary elliptic problems; [21,24] for the stationary Stokes and Navier–Stokes
equations).

In [8] the existence of a generic stationary solution with infinite Dirichlet
integral is proved. So, the behaviour of this solution near the cusp point is
not specified (and in general is not known). In this paper we construct the
solution u to problem (1.1) which has the special structure: it is represented
as a sum of the formal asymptotics near the cusp point and a vector field
belonging to a suitable weighted second order Sobolev space V 2,2(Ω) (its precise
definition will be given in Section 3.1). Since the constructed formal asymptotic
decomposition has an explicit form and it is regular in Ω \ O, the solution
is understood almost everywhere in Ω. Thus, we have proved the following
result2.

2 For more details see Theorem 4.1.

Math. Model. Anal., 26(4):651–668, 2021.
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Theorem. Let f ∈ L2(Ω), a ∈W 3/2,2(∂Ω). There exist a constant κo > 0
such that if

‖f‖2L2(Ω) + ‖a‖2W 3/2,2(∂Ω) + ‖a‖4W 3/2,2(∂Ω) ≤ κo,

then problem (1.1) has a unique solution (u, p) admitting the representation
u = V+v, p = q+Q, where the pair (V, Q) coincides near the cusp point O
with the formal asymptotic decomposition of the solution, v ∈ V 2,2(Ω), ∇q ∈
L2(Ω) and the following estimate

‖v‖2V 2,2(Ω) + ‖∇q‖2L2(Ω)

≤ c
(
‖f‖2L2(Ω) + ‖a‖2W 3/2,2(∂Ω) + ‖a‖4W 3/2,2(∂Ω)

)
holds with the constant c depending only on λ, γ0 and the geometry of Ω0.

Let D be a bounded domain in Rn. In this article, we use usual notations
of functional spaces (e.g., [1]). By Lp(D) and Wm,p(D), 1 ≤ p <∞, we denote
the usual Lebesgue and Sobolev spaces, respectively. The norms in Lp(D) and
Wm,p(D) are indicated by ‖ · ‖Lp(D) and ‖ · ‖Wm,p(D). We denote by C∞(D)
the set of all infinitely differentiable functions defined on D and by C∞0 (D) the
subset of all functions from C∞(D) with compact supports in Ω. By W̊ 1,2(D)
we denote the completion of C∞0 (D) in the ‖ · ‖W 1,2 norm.

2 Steady Navier-Stokes problem. Formal asymptotic
decomposition

Let us consider a solution (u, p) of problem (1.1) in a neighbourhood of the
cuspidal point, i.e. in the domain GH . Recall that u|∂GH∩∂Ω = 0. Changing

the variables (x1, x2) −→
(
x1

xλ2
, x2

)
:= (y1, y2) we rewrite the problem (1.1) in

the following form:3
−ν(y−2λ

2 ∂2
1 + D2)u1 + (u ·N)u1 + y−λ2 ∂1p = 0, y ∈ Π,

−ν(y−2λ
2 ∂2

1 + D2)u2 + (u ·N)u2 + Dp = 0, y ∈ Π,
y−λ2 ∂1u1 + Du2 = 0,
u|∂Π = 0,

(2.1)

where Π =
{
y ∈ R2 : |y1| < γ0, y2 ∈ (0, H)

}
, ∂k =

∂

∂yk
, k = 1, 2, D = ∂2 −

λy−1
2 y1 · ∂1, N =

(
y−λ2 · ∂1

D

)
.

2.1 The leading term of the asymptotic expansion

The main term of the asymptotic expansion of the solution (u, p) is the same
as that for the linear (Stokes) problem (see [3]): the leading term Uµ0 =

3 Note that the algorithms used below are similar to those used in [25] for constructing the
asymptotics of solutions to the stationary Navier–Stokes problem in unbounded domains
with paraboloidal outlets to infinity.
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(U1,µ0
, U2,µ0

), Pµ0
is

U1,µ0(y1, y2) = yµ0+3λ−2
2 U1,µ0(y1), U2,µ0(y1, y2) =

F

κ0
yµ0+2λ−1

2 Φ(y1),

Pµ0
(y1, y2) =

F

κ0µ0
yµ0

2 + yµ0+2λ−2
2 Qµ0

(y1),

where
µ0 = 1− 3λ, (2.2)

the function Φ is the solution to{
ν∂2

1Φ(y1) = 1, |y1| < γ0,
Φ(y1)|∂ω = 0, |y1| = γ0,

(2.3)

i.e.,

Φ(y1) =
1

2ν

(
|y1|2 − γ2

0

)
, (2.4)

where ω = {y1 ∈ R : |y1| < γ0}; the constant κ0 is given by

κ0 =

∫ γ0

−γ0
Φ(y1) dy1 = − 2

3ν
γ3

0 < 0 (2.5)

and (U1,µ0
,Qµ0

) is the solution of −ν∂
2
1U1,µ0(y1) + ∂1Qµ0(y1) = 0, |y1| < γ0,

∂1U1,µ0(y1) = G0(y1),
U1,µ0

(y1)||y1|=γ0 = 0,
(2.6)

with G0(y1) = λκ−1
0 F (1+y1 ·∂1)Φ(y1). Moreover, by construction, the following

compatibility condition for problem (2.6)∫ γ0

−γ0
G0(y1) dy1 = 0

is valid. The system of ordinary differential equations (2.6) is of Stokes type,
and obviously, it has a unique (up to the additive constant in the pressure
component Qµ0

) smooth solution.
Functions (Uµ0

, Qµ0
) leave in equations (2.1)1, (2.1)2 the discrepancies

H1,µ0
(y1, y2), H2,µ0

(y1, y2):

H1,µ0(y1, y2) = νD2U1,µ0(y1, y2)− (Uµ0 ·N)U1,µ0(y1, y2)

= yµ0+3λ−4
2 F1,µ0(y1) + yµ0+2λ−3

2 N1,µ0(y1),

H2,µ0
(y1, y2) = νD2U2,µ0

(y1, y2)− (Uµ0
·N)U2,µ0

(y1, y2) (2.7)

−D
(
yµ0+2λ−2

2 Qµ0
(y1)

)
= yµ0+2λ−3

2 F2,µ0
(y1) + yµ0+λ−2

2 N2,µ0
(y1).

Discrepancies (2.7) are represented as the sums containing the terms denoted
by F plus the terms denoted by N, where N are discrepancies arising from the
nonlinear term in equation (1.1)1, while F are discrepancies arising from the
linear part of the same equation (1.1)1. Note, that the latter discrepancies are
the same as that for the Stokes problem (see [3]).

Math. Model. Anal., 26(4):651–668, 2021.
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2.2 Formal asymptotic decomposition

Now we construct higher-order terms of the asymptotic expansion. Consider
Equations (2.1)

−ν(y−2λ
2 ∂2

1 + D2)u1 + (u ·N)u1 + y−λ2 ∂1p = Z1(ϕ1, ϕ2),

−ν(y−2λ
2 ∂2

1 + D2)u2 + (u ·N)u2 + Dp = Z2(ϕ1, ϕ2),

y−λ2 ∂1u1 + Du2 = 0,
u|∂Π = 0,

(2.8)

with the right-hand sides (Z1(ϕ1, ϕ2), Z2(ϕ1, ϕ2)) having the form of one of the
following expressions

(Z1(ϕ1, ϕ2), Z2(ϕ1, ϕ2)) =


(
νD2ϕ1, νD

2ϕ2 −Dpϕ
)
,

or
− ((ϕ ·N)ϕ1, (ϕ ·N)ϕ2) ,

(2.9)

where the functions ϕ = (ϕ1, ϕ2) and pϕ are specified below.
In order to prove the existence of the solution to problem (1.1), we first

construct the formal asymptotic decomposition of it such that discrepancies
belong to L2-space. Obviously, this is not true for the discrepancies left by
the leading asymptotic term. Therefore, we have to compensate the appeared
singular terms in the corresponding to the leading term discrepancies (2.7), i.e.,
we have to construct functions (Uµ, Qµ) which satisfy equations (2.8) with the
right-hand sides (Z1(U1,µ0

, U2,µ0
), Z2(U1,µ0

, U2,µ0
)) coming from (2.7). Func-

tions (Uµ, Qµ) leave some new discrepancies which may also be singular. So,
we have to compensate them by the same manner and we continue this process
until the discrepancies belong to L2-space.

Note that at each step of the construction we obtain the same equations
with the right-hand sides having similar structure. In order to construct more
asymptotical terms, we should be able to define which part of the discrepancies
we are compensating at each step. In other words, we have to describe a rule
for the power exponents of the discrepancies, in such a way that we can find
which terms are most singular.

Consider first the terms related to the linear part of the Navier–Stokes
equations. The linear Stokes problem was investigated by authors earlier [3]
and it was shown that the most singular part of the discrepancies left by the
anzatz (Uµ, Qµ) have to be compensated by the anzats (Uµ+2λ−2, Qµ+2λ−2).
Therefore, the rule ML describing the changes in power exponents of terms
arising from the linear part is defined by

ML : µ ∈M ⇒ µ+ 2λ− 2 ∈M. (2.10)

Discrepancies contain also terms arising from the nonlinearity of the equa-
tions. As it is shown in the calculations below, the rule MN describing the
changes in power exponents of terms arising from the nonlinear part is

MN : µ1, µ2 ∈M ⇒ µ1 + µ2 + 4λ− 2 ∈M, (2.11)

(recall that the nonlinear terms contain products of the functions Uµ1
and

Uµ2).
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The following lemma describes the narrowest set of numbers M obeying
both rules ML and MN .

Lemma 2.1.
M = {1− 3λ+ k(λ− 1) : k = 0, 1, . . . } .

Proof. The elements of the set M obey the rules (2.10) and (2.11) with the
starting point µ0 = 1− 3λ ∈M (see (2.2)). Taking µ1 = µ2 = µ0, from (2.11)
follows the relation

µ0 + µ0 + 4λ− 2 = µ0 + λ− 1 = (1− 3λ) + λ− 1.

If µ1 = 1− 3λ+ k(λ− 1), µ2 = 1− 3λ+ j(λ− 1), then (2.10), (2.11) yield

µ1 + 2λ− 2 = 1− 3λ+ (k + 2)(λ− 1),

µ1 + µ2 + 4λ− 2 = 1− 3λ+ (k + j + 1)(λ− 1).

ut

Let

ϕ1,µ(y1, y2) = yµ+3λ−2
2 U1,µ(y1), ϕ2,µ(y1, y2) = yµ+2λ−1

2 Un,µ(y1),

pϕ,µ(y1, y2) = yµ2Cµ + yµ+2λ−2
2 Qµ(y1),

Cµ = const, i = 1, 2 and µ belongs to the set M . Substituting these expressions
into (2.9), we obtain(

Z1(ϕ1,µ, ϕ2,µ)
Z2(ϕ1,µ, ϕ2,µ)

)
=

(
νD2ϕ1,µ

νD2ϕ2,µ −Dpϕ,µ

)
∼
(
yµ+3λ−4

2 F1,µ(y1)

yµ+2λ−3
2 F2,µ(y1)

)
in the case when the linear term is the most singular one (the rule ML), and(

Z1(ϕ1,µ1
, ϕ2,µ2

)
Z2(ϕ1,µ1

, ϕ2,µ2
)

)
=

(
−(ϕµ1

·N)ϕ1,µ2

−(ϕµ1
·N)ϕ2,µ2

)
∼
(
yµ1+µ2+5λ−4

2 N1,µ(y1)

yµ1+µ2+4λ−3
2 N2,µ(y1)

)
in the case when the most singular term in the right-hand side is produced by
the nonlinearity (the rule MN ).

In the case when power exponents obtained by rules ML and MN are the
same, we compensate the sum of all terms containing these exponents.

Suppose that the approximate solution (U[M ], P [M ]) is represented in the
form4

U
[M ]
1 (y1, y2) =

∑
µ∈M

yµ+3λ−2
2 U1,µ(y1), U

[M ]
2 (y1, y2) =

∑
µ∈M

yµ+2λ−1
2 U2,µ(y1),

P [M ](y1, y2) =
∑
µ∈M

yµ2Cµ + yµ+2λ−2
2 Qµ(y1), (2.12)

4 In the paper we use the notation U(y1, y2) = yγ2U(y1), i.e. functions marked as calligraphic
letters depend only on y1.

Math. Model. Anal., 26(4):651–668, 2021.
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where M is the set of indices described in Lemma 2.1; the pair of functions
(U1,µ,Qµ) is the solution of −ν∂

2
1U1,µ(y1) + ∂1Qµ(y1) = Z1(U1,µ̄,U2,µ̄), |y1| < γ0,

∂1U1,µ(y1) = −A(µ)U2,µ(y1),
U1,µ(y1)||y1|=γ0 = 0,

(2.13)

where µ, µ̄ ∈M ,5

A(µ) = µ+ 2λ− 1− λy1∂1, U2,µ(y1) = CµµΦ(y1) + U∗2,µ(y1), (2.14)

the function Φ is the solution of problem (2.3) (see (2.4)), the functions U∗2,µ
satisfy the equations{

−ν∂2
1U
∗
2,µ(y1) = Z2(U1,µ̄,U2,µ̄), |y1| < γ0, µ, µ̄ ∈M,

U∗2,µ||y1|=γ0(y1) = 0.

The constants Cµ are uniquely determined from the following solvability con-
dition for problem (2.13) ∫ γ0

−γ0
A(µ)U2,µ(y1) dy1 = 0. (2.15)

Indeed, using (2.5) and the equality∫ γ0

−γ0
y1 · ∂1Φ(y1) dy1 = −

∫ γ0

−γ0
Φ(y1) dy1 = −κ0,

we rewrite (2.15) as follows

Cµµκ0(µ+ 3λ− 1) = −
∫ γ0

−γ0
A(µ)U∗2,µ(y1) dy1.

Thus, if µ 6= 0 and µ 6= µ0,

Cµ = − 1

µκ0

∫ γ0

−γ0
U∗2,µ(y1) dy1.

If µ = µ0, then Cµ0 = F/(µ0κ0) (see Section 2.1 and [3]).
Finally, from (2.12) and Lemma 2.1 we get

U
[J]
1 (y1, y2) = y−1

2 U1,0(y1) +
J∑
k=1

y
−1+k(λ−1)
2 U1,k(y1),

U
[J]
2 (y1, y2) =

F

κ0
y−λ2 Φ(y1) +

J∑
k=1

y
−λ+k(λ−1)
2 U2,k(y1),

P [J](y1, y2) =
F

κ0(1− 3λ)
y1−3λ

2 + y−1−λ
2 Q0(y1)

+
J∑
k=1

y
1−3λ+k(λ−1)
2 Ck + y

−1−λ+k(λ−1)
2 Qk(y1),

5 Numbers µ, µ̄ are different.
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where U0 = Uµ0
, the pair (U1,0,Q0) solves problem (2.6), the function Φ is

solution to (2.3) and is described by (2.4), the pair (U1,k,Qk) solves the problem −ν∂
2
1U1,k(y1) + ∂1Qk(y1) = Z1,k(y1), |y1| < γ0,

∂1U1,k(y1) = −A(1− 3λ+ k(λ− 1))U2,k(y1),
U1,k(y1)||y1|=γ0 = 0,

(2.16)

where A is given by (2.14),

U2,k(y1) = Ck(1− 3λ+ k(λ− 1))Φ(y1) + U∗2,k(y1),

the functions U∗2,k satisfy the equations{
−ν∂2

1U
∗
2,k(y1) = Z2,k(y1), |y1| < γ0,

U∗2,k(y1)||y1|=γ0 = 0,
(2.17)

where Zk(y1) = (Z1,k(y1),Z2,k(y1)) is specified below. The constants Ck are
uniquely determined from the following solvability condition for problem (2.16):∫ γ0

−γ0
A(1− 3λ+ k(λ− 1))U2,k(y1) dy1 = 0.

Then, similarly as before, we get

Ck = − 1

κ0(1− 3λ+ k(λ− 1))

∫ γ0

−γ0
U∗2,k(y1) dy1,

k = 1, 2, . . . . Moreover, C0 = F
κ0(1−3λ) , (see Section 2.1 or [3]). Note that

1− 3λ+ k(λ− 1) 6= 0 due to the assumption that µ 6= 0.
The pair of functions (Uk, Qk) leaves in Equations (2.8) the discrepancies

Hk = (H1,k, H2,k),

Hk(y1, y2) = Fk−1(y1, y2) + Fk(y1, y2) + Nk(y1, y2), (2.18)

where k = 0, 1, . . . , F−1(y1, y2) = 0,

Fk(y1, y2) =
(
y
−3+k(λ−1)
2 F1,k(y1), y

−λ−2+k(λ−1)
2 F2,k(y1)

)
,

Nk(y1, y2) =
(
y
−λ−2+k(λ−1)
2 N1,k(y1), y

−2λ−1+k(λ−1)
2 N2,k(y1)

)
,

(2.19)

and

F1,k(y1) = y
−(−3+k(λ−1))
2 νD2U1,k(y1, y2),

F2,k(y1) = y
−(−λ−2+k(λ−1))
2

[
νD2U2,k(y1, y2)−D

(
y
−λ−1+k(λ−1)
2 Qk(y1)

)]
,

N1,k(y1) = −y−(−λ−2+k(λ−1))
2

∑
i+j=k

(Ui ·N)U1,j(y1, y2),

N2,k(y1) = −y−(−2λ−1+k(λ−1))
2

∑
i+j=k

(Ui ·N)U2,j(y1, y2),

k, i, j = 0, 1, 2, ..., and Nk = (N1,k,N2,k), Fk = (Fk,1,Fk,2).

Math. Model. Anal., 26(4):651–668, 2021.
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The functions Zk = (Z1,k,Z2,k) contain the most singular terms which we
compensate at step k = 1, 2, . . . ,. One can deduce that the function Zk is
described by the following rule

N0 → F0 + N1 → F1 + N2 → · · · → Fj−1 + Nj → . . .

j = 0, 1, 2, . . . , i.e., the functions (U1,1,Q1), U∗2,1 solve problems (2.16)–(2.17)
with the right-hand side N0; the functions (U1,2,Q2), U∗2,2 solve problems
(2.16)–(2.17) with the right-hand side F0 + N1 and so on.

Above we have supposed that µ 6= 0. If µ = 0, i.e. 1 − 3λ + k̄(λ − 1) = 0,
we look for (Uk̄, Pk̄) in the form

Uk̄(y1, y2) = Uk(y1, y2), Pk̄(y1, y2) = Ck̄ln y2 + y
−1−λ+k̄(λ−1)
2 Qk̄(y1).

For U2,k̄(y1) = Ck̄Φ(y1) + U∗
2,k̄

(y1) and (U1,k̄(y1),Qk̄(y1)) we get the same

Equations (2.16)–(2.17); the solvability condition for problem (2.16) is changed
into

Ck̄k̄(λ− 1)κ0 = −
∫ γ0

−γ0
A(1− 3λ+ k(λ− 1))U∗2,k̄(y1)dy1.

Finally, we get the following expression for U[J], P [J]:

U
[J]
1 (y1, y2) = y−1

2 U1,0(y1) +
J∑
k=1

y
−1+k(λ−1)
2 U1,k(y1),

U
[J]
2 (y1, y2) = F

κ0
y−λ2 Φ(y1) +

J∑
k=1

y
−λ+k(λ−1)
2 U2,k(y1),

P [J](y1, y2) =
F

κ0(1− 3λ)
y1−3λ

2 + y−1−λ
2 Q0(y1)

+
J∑
k=1

[
Cky

1−3λ+k(λ−1)
2 [1 + δk̄k(y

−1+3λ−k(λ−1)
2 ln y2 − 1)]

+y
−1−λ+k(λ−1)
2 Qk(y1)

]
,

where J ∈ N. All other steps of the construction remain the same as for the
case µ 6= 0.

2.3 Estimates of the asymptotic decomposition and discrepancies

All boundary value problems for ordinary differential equations which appear
by constructing the asymptotic decomposition have smooth solutions and it is
straightforward to see that there hold the estimates∣∣∣∂lU [J]

1 (y1, y2)

∂yl1

∣∣∣ ≤ c |F |
y1+l

2

,
∣∣∣∂lU [J]

2 (y1, y2)

∂yl1

∣∣∣ ≤ c |F |
yλ+l

2

, l = 0, 1, . . . . (2.20)

From (2.18)–(2.19) it follows that the discrepancy H[J] left by asymptotic
decomposition

(
U[J], P [J]

)
in Equations (1.1) admits the estimate∣∣H[J](y1, y2)
∣∣ ≤ c(|F |+ |F |2)/y2λ+1−J(λ−1)

2 .

Therefore, if J > (4λ+ 1)/
(
2(λ− 1)

)
, then H[J] ∈ L2(GH) and

‖H[J]‖L2(GH) ≤ c
(
|F |+ |F |2

)
.
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3 Preliminary results

3.1 Some notation

Let us consider the cusp domain Ω. Let h0 = H,hk = hk−1 − ϕ(hk−1)
2L , k =

1, 2, . . . , and L be a Lipschitz constant of the function ϕ(x2) in the domain GH .
Recall that ϕ(x2) = γ0x

λ
2 . The sequence {hk} is decreasing and bounded from

below. Assume that the limit of this sequence is a0 6= 0. From the definition it

follows that a0 = a0 − ϕ(a0)
2L . Then ϕ(a0) = 0. However, ϕ(a0) 6= 0 for a0 6= 0

and, hence the limit a0 = 0. Since the sequence is decreasing and the limit is
equal to 0, all its elements are positive.

Denote ωl = {x ∈ R2 : |x1| < ϕ(x2), x2 ∈ (hl, hl−1)}, l = 1, . . .. Note that

1
2ϕ(hl) ≤ ϕ(t) ≤ 3

2ϕ(hl), t ∈ [hl+1, hl]. (3.1)

Define the transformation y = Plx by the formulas

y1 =
2Lx1

ϕ(x2)
, y2 =

2L(x2 − hl−1)

ϕ(hl−1)

and the domain

G0 = {y ∈ R2 : |y1| < 2L,−1 < y2 < 0}.

Obviously the transformation P−1
l maps G0 onto ωl. It is easy to see that

Ω = Ω0 ∪
( ∞⋃
l=1

ωl

)
.

Denote

Ω]l = Ω0 ∪
( l⋃
l=1

ωj

)
, l = 1, 2, . . . .

Below we also will need the space V 2,2(Ω) consisting of functions having the
finite norm

‖u‖2V 2,2(Ω) =‖u‖2W 2,2(Ω0) +

∫
Ω\Ω0

ϕ−4(x2)|u|2dx+

∫
Ω\Ω0

ϕ−2(x2)|∇u|2dx

+

∫
Ω\Ω0

|∇2u|2dx.

3.2 Two inequalities

Lemma 3.1. (Poincaré type inequality). Let u ∈ W 1,2
loc (Ω̄ \ O), u|∂Ω = 0

and κ ∈ R is arbitrary. If
∫
GH

|ϕ(x2)|κ|∇u(x)|2dx < ∞, then the integral∫
GH

|ϕ(x2)|κ−2|u(x)|2dx is finite and the following inequality

H∫
0

ϕ(x2)∫
−ϕ(x2)

|ϕ(x2)|κ−2|u(x)|2dx ≤ 4
π2

H∫
0

ϕ(x2)∫
−ϕ(x2)

|ϕ(x2)|κ|∇u(x)|2dx

holds.
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The proof of this lemma can be found in [28] (see Lemma 2.1).

Lemma 3.2. Let u ∈ V 2,2(Ω). Then the following inequality

‖u‖2L∞(Ω0) + ‖ϕ−1u‖2L∞(GH) ≤ c‖u‖
2
V 2,2(Ω) (3.2)

holds with the constant c depending only on λ, γ0 and the geometry of Ω0.

Proof. Consider a function u ∈ V 2,2(Ω) in the domain ωl. After the transfor-
mation Pl, ωl is transformed into the domain G0 = {y : |y1| < 1,−1 < y2 < 0}
which is independent of l. In G0 holds the inequality (see [1])

‖u‖2L∞(G0) ≤ c‖u‖
2
W 2,2(G0) = c

∫
G0

(
|u(y)|2 + |∇yu(y)|2 + |∇2

yu(y)|2
)
dy.

Passing in the last inequality to the variables x, using (3.1) and the relations
|x1| ≤ ϕ(x2) = γ0x

λ
2 , λ > 1, |ϕ′(x2)| ≤ c and |ϕ′′(x2)| ≤ c

ϕ(x2) we obtain

‖u‖2L∞(ωl)
≤ c

∫
ωl

( |u(x)|2

ϕ2(hl−1)
+ |∇xu(x)|2 + ϕ2(hl−1)|∇2

xu(x)|2
)
dx.

Dividing both sides by ϕ2(hl−1) and applying again (3.1) gives

‖ϕ−1u‖2L∞(ωl)
≤c
∫
ωl

( |u(x)|2

ϕ4(x2)
+
|∇u(x)|2

ϕ2(x2)
+ |∇2

xu(x)|2
)
dx

≤c‖u‖2V 2,2(Ω) (3.3)

with a constant c independent of l. Taking in (3.3) supremum over all l yields

‖ϕ−1u‖2L∞(GH) ≤ c‖u‖
2
V 2,2(Ω). (3.4)

(3.4) and the estimate

‖u‖2L∞(Ω0) ≤ c‖u‖
2
W 2,2(Ω0) ≤ c‖u‖

2
V 2,2(Ω)

imply (3.2) . ut

3.3 Estimates of solutions to the Stokes problem

Consider in Ω the Dirichlet boundary value problem for the Stokes system
−ν∆v +∇p = f ,
divv = 0,
v
∣∣
∂Ω

= 0.
(3.5)

The following result was proved in [28] (see Lemmas 3.1–3.3).

Lemma 3.3. Let f ∈ L2(Ω). Then there exists a unique solution (v, p) of
problem (3.5) such that v ∈ V 2,2(Ω)∩ W̊ 1,2(Ω), ∇p ∈ L2(Ω) and the estimate

‖v‖V 2,2(Ω) + ‖∇p‖L2(Ω) ≤ c‖f‖L2(Ω)

holds with the constant c depending only on λ, γ0 and the geometry of Ω0.
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4 Solvability of problem (1.1)

4.1 Construction of the extension of boundary data

Suppose that a ∈W 3/2,2(∂Ω), suppa ⊂ ∂Ω0 ∩ ∂Ω ⊂ ∂Ω]1. Consider the linear

extension operator E in the domain Ω]3, E : W 3/2,2(∂Ω]3) 7−→W 2,2(Ω]3) given

by Ea = w(1), where w(1)|∂Ω]3 = a. Since the boundary ∂Ω ∩ ∂Ω]3 is C2 and

suppa ⊂ ∂Ω0 ∩ ∂Ω ⊂ ∂Ω]1, the linear operator E is bounded:

‖Ea‖2
W 2,2(Ω]3)

= ‖w(1)‖2
W 2,2(Ω]3)

≤ c‖a‖2W 3/2,2(∂Ω). (4.1)

Moreover, w(1) can be constructed in such a way that suppw(1) ⊂ Ω
]

2 (see,
e.g., [1]).

Let U[J]
(
x1

xλ2
, x2

)
be the formal asymptotic decomposition of the velocity

component near the cusp point O constructed in Section 2. Consider the func-
tion B = w(1) + ζU[J], where ζ = ζ(x2) is a smooth cut-off function equal to

one in Ω \ Ω]2, equal to zero in Ω]1 and 0 < ζ(x2) < 1 in Ω]2 \ Ω
]
1. Obviously,

B|∂Ω = a, however, B is not solenoidal, div B = div w(1) + ∇ζ · U[J] := h.
Notice that∫

Ω]2

hdx =

∫
∂Ω]2

(w(1) + ζU[J]) · ndS =

∫
∂Ω0∩∂Ω

a · ndS +

∫
∂Ω]2\∂Ω

U[J] · ndS

=F − F = 0.

Since supph ⊂ Ω]2 and the boundary ∂Ω]3∩∂Ω is smooth, there exist a function

w(2) ∈ W 2,2(Ω]3) such that suppw(2) ⊂ Ω
]

3, w(2) = 0 in the neighbourhood of

∂Ω]3 \ ∂Ω and {
divw(2) = h in Ω]3,

w|(2)

∂Ω]3
= 0.

Moreover,
‖w(2)‖2

W 2,2(Ω]3)
≤ c‖h‖2

W 1,2(Ω]3)
,

(see [6]). From this inequality and (4.1), (2.20) it follows that

‖w(2)‖2
W 2,2(Ω]3)

≤ c
(
‖w(1)‖2

W 2,2(Ω]3)
+ ‖U[J]‖2

W 1,2(Ω]3)

)
≤ c
(
‖a‖2

W 3/2,2(∂Ω)
+ |F |2

)
≤ c‖a‖2

W 3/2,2(∂Ω)
.

(4.2)

Define
W = w(1) + w(2), V = W + ζU[J],

where ζ is a smooth cut-off function defined above. By construction divV = 0,
V|∂Ω = a and V = U[J] for x ∈ Ω \Ω]3. Therefore, for x ∈ Ω \Ω]3 the function
V satisfies estimates (2.20), while from (4.1), (4.2) and (2.20) it follows that

‖V‖W 2,2(Ω]3) ≤ c
(
‖a‖2

W 3/2,2(∂Ω)
+ |F |2

)
≤ c‖a‖2

W 3/2,2(∂Ω)
. (4.3)
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We look for the solution (u, p) of problem (1.1) in the form

u = v + V, p = q + ζP [J].

Then for (v, q) we obtain the following problem −ν∆v +∇q = −(v · ∇)v − (V · ∇)v − (v · ∇)V + f̂ ,
divv = 0,
v|∂Ω\O = 0,

(4.4)

where f̂ = f − f1, f1 = −ν∆V+(V ·∇)(V)+∇(ζP [J]). Recall that the number
J was chosen in such a way that

−ν∆U[J] + (U[J] · ∇)U[J] +∇P [J] = H[J] ∈ L2(GH).

Therefore, taking into account that W has compact support in Ω
]

3, we conclude

f̂ ∈ L2(Ω). Moreover, using (4.3) we obtain

‖f̂‖2L2(Ω) ≤ c
(
‖f‖2L2(Ω) + ‖a‖2

W 3/2,2(∂Ω)
+ ‖a‖4

W 3/2,2(∂Ω)

)
.

4.2 Existence of the strong solution

Theorem 4.1. Let f ∈ L2(Ω), a ∈ W 3/2,2(∂Ω). There exist a constant
κo > 0 such that if

‖f‖2L2(Ω) + ‖a‖2W 3/2,2(∂Ω) + ‖a‖4W 3/2,2(∂Ω) ≤ κo,

then problem (4.4) admits a unique solution (v, q) with v ∈ V 2,2(Ω), ∇q ∈
L2(Ω) and the following estimate

‖v‖2V 2,2(Ω) + ‖∇q‖2L2(Ω)

≤ c
(
‖f‖2L2(Ω) + ‖a‖2W 3/2,2(∂Ω) + ‖a‖4W 3/2,2(∂Ω)

)
(4.5)

holds with the constant c depending only on λ, γ0 and the geometry of Ω0.

Proof. Let z ∈ V 2,2(Ω). Then (z · ∇)z ∈ L2(Ω). Indeed, using (3.2) (see
Lemma 3.2) we obtain

‖(z · ∇)z‖2L2(Ω) ≤
∫
Ω0

|z|2|∇z|2dx+

∫
GH

|z|2|∇z|2dx

≤‖z‖2L∞(Ω0)

∫
Ω0

|∇z|2dx+ ‖ϕ−1z‖2L∞(GH)

∫
GH

ϕ2|∇z|2dx

≤c‖z‖2V 2,2(Ω)

(∫
Ω0

|∇z|2dx+

∫
GH

ϕ2|∇z|2dx
)
≤ c‖z‖4V 2,2(Ω).

Further,∫
Ω

|V|2|∇z|2dx+
∫
Ω

|z|2|∇V|2dx ≤
∫
Ω]3

(
|V|2|∇z|2 + |z|2|∇V|2

)
dx

+
∫

Ω\Ω]3

(
|V|2|∇z|2 + |z|2|∇V|2

)
dx = J1 + J2.
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By (2.20),

J2 ≤ c|F |2
∫

Ω\Ω]3

(
ϕ−4|z|2 + ϕ−2|∇z|2

)
dx ≤ c‖a‖2

W 3/2,2(∂Ω)
‖z‖2V 2,2(Ω).

Using (4.1), (4.2), (2.20) and (3.2), for the term J1 we obtain the estimate

J1 ≤ ‖W+ζU[J]‖2
L∞(Ω]3)

∫
Ω]3

|∇z|2dx+‖z‖2
L∞(Ω]3)

∫
Ω]3

(
|∇W|2+|∇(ζU[J])|2

)
dx

≤ c
(
‖a‖2W 3/2,2(∂Ω) + |F |2

)
‖z‖2V 2,2(Ω) ≤ c‖a‖

2
W 3/2,2(∂Ω)‖z‖

2
V 2,2(Ω).

Assume that z ∈ V 2,2(Ω), f ∈ L2(Ω) are given functions and consider the
Stokes problem −ν∆v +∇q = −(z · ∇)z− (V · ∇)z− (z · ∇)V + f̂ ,

divv = 0,
v|∂Ω = 0.

(4.6)

According to the above inequalities the right hand side of (4.6) belongs to
L2(Ω), and hence, problem (4.6) admits a unique solution (v, q) satisfying the
estimate

‖v‖2V 2,2(Ω) + ‖∇q‖2L2(Ω) ≤ c
(
‖(z · ∇)z‖2L2(Ω) + ‖(V · ∇)z‖2L2(Ω)

+‖(z · ∇)V‖2L2(Ω) + ‖f̂‖2L2(Ω)

)
≤ c1

(
‖z‖4V 2,2(Ω) + ‖a‖2

W 3/2,2(∂Ω)
‖z‖2V 2,2(Ω)

)
+c2

(
‖f‖2L2(Ω) + ‖a‖2

W 3/2,2(∂Ω)
+ ‖a‖4

W 3/2,2(∂Ω)

) (4.7)

(see [15]). Thus, (4.6) is equivalent to an operator equation in the space
V 2,2(Ω):

v = Az, (4.8)

where Az = L−1(−(z · ∇)z − (V · ∇)z − (z · ∇)V + f̂) and L−1 is the inverse
operator (bounded) of Stokes problem (4.6).

Denote ‖f‖2L2(Ω) + ‖a‖2
W 3/2,2(∂Ω)

+ ‖a‖4
W 3/2,2(∂Ω)

= µ2
0 and suppose that

‖z‖2V 2,2(Ω) ≤ R
2
0, where R2

0 = 2c2µ
2
0. Then (4.7) yields

‖v‖2V 2,2(Ω) ≤ c1(4c22 + 2c2)µ4
0 + c2µ

2
0.

Thus if

µ2
0 ≤

1

2c1(2c2 + 1)
, (4.9)

then the operator A maps the ball ‖z‖2V 2,2(Ω) ≤ R
2
0 into itself.

Let us show that A is a contraction. Assume z1, z2 ∈ V 2,2(Ω), ‖zi‖2V 2,2(Ω) ≤
R2

0 and let v1 = Az1, v2 = Az2. The difference A = v1 − v2 is the solution of

Math. Model. Anal., 26(4):651–668, 2021.



666 K. Pileckas and A. Raciene

the problem
−ν∆A +∇Q = −(Z · ∇)z1 + (z2 · ∇)Z− (V · ∇)Z− (Z · ∇)V,

divA = 0,
A|∂Ω = 0,

(4.10)

where Z = z1−z2 and Q = q1−q2, qi are corresponding to vi, i = 1, 2, pressure
functions. The same argument as above gives us the estimates

‖(Z · ∇)z1‖2L2(Ω)+‖(z2 · ∇)Z‖2L2(Ω) ≤c
(
‖z1‖2V 2,2(Ω)+‖z2‖2V 2,2(Ω)

)
‖Z‖2V 2,2(Ω);

‖(V · ∇)Z‖2L2(Ω) + ‖(Z · ∇)V‖2L2(Ω) ≤c‖a‖
2
W 3/2,2(∂Ω)‖Z‖

2
V 2,2(Ω).

Therefore, the solution A = Az1 − Az2 of problem (4.10) admits the estimate

‖Az1 − Az2‖2V 2,2(Ω) ≤c
(

2R2
0 + ‖a‖2W 3/2,2(∂Ω)

)
‖z1 − z2‖2V 2,2(Ω)

≤c3µ2
0‖z1 − z2‖2V 2,2(Ω).

If γ0 satisfies condition (4.9) and µ2
0 < 1/c3, then the operator A is a con-

traction in the ball BR0 = {z ∈ V 2,2(Ω) : ‖z1‖2V 2,2(Ω) ≤ R0}. Thus, by the

Banach fixed point theorem, operator equation (4.8) has a unique fixed point
in BR0 . Equivalently, problem (4.4) has a unique solution (v, q) such that
v ∈ V 2,2(Ω), ∇q ∈ L2(Ω) and estimate (4.5) is valid. ut

References

[1] R.A. Adams and J. Fournier. Sobolev Spaces. Academic Press (Elsevier), 2003.

[2] G. Cardone, S.A. Nazarov and J. Sokolowski. Asymptotics of solutions of the
Neumann problem in a domain with closely posed components of the boundary.
Asymptotic Analysis, 62(1-2):41–88, 2009. https://doi.org/10.3233/ASY-2008-
0915.

[3] A. Eismontaite and K. Pileckas. On singular solutions of time-periodic and steady
Stokes problems in a power cusp domain. Applicable Analysis, 97(3):415–437,
2018. https://doi.org/10.1080/00036811.2016.1269321.

[4] A. Eismontaite and K. Pileckas. On singular solutions of the initial boundary
value problem for the Stokes system in a power cusp domain. Applicable Analysis,
98(13):2400–2422, 2019. https://doi.org/10.1080/00036811.2018.1460815.

[5] I.V. Kamotski and V.G. Maz’ya. On the third boundary value problem in do-
mains with cusps. Journal of Mathematical Sciences, 173(5):609–631, 2011.
https://doi.org/10.1007/s10958-011-0262-5.

[6] L.V. Kapitanskii and K. Pileckas. Certain problems of vector analysis. J. Sov.
Math., 32(5):469–483, 1986. https://doi.org/10.1007/BF01372197.

[7] K. Kaulakyte and N. Kloviene. On nonhomogeneous boundary value
problem for the stationary Navier-Stokes equations in a symmetric
cusp domain. Mathematical Modelling and Analysis, 26(1):55–71, 2021.
https://doi.org/10.3846/mma.2021.12173.

https://doi.org/10.3233/ASY-2008-0915
https://doi.org/10.3233/ASY-2008-0915
https://doi.org/10.1080/00036811.2016.1269321
https://doi.org/10.1080/00036811.2018.1460815
https://doi.org/10.1007/s10958-011-0262-5
https://doi.org/10.1007/BF01372197
https://doi.org/10.3846/mma.2021.12173


On Singular Solutions of the Stationary Navier-Stokes System 667

[8] K. Kaulakyte, N. Kloviene and K. Pileckas. Nonhomogeneous boundary value
problem for the stationary Navier-Stokes equations in a domain with a cusp. Z.
Angew. Math. Phys., 70(36), 2019. https://doi.org/10.1007/s00033-019-1075-5.

[9] K. Kaulakyte and K. Pileckas. Nonhomogeneous boundary value problem
for the time periodic linearized Navier-Stokes system in a domain with out-
let to infinity. J. of Mathematical Analysis and Applications, 489(1), 2020.
https://doi.org/10.1016/j.jmaa.2020.124126.

[10] H. Kim and H. Kozono. A removable isolated singularity theorem for the
stationary Navier-Stokes equations. J. Diff. Equations, 220(1):68–84, 2006.
https://doi.org/10.1016/j.jde.2005.02.002.

[11] M.B. Korobkov, K. Pileckas, V.V. Pukhnachev and R. Russo. The flux problem
for the Navier-Stokes equations. Russian Math. Surveys, 69(6):1065–1122, 2014.
https://doi.org/10.1070/RM2014v069n06ABEH004928.

[12] V. Kozlov and J. Rossmann. On the nonstationary Stokes sys-
tem in a cone. J. of Diff. Equations, 260(12):8277–8315, 2016.
https://doi.org/10.1016/j.jde.2016.02.024.

[13] V. Kozlov and J. Rossmann. On the nonstationary Stokes system in a cone:
Asymptotics of solutions at infinity. J. of Mathematical Analysis and Applica-
tions, 486(10), 2020. https://doi.org/10.1016/j.jmaa.2019.123821.

[14] V. Kozlov and J. Rossmann. On the nonstationary Stokes system in
a cone (Lp theory). J. of Mathematical Fluid Mechanics, 22(42), 2020.
https://doi.org/10.1007/s00021-020-00502-w.

[15] O.A. Ladyzhenskaya. The mathematical theory of viscous incompressible flow.
Gordon and Breach, 1969.

[16] V.G. Maz’ya, S.A. Nazarov and B.A. Plamenevskii. Asymptotic theory of elliptic
boundary value problems in singularly perturbed domain, Vol. 2. Birkhauser-
Verlag, 2000. https://doi.org/10.1007/978-3-0348-8432-7.

[17] V.G. Maz’ya and B.A. Plamenevskii. Estimates in Lp and Hölder classes and
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