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Abstract. We consider compact finite-difference schemes of the 4th approxima-
tion order for an initial-boundary value problem (IBVP) for the n-dimensional non-
homogeneous wave equation, n ≥ 1. Their construction is accomplished by both the
classical Numerov approach and alternative technique based on averaging of the equa-
tion, together with further necessary improvements of the arising scheme for n ≥ 2.
The alternative technique is applicable to other types of PDEs including parabolic
and time-dependent Schrödinger ones. The schemes are implicit and three-point in
each spatial direction and time and include a scheme with a splitting operator for
n ≥ 2. For n = 1 and the mesh on characteristics, the 4th order scheme becomes
explicit and close to an exact four-point scheme. We present a conditional stability
theorem covering the cases of stability in strong and weak energy norms with respect
to both initial functions and free term in the equation. Its corollary ensures the 4th
order error bound in the case of smooth solutions to the IBVP. The main schemes are
generalized for non-uniform rectangular meshes. We also give results of numerical ex-
periments showing the sensitive dependence of the error orders in three norms on the
weak smoothness order of the initial functions and free term and essential advantages
over the 2nd approximation order schemes in the non-smooth case as well.
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1 Introduction

Compact higher-order finite-difference schemes for PDEs is a popular subject
and a vast literature is devoted to them. The case of such type schemes for
the wave equation have recently attracted a lot of interest, in particular, see
[2, 4, 8, 12], where much more related references can be found.

We consider compact finite-difference schemes of the 4th approximation
order for an initial-boundary value problem (IBVP) for the n-dimensional wave
equation with constant coefficients, n ≥ 1. Their construction on uniform
meshes is accomplished by both the classical Numerov approach and alternative
technique based on averaging of the equation related to the polylinear finite
element method (FEM), together with further necessary improvements of the
arising scheme for n ≥ 2. This alternative technique is applicable to other
types of PDEs including parabolic and time-dependent Schrödinger equations
(TDSE). The constructed schemes are implicit and three-point in each spatial
direction and time. For n ≥ 2, there is a scheme with a splitting operator
among them. Notice that we use implicit approximations for the second initial
condition in the spirit of the approximations for the equation. Curiously, for
n = 1 and the mesh on characteristics of the equation, the 4th order scheme
becomes explicit and very close to an exact scheme on a four-point stencil.

We present a conditional stability theorem covering the cases of stability in
strong (standard) and weak energy norms with respect to both initial functions
and free term in the equation. Its corollary rigorously ensures the 4th order
error bound in the case of smooth solutions to the IBVP. Note that stability
is unconditional for similar compact schemes on uniform meshes for other type
PDEs, for example, see [3, 11]. Our approach is applied in a unified manner
for any n ≥ 1 (not separately for n = 1, 2 or 3 as in many papers), the
uniform rectangular (not only square) mesh is taken, the stability results are
of standard kind in the theory of finite-difference schemes and proved by the
energy techniques (not only by getting bounds for harmonics of the numerical
solution as in most papers). In particular, the last point allows us to prove
rigorously the 4th order error estimate in the strong energy norm for smooth
solutions.

Moreover, enlarging of most schemes to the case of the wave equation with
the variable coefficient ρ(x) in front of ∂2

t u is simple, and there exists some
connection to [2, 12]. Also the main schemes are rather easily generalized for
non-uniform rectangular meshes in space and time; we apply averaging tech-
nique to implement both aims. Concerning compact schemes on non-uniform
meshes for other (1D in space) equations, in particular, see [5, 14,15,17].

In our 1D numerical experiments, we first concentrate on demonstrating the
sensitive dependence of the error orders in the mesh L2, uniform and strong
energy norms on the weak smoothness order of the both initial functions and
the weak dominating mixed smoothness order of the free term. The cases of the
delta-shaped, discontinuous or with discontinuous derivatives data are covered.
The higher-order practical error behavior is shown compared to standard 2nd
approximation order schemes [16, 19] thus confirming the essential advantages
of 4th order schemes over them in the non-smooth case as well. Second, we
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present numerical results in the case of non-uniform spatial meshes with various
node distribution functions (for the smooth data).

The paper is organized as follows. Auxiliary Section 2 contains results on
stability of general symmetric three-level method with a weight for hyperbolic
equations in the strong and weak energy norms that we need to apply. The
main Section 3 is devoted to construction and analysis of the compact 4th
order finite-difference schemes. In Section 4, the main compact schemes are
generalized to the case of non-uniform rectangular meshes. The results of
these sections have been received by A. Zlotnik. Section 5 contains results of
numerical experiments have been accomplished by O. Kireeva.

2 General symmetric three-level method for second order
hyperbolic equations and its stability theorem

Let Hh be a family of Euclidean spaces endowed with an inner product (·, ·)h
and the corresponding norm ‖ · ‖h, where h is the parameter (related to a
spatial discretization). Let linear operators Bh and Ah act in Hh and have
the properties Bh = B∗h > 0 and Ah = A∗h > 0. Define the norms ‖w‖Bh =

(Bhw,w)
1/2
h and ‖w‖Ah = (Ahw,w)

1/2
h in Hh generated by them.

We assume that they are related by the following inequality

‖w‖Ah ≤ αh‖w‖Bh , ∀w ∈ Hh ⇔ Ah ≤ α2
hBh. (2.1)

For methods of numerical solving 2nd order elliptic equations, usually αh =
c0/hmin, where hmin is a minimal size of the spatial discretization.

We introduce the uniform mesh ωht = {tm = mht}Mm=0 on a segment [0, T ],
with the step ht = T/M > 0 and M ≥ 2. Let ωht = {tm}M−1

m=1 . We introduce
the mesh averages and difference operators

s̄ty =
y̌ + y

2
, sty =

y + ŷ

2
, δ̄ty =

y − y̌
ht

, δty =
ŷ − y
ht

, δ̊ty =
ŷ − y̌
2ht

and Λty = δtδ̄ty = ŷ−2y+y̌
h2
t

with ym = y(tm), y̌m = ym−1 and ŷm = ym+1, as

well as the summation operator with the variable upper limit Imhty = ht
∑m
l=1 y

l

for 1 ≤ m ≤M and I0
ht
y = 0.

We consider a general symmetric three-level in t method with a weight σ:(
Bh + σh2

tAh
)
Λtv +Ahv = f in Hh on ωht , (2.2)(

Bh + σh2
tAh

)
δtv

0 + 1
2htAhv

0 = u1 + 1
2htf

0 in Hh, (2.3)

where v: ωht → Hh is the sought function and the functions v0, u1 ∈ Hh and
f : {tm}M−1

m=0 → Hh are given; we omit their dependence on h for brevity. Note
that the parameter σ can depend on h := (h, ht). Recall that linear algebraic
systems with one and the same operator Bh + σh2

tAh has to be solved at time
levels tm to find the solution vm+1, 0 ≤ m ≤ M − 1. Note that (2.3) can be
rewritten in the form closer to (2.2):(

Bh + σh2
tAh

)
δtv

0 − u1

0.5ht
+Ahv

0 = f0.

Math. Model. Anal., 26(3):479–502, 2021.
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Let the following conditions related to σ hold: either σ ≥ 1
4 and ε0 = 1, or

σ < 1
4 , ( 1

4 − σ)h2
tα

2
h ≤ 1− ε2

0 for some 0 < ε0 < 1. (2.4)

Then one can introduce the following σ- and ht-dependent norm in Hh and
bound it from below:

ε0‖w‖Bh ≤ ‖w‖0,h :=
[
‖w‖2Bh + (σ − 1

4 )h2
t‖w‖2Ah

]1/2
, ∀w ∈ Hh. (2.5)

Obviously, for σ ≤ 1
4 , one also has ‖w‖0,h ≤ ‖w‖Bh , and then the norms ‖ ·‖0,h

and ‖ · ‖Bh are equivalent uniformly in h.
We present the stability theorem for method (2.2)–(2.3) with respect to the

initial data v0 and u1 and the free term f in the strong (standard) and weak
energy mesh norms.

Define the norm ‖y‖L1
ht

(Hh) = 1
4ht‖y

0‖h+IM−1
ht
‖y‖h for y: {tm}M−1

m=0 → Hh.

Theorem 1. For the solution to method (2.2)–(2.3), the following bounds hold:
(1) in the strong energy norm

max
1≤m≤M

[
‖δ̄tvm‖2Bh + (σ − 1

4 )h2
t‖δ̄tvm‖2Ah + ‖s̄tvm‖2Ah

]1/2
≤
(
‖v0‖2Ah + ε−2

0 ‖B
−1/2
h u1‖2h

)1/2
+ 2ε−1

0 ‖B
−1/2
h f‖L1

ht
(Hh); (2.6)

one can replace the f -term with 2IM−1
ht
‖A−1/2

h δ̄tf‖h+3 max
0≤m≤M−1

‖A−1/2
h fm‖h;

(2) in the weak energy norm

max
0≤m≤M

max
{[
‖vm‖2Bh + (σ − 1

4 )h2
t‖vm‖2Ah

]1/2
, ‖Imht s̄tv‖Ah

}
≤
[
‖v0‖2Bh+(σ− 1

4 )h2
t‖v0‖2Ah

]1/2
+2‖A−1/2

h u1‖h+2‖A−1/2
h f‖L1

ht
(Hh). (2.7)

For f = δtg, one can replace 2‖A−1/2
h f‖L1

ht
(Hh) with 2

ε0
IMht ‖B

−1/2
h

(
g−stg0

)
‖h.

Proof. Similar bounds have recently been proved in [20] for the method(
τBh + σh2

tAh
)
Λtv +B1hδ̊tv +Ahv = f in Hh on ωht ,(

τBh + 1
2htB1h + σh2

tAh
)
δtv

0 + 1
2htAhv

0 = u1 + 1
2htf

0 in Hh

of a more general form, with the parameter τ > 0 and an operator B1h =
B∗1h > 0 acting in Hh. In these bounds, one can take τ = 1 and easily see
from their proofs that the bounds mainly remain valid for B1h = B∗1h ≥ 0, in
particular, B1h = 0 (the case considered here), up to the norm of f standing
in (2.6) and the norm of g − stg0 mentioned in Item 2.

To verify the validity of the bounds precisely with the norms of f and
g̃ := g − stg0 indicated in this theorem, it suffices to modify bounds for the
following summands with f in the strong energy equality in [20, Theorem 1]

1
2ht(f

0, δ̄tv
1)h + 2Im−1

ht
(f, δ̊tv)h ≤ 1

2ht‖B
−1/2
h f0‖h‖δ̄tv1‖Bh

+ 2IM−1
ht
‖B−1/2

h f‖h max
1≤m≤M

‖δ̄tvm‖Bh ≤ 2
ε0
‖B−1/2

h f‖L1
ht

(Hh) max
1≤m≤M

‖δ̄tvm‖0,h
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and, setting Ǐmhtf = Im−1
ht

f , in the weak energy equality in [20, Theorem 2]

2Imht
(

1
2htf

0+Ǐhtf, s̄tv
)
h

= 2Imht
(
g̃, s̄tv

)
h
≤ 2

ε0
IMht ‖B

−1/2
h g̃‖h max

1≤m≤M
‖s̄tvm‖0,h,

for 1 ≤ m ≤M , where the relations δ̊t = 1
2 (δt+ δ̄t) and (2.5) have been applied.

ut

Clearly in fact the norm ‖ ·‖0,h stands on the left in (2.6) and on both sides
in (2.7). Bounds of type (2.6) with a stronger norm of f can be found in [11].

Below we also refer to the following stability result.

Remark 1. Under assumptions (2.4) with ε0 = 0, instead of bound (2.6) the
following one holds

max
1≤m≤M

[
‖δ̄tvm‖2Bh + (σ − 1

4 )h2
t‖δ̄tvm‖2Ah + ‖s̄tvm‖2Ah

]1/2
≤
[
‖v0‖2Ah + ‖(Bh + σh2

tAh)−1/2u1‖2h
]1/2

+ 2IM−1
ht
‖A−1/2

h δ̄tf‖h + 3 max
0≤m≤M−1

‖A−1/2
h fm‖h,

whereas bound (2.7) remains valid (its proof does not change for ε0 ≥ 0).
To be convinced of the latter bound, it is necessary to transform and bound

differently the terms with v0 and u1 in the case f = 0 in the strong energy
equality in [20]. Namely, using the formula s̄tv

1 = v0 + 1
2htδ̄tv

1 and equation
(2.3) with f0 = 0, we can set Ch := (Bh + σh2

tAh)−1 and obtain

(Ahv
0, s̄tv

1)h + (u1, δ̄tv
1)h = ‖v0‖2Ah +

(
1
2htAhv

0 + u1, δ̄tv
1
)
h

= ‖v0‖2Ah
+
(
Ch
(

1
2htAhv

0+u1

)
,− 1

2htAhv
0+u1

)
h

= ‖v0‖2Ah+‖u1‖2Ch−‖
1
2htAhv

0‖2Ch ,

since Ch = C∗h > 0. This implies the first bound of this Remark.
Notice that Bh + σh2

tAh ≥ ε0Bh + 1
4h

2
tAh under the assumptions either

σ ≥ 1
4 and ε0 = 1, or (2.4) with 0 ≤ ε0 < 1 and, as a corollary, Ch ≤ ε−1

0 B−1
h

(for ε0 6= 0) and Ch ≤ 4h−2
t A−1

h . But, for ε0 = 0, the quantity ‖w‖0,h could be
(in general) only a semi-norm in Hh, and its lower bound by ‖w‖Bh uniformly
in h is not valid any more.

It is well-known that each of bounds (2.6) or (2.7) implies existence and unique-
ness of the solution to method (2.2)–(2.3) for any given v0, u1 ∈ Hh and f :
{tm}M−1

m=0 → Hh. The same concerns finite-difference schemes below.

3 Construction and properties of compact finite -
difference schemes of the 4th approximation order

We consider the following IBVP with the nonhomogeneous Dirichlet boundary
condition for the slightly generalized wave equation

∂2
t u− a2

i ∂
2
i u = f(x, t) in QT = Ω × (0, T ); (3.1)

u|ΓT = g(x, t); u|t=0 = u0(x), ∂tu|t=0 = u1(x), x ∈ Ω. (3.2)

Math. Model. Anal., 26(3):479–502, 2021.



484 A. Zlotnik and O. Kireeva

Here a1 > 0, . . . , an > 0 are constants, x = (x1, . . . , xn), Ω = (0, X1) × . . . ×
(0, Xn), n ≥ 1, ∂Ω is the boundary of Ω and ΓT = ∂Ω × (0, T ) is the lateral
surface of QT . Hereafter the summation from 1 to n over the repeated indices
i, j (and only over them) is assumed. Below δ(ij) is the Kronecker symbol.

Define the uniform rectangular mesh ω̄h = {xk = (k1h1, . . . , knhn); 0 ≤
k1 ≤ N1, . . . , 0 ≤ kn ≤ Nn} in Ω̄ with the steps h1 = X1/N1, . . . , hn = Xn/Nn,
h = (h1, . . . , hn) and k = (k1, . . . , kn). Let ωh = {xk; 1 ≤ k1 ≤ N1− 1, . . . , 1 ≤
kn ≤ Nn − 1} and ∂ωh = ω̄h\ωh be the internal part and boundary of ω̄h.
Define the meshes ωh := ωh × ωht in QT and ∂ωh = ∂ωh × {tm}Mm=1 on Γ̄T .

We introduce the well-known difference operators (Λlw)k = 1
h2
l
(wk+el −

2wk + wk−el), l = 1, . . . , n, on ωh, where wk = w(xk) and e1, . . . , en is the
standard coordinate basis in Rn.

Let below Hh be the space of functions defined on ω̄h, equal 0 on ∂ωh and
endowed with the inner product (v, w)h = h1 . . . hn

∑
xk∈ωh vkwk and the norm

‖w‖h = (w,w)
1/2
h .

Lemma 1. For the sufficiently smooth in Q̄T solution u to equation (3.1), the
following formula holds(

sN − 1
12h

2
ta

2
iΛi
)
Λtu− a2

jsNĵΛju− fN = O(|h|4) on ωh, (3.3)

where

sN := I+ 1
12h

2
iΛi, sNĵ := I+(1−δ(ij)) 1

12h
2
iΛi, fN := f+ 1

12h
2
tΛtf+ 1

12h
2
iΛif,

and I is the identity operator. Note that sNĵ = I for n = 1.

Proof. We give two different proofs.
1. The first one follows to the classical Numerov approach. We take the

simplest explicit three-level discretization of equation (3.1) having the form

Λtv − a2
iΛiv = f on ωh,

(the particular case of equation (2.2) for Bh = I, Ah = −a2
iΛiv and σ = 0) and,

under the assumption of sufficient smoothness of u, select the leading term of
its approximation error ψe := Λtu− a2

iΛiu− f :

ψe = Λtu− ∂2
t u− a2

i (Λiu− ∂2
i u) = 1

12h
2
t∂

4
t u− 1

12h
2
i a

2
i ∂

4
i u+O(|h|4). (3.4)

We express the derivatives ∂4
t u and ∂4

ku in terms of mixed derivatives by dif-
ferentiating equation (3.1):

∂4
t u = a2

i ∂
2
i ∂

2
t u+ ∂2

t f, a2
k∂

4
ku = ∂2

k∂
2
t u− (1− δ(kj))a2

j∂
2
k∂

2
j u− ∂2

kf. (3.5)

Then formula (3.4) takes the form

ψe =
h2
t

12a
2
i ∂

2
i ∂

2
t u−

h2
i

12∂
2
i ∂

2
t u+

h2
i

12 (1−δ(ij))a2
j∂

2
i ∂

2
j u+

h2
t

12∂
2
t f+

h2
i

12∂
2
i f+O(|h|4).

Here all the 2nd order derivatives can be replaced by the corresponding symmet-
ric three-point difference discretizations preserving the order of the remainder:

ψe =
h2
t

12a
2
iΛiΛtu−

h2
i

12ΛiΛtu+
h2
i

12 (1−δ(ij))a2
jΛiΛju+

h2
t

12Λtf+
h2
i

12Λif+O(|h|4).
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Recalling the above definition of ψe, we can rewrite the last formula as (3.3).

2. The second proof is based on averaging of equation (3.1) related to the
polylinear finite elements. We define the well-known average in the variable xk
related to the linear finite elements

(qkw)(xk) = 1
hk

∫ hk

−hk
w(xk + ξ)

(
1− |ξ|hk

)
dξ.

For a function w(xk) smooth on [0, Xk], the following formulas hold

qk∂
2
kw = Λkw, (3.6)

qkw = w + 1
12h

2
k∂

2
kw + qkρk4(∂4

kw) = w + 1
12h

2
kΛkw + ρ̃k4(∂4

kw),

|qkρks(∂skw)|≤cshsk‖∂skw‖C(Ikl), s=2, 4, |ρ̃k4(∂4
kw)|≤ c̃4h4

k‖∂4
kw‖C(Ikl) (3.7)

and qkw = w+ qkρk2(∂2
kw) at the nodes xk = xkl := lhk, 1 ≤ l ≤ Nk − 1, with

Ikl := [xk(l−1), xk(l+1)]. The first formula is checked by integrating by parts
and other formulas hold owing to the Taylor formula at xkl with the residual
in the integral form

ρks(w)(xk) = 1
(s−1)!

∫ xk

xkl

w(ξ)(xk − ξ)s−1 dξ, (3.8)

for s = 2, 4, together with 1
hk

∫ hk
−hk

1
2ξ

2
(
1 − |ξ|hk

)
dξ = 1

12h
2
k. The respective

formulas hold for the averaging operator qt in the variable t = xn+1 as well
(since one can set Xn+1 = T and hn+1 = ht).

We apply the operator q̄qt with q̄ := q1 . . . qn to Equation (3.1) at the nodes
of ωh and get

q̄Λtu− a2
i q̄îqtΛiu = q̄qtf with q̄î :=

∏
1≤k≤n, k 6=i

qk. (3.9)

The multiple application of the above formulas for the averages leads to

Λtu+ 1
12h

2
iΛiΛtu− a2

i

[
Λ2
iu+ (1− δ(ij)) 1

12h
2
jΛjΛiu+ 1

12h
2
tΛiΛtu

]
= f + 1

12h
2
iΛif + 1

12h
2
tΛtf +O(|h|4),

and thus formula (3.3) is derived once again. ut

Remark 2. For the first order in time parabolic equation or TDSE, one should
apply the simpler averaging qty

m = 1
ht

∫ tm
tm−1

y(t) dt in time to derive two-level

higher-order compact schemes.

Formula (3.3) means that the discretization of Equation (3.1) of the form(
sN − 1

12h
2
ta

2
iΛi
)
Λtv − a2

i sNîΛiv = fN on ωh (3.10)

has the approximation error of the order O(|h|4).
Notice that the coefficients of formulas

y + 1
12h

2
tΛty = 1

12 (ŷ + 10y + y̌), 1
12h

2
iΛiwk = 1

12δ
(ii)(wk−ei + wk+ei)− n

6wk

Math. Model. Anal., 26(3):479–502, 2021.
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respectively on ωht and ωh are independent of h.
For discretization (3.10), we consider the corresponding equation at t0 = 0(
sN − 1

12h
2
ta

2
iΛi
)
δtv

0 − 1
2hta

2
i sNîΛiv

0 = u1N + 1
2htf

0
N on ωh, (3.11)

cf. (2.2)–(2.3), and find out for which u1N and f0
N its approximation error also

has the order O(|h|4). Let 0 < h̄t ≤ T and ht ≤ h̄t.

Lemma 2. For the sufficiently smooth in Q̄h̄t solution u to Equation (3.1)
satisfying the initial conditions from (3.2), under the choice

u1N =
(
sN + 1

12h
2
ta

2
iΛi
)
u1, (3.12)

f0
N = f

(0)
dht

+ 1
12h

2
iΛif0, f

(0)
dht

= f
(0)
d +O(h3

t ) (3.13)

on ωh, where f
(0)
d := f0 + 1

3ht(∂tf)0 + 1
12h

2
t (∂

2
t f)0 with y0 := y|t=0, the approx-

imation error of Equation (3.11) satisfies the following formula

ψ0
e :=

(
sN − h2

t

12a
2
iΛi
)
(δtu)0 − ht

2 a
2
i sNîΛiu0 − u1N − ht

2 f
0
N = O(|h|4). (3.14)

Notice that f
(0)
d is not the term f0 + 1

12h
2
t (∂

2
t f)0 of type approximated above.

Proof. Let 0 ≤ t ≤ h̄t. Once again we give two proofs.
1. Using Taylor’s formula in t and grouping separately terms with the time

derivatives of odd and even orders, we obtain

ψ0
e =
(
sN − 1

12h
2
ta

2
iΛi
)
(∂tu)0 + 1

6h
2
t (∂

3
t u)0 + 1

2ht
[(
sN − 1

12h
2
ta

2
iΛi
)
(∂2
t u)0

+ 1
12h

2
t (∂

4
t u)0 − a2

i sNîΛiu0

]
− u1N − 1

2htf
0
N +O(|h|4).

In virtue of Equation (3.1) we have

∂3
t u = a2

i ∂
2
i ∂tu+ ∂tf = a2

iΛ
2
i ∂tu+ ∂tf +O(|h|2).

Moreover, (∂tu)0 = u1, therefore we find(
sN − 1

12h
2
ta

2
iΛi
)
(∂tu)0 + 1

6h
2
t (∂

3
t u)0

=
(
sN + 1

12h
2
ta

2
iΛi
)
u1 + 1

6h
2
t (∂tf)0 +O(|h|4). (3.15)

Next, the first formula (3.5) implies ∂4
t u = a2

iΛi∂
2
t u+ ∂2

t f +O(|h|2) and thus(
sN − 1

12h
2
ta

2
iΛi
)
(∂2
t u)0 + 1

12h
2
t (∂

4
t u)0 = sN (∂2

t u)0 + 1
12h

2
t (∂

2
t f)0 +O(|h|4).

Using (3.1) for t = 0 and the formula sN = sNk̂ + 1
12h

2
kΛk, we also have

sN (∂2
t u)0 − a2

i sNîΛiu0 = sN (a2
i ∂

2
i u0 + f0)− a2

i sNîΛiu0

= a2
i sNî(∂

2
i u0 − Λiu0) + 1

12h
2
i a

2
iΛi∂

2
i u0 + sNf0

= a2
i sNî

(
− 1

12h
2
i ∂

4
i u0

)
+ 1

12h
2
i a

2
iΛi∂

2
i u0 + sNf0 +O(|h|4)

= 1
12h

2
i a

2
i (Λi∂

2
i u0 − ∂4

i u0) + sNf0 +O(|h|4) = sNf0 +O(|h|4).
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Therefore we have proved the formula(
sN− 1

12h
2
ta

2
iΛi
)
(∂2
t u)0+ 1

12h
2
t (∂

4
t u)0−a2

i sNîΛiu0=sNf0 + 1
12h

2
t (∂

2
t f)0+O(|h|4).

This formula and (3.15) under choice (3.12)–(3.13) lead to formula (3.14).
2. Again the second proof is based on averaging of equation (3.1). We

define the related one-sided average in t over (0, ht)

qty
0 = 2

ht

∫ ht

0

y(t)
(
1− t

ht

)
dt (3.16)

and apply ht
2 q̄qt(·)

0 to (3.1). Since ht
2 (qt∂tu)0 = (δtu)0 − (∂tu)0, we get

q̄(δtu)0 − ht
2 a

2
i q̄îΛiqtu

0 = q̄u1 + ht
2 q̄qtf

0. (3.17)

Using Taylor’s formula at t = 0 and calculating the arising integrals, we find

ht
2 qtf

0 = ht
2 f0 +

h2
t

6 (∂tf)0 +
h3
t

24 (∂2
t f)0 +O(h4

t ) = ht
2 f

(0)
d +O(h4

t ). (3.18)

Here we omit the integral representations for O(h4
t )-terms for brevity. As in

the proof of Lemma 1 and owing to the last expansion, we have q̄(δtu)0 =
sN (δtu)0 +O(|h|4) and

q̄u1 = sNu1 +O(|h|4), ht
2 qtq̄f

0 = ht
2 f

(0)
d + 1

12h
2
iΛif0 +O(|h|4). (3.19)

Also owing to Taylor’s formula in t at t = 0 we can write down

u(·, t) = u0 + tu1 + t2

ht
((δtu)0 − u1) +O(t3).

Thus similarly first to (3.18) and second to the first formula (3.19) we obtain

ht
2 a

2
i q̄îΛiqtu

0 = ht
2 a

2
i q̄îΛiu0 +

h2
t

6 a
2
i q̄îΛiu1 +

h2
t

12a
2
i q̄îΛi((δtu)0 − u1) +O(h4

t )

= ht
2 a

2
i sNîΛiu0 +

h2
t

12a
2
iΛiu1 +

h2
t

12a
2
i sNîΛi(δtu)0 +O(|h|4).

Inserting all the derived formulas into (3.17), we again obtain the desired result.
ut

Remark 3. If f is sufficiently smooth in t in Q̄h̄t , then the property f
(0)
dht

= f
(0)
d +

O(h3
t ) (see (3.13)) holds for the following three- and two-level approximations

f
(0)
dht

= 7
12f

0 + 1
2f

1 − 1
12f

2, f
(0)
dht

= 1
3f

0 + 2
3f

1/2 with f1/2 := f |t=ht/2.

One can easily check this using the Taylor formula in t at t = 0.
If f is sufficiently smooth in t in Ω̄×[−h̄t, h̄t], then clearly the same property

holds for the one more three-level approximation

f
(0)
dht

= f0+ 1
3htδ̊tf

0+ 1
12h

2
tΛtf

0 = − 1
12f
−1+ 5

6f
0+ 1

4f
1 with f−1 := f |t=−ht .

Remark 4. Below we consider the case of non-smooth f . Namely the above
second proofs of Lemmas 1–2 clarify that then fmN should be replaced with
q̄qtf

m, 0 ≤ m ≤ M − 1, according to (3.9) and (3.17) and identically to the
polylinear FEM with the weight [19], or with some its suitable approximation.
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In the simplest case n = 1, Equations (3.10)–(3.11) supplemented with the
boundary condition take the following form[

I + 1
12 (h2

1 − a2
1h

2
t )Λ1

]
Λtv − a2

1Λ1v = fN , (3.20)

v|∂ωh
= g,

[
I + 1

12 (h2
1 − a2

1h
2
t )Λ1

]
δtv

0 − 1
2hta

2
1Λ1v

0 = u1N + 1
2htf

0
N , (3.21)

where equations are valid respectively on ωh and ωh. Hereafter we assume that
the function v0 is given on ω̄h and take the general nonhomogeneous Dirichlet
boundary condition. This scheme can be interpreted as the particular case of
scheme (2.2)–(2.3) with the operators Bh = I and Ah = −a2

1Λ1 and the weight

σ = σ(h) = 1
12

(
1 − h2

1

a21h
2
t

)
(a similar choice of σ was used in [11] in the 1D

parabolic case) or the bilinear finite element method [19] with Bh = I+ 1
6h

2
1Λ1,

Ah = −a2
1Λ1 and σ = σ(h) = 1

12

(
1 +

h2
1

a21h
2
t

)
(though the right-hand sides of the

equations are not the same; but see also Remark 4).
But for n ≥ 2 the above constructed equations (3.10)–(3.11) are not of type

(2.2)–(2.3). Therefore we replace them with the following one(
sN + 1

12h
2
tAN

)
Λtv +ANv = fN on ωh, (3.22)

v|∂ωh
= g, (sN + 1

12h
2
tAN )δtv

0 + 1
2htANv

0 = u1N + 1
2htf

0
N on ωh, (3.23)

where AN := −a2
i sNîΛi, that corresponds to the case Bh = sN , Ah = AN and

σ = 1
12 . Since AN+a2

iΛi = a2
i (I−sNî)Λi, we have h2

t (AN+a2
iΛi)Λtu = O(|h|4)

and h2
t (AN + a2

iΛi)(δtu)0 = O(|h|4) for functions u sufficiently smooth in Q̄T ,
and thus the approximation errors of the both equations of this scheme are also
of the order O(|h|4).

But the latter scheme fails for n ≥ 3 similarly to [3] in the case of the TDSE.
The point is that sN should approximate I adequately, but for the minimal and
maximal eigenvalues of sN < I as the operator in Hh we have

λmin(sN ) = 1− 1
3 sin2 π(Ni−1)

2Ni
< λmax(sN ) < 1.

Therefore λmin(sN ) > 1− n
3 and λmin(sN ) = 1− n

3 +O
(
δ(ii) 1

N2
i

)
that is suitable

for n = 1, 2, but sN becomes almost singular for n = 3 and even λmin(sN ) < 0
(i.e., sN is not positive definite any more) for n ≥ 4, for small |h|.

Thus for n = 3 it is of sense to replace the last scheme with the scheme(
s̄N + 1

12h
2
tAN

)
Λtv +ANv = fN on ωh, (3.24)

v|∂ωh
= g, (s̄N + 1

12h
2
tAN )δtv

0 + 1
2htANv

0 = u1N + 1
2htf

0
N on ωh. (3.25)

Moreover, for any n ≥ 1 we can use the following scheme(
s̄N + 1

12h
2
t ĀN

)
Λtv + ĀNv = fN on ωh, (3.26)

v|∂ωh
= g,

(
s̄N + 1

12h
2
t ĀN

)
δtv

0 + 1
2htĀNv

0 = u1N + 1
2htf

0
N on ωh (3.27)

(cf. [3] in the case of the TDSE); for n = 1 it coincides with (3.20)–(3.21). Here
the operators

s̄N :=

n∏
k=1

skN , s̄Nl̂ :=
∏

1≤k≤n, k 6=l

skN , skN := I + 1
12h

2
kΛk, ĀN := −a2

i s̄NîΛi
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are used, with s̄Nl̂ = I for n = 1. The operator s̄N is the splitting version
of sN , and s̄Nl̂ is the (n − 1)-dimensional case of s̄N . Clearly ĀN = AN for
n = 1, 2. Herewith for the minimal and maximal eigenvalues of s̄N < I as the
operator in Hh we have(2

3

)n
< λmin(s̄N ) =

n∏
k=1

1− 1

3
sin2 π(Nk − 1)

2Nk
< λmax(s̄N ) < 1.

In addition, the following relation between s̄N and sN holds

s̄N = sN +

n∑
k=2

∑
1≤i1<...<ik≤n

1
12h

2
i1Λi1 . . .

1
12h

2
ik
Λik . (3.28)

In virtue of the last formula we have (s̄N − sN )Λtu = O(|h|4) and (s̄N −
sN )(δtu)0 = O(|h|4) for functions u sufficiently smooth in Q̄T , thus the ap-
proximation errors of the both equations of scheme (3.24)–(3.25) still have the
order O(|h|4) as for the previous scheme (3.22)–(3.23).

Since ĀN − AN = −a2
i (s̄Nî − sNî)Λi, in virtue of (3.28) we have (ĀN −

AN )y = O(|h|4) for y = Λtu, u, (δtu)0 and functions u sufficiently smooth in
Q̄T , and thus the approximation errors of the both equations of scheme (3.26)–
(3.27) also have the order O(|h|4) as for the previous scheme (3.24)–(3.25).

Finally, we recommend to apply scheme (3.10)–(3.11) only in the case n = 1
when it takes the form (3.20)–(3.21). Instead, for n = 2 and 3, respectively
schemes (3.22)–(3.23) and (3.24)–(3.25) can be applied. Scheme (3.26)–(3.27)
is more universal and can be applied for any n ≥ 1; for n = 1, it coincides with
(3.20)–(3.21) but for n = 2 and 3 its operators are more complicated than in
(3.22)–(3.23) and (3.24)–(3.25) and thus it can be more spatially dissipative in
practice.

Remark 5. Importantly, for example, scheme (3.26)–(3.27) could be derived
directly like in the second proofs of Lemmas 1–2 by applying more direct though
more complicated approximations of the averages in (3.9) and (3.17):

q̄Λtu− a2
i q̄îqtΛiu = s̄NΛtu− a2

i s̄Nî(I +
h2
t

12Λt)Λiu+O(|h|4)

= (s̄N +
h2
t

12 ĀN )Λtu+ ĀNu+O(|h|4),

q̄(δtu)0 − ht
2 a

2
i q̄îΛiqtu

0 = s̄N (δtu)0 − a2
i s̄îΛi

(
ht
2 u0 +

h2
t

12u1 +
h2
t

12 (δtu)0
)

+O(|h|4) =
(
s̄N +

h2
t

12 ĀN
)
(δtu)0 + ht

2 ĀNu0 − h2
t

12a
2
iΛiu1 +O(|h|4).

For n = 1, implementation of scheme (3.20)–(3.21) is simple and at each
time level {tm}Mm=1 comes down to solving systems of linear algebraic equations
with the same tridiagonal matrix. For n ≥ 2, all the constructed schemes can
be effectively implemented by means of solving the systems of linear algebraic
equations with the same matrix arising at each time level using FFT with
respect to sines in all (or n − 1) spatial directions (after excluding the given
values v̂|∂ωh = ĝ in the equations at the nodes closest to ∂ωh). The matrices are
non-singular (more exactly, symmetric and positive definite after the mentioned
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excluding) that is definitely guaranteed under the hypotheses of Theorem 2
below. Note that the FFT-based algorithms have been very effective in practice
in the recent study [21].

Remark 6. It is not difficult to extend the constructed schemes to the case of
more general equation ρ∂2

t u−a2
i ∂

2
i u = f with ρ = ρ(x) > 0 sufficiently smooth

in Ω̄. Namely, applying the above alternative technique, one should simply
replace the terms sNΛtu, sN (δtu)0 and sNu1 with sN (ρΛtu), sN (ρ(δtu)0) and
sN (ρu1) in (3.3), (3.14) and (3.12) keeping the same approximation orders.
Consequently the terms sNΛtv, sNδtv

0, s̄NΛtv and s̄Nδtv
0 are generalized as

sN (ρΛtv), sN (ρδtv
0), s̄N (ρΛtv) and s̄N (ρδtv

0) in (3.10)–(3.11), (3.22)–(3.23),
(3.24)–(3.25) and (3.26)–(3.27) keeping the same approximation order O(|h|4).
Also the following expansions in powers of Λk for the arising operators at the
upper level hold, for n = 2 and 3, respectively

sN (ρw) + 1
12h

2
tANw = ρw + 1

12

[
h2
iΛi(ρw)− a2

ih
2
tΛiw

]
− ( 1

12 )2h2
t

(
a2

1h
2
2 + a2

2h
2
1

)
Λ1Λ2w,

s̄N (ρw) + 1
12h

2
t ĀNw = ρw + 1

12

[
h2
iΛi(ρw)− a2

ih
2
tΛiw

]
+ ( 1

12 )2
∑

1≤k<l≤3

[
h2
kh

2
lΛkΛl(ρw)− h2

t (a
2
kh

2
l + alh

2
k)ΛkΛlw

]
+ ( 1

12 )3
[
h2

1h
2
2h

2
3Λ1Λ2Λ3(ρw)− h2

t (a
2
1h

2
2h

2
3 + a2

2h
2
1h

2
3 + a2

3h
2
1h

2
2)Λ1Λ2Λ3w

]
.

For ai and hi independent on i, the formulas are simplified, and the operators
on the left there differ only up to factors from ones appearing in the related
formulas (21)–(22) in [2] and (11) in [12]. Moreover, one can show that in this
case generalized equations (3.22) for n = 2 and (3.26) for n = 3 are equivalent
to respective methods from [2,12] up to approximations of f . But the stability
and implementation issues in the generalized case are more complicated and
are beyond the scope of this paper.

For n ≥ 2, we also write down the scheme

B̄NΛtv + ĀNv = fN on ωh, (3.29)

v|∂ωh
= g, B̄Nδtv

0 + 1
2htĀNv

0 = u1N + 1
2htf

0
N on ωh (3.30)

with the following splitting operator at the upper time level

B̄N := B1N . . . BnN , BkN := skN − 1
12h

2
ta

2
kΛk = I + 1

12 (h2
k − h2

ta
2
k

)
Λk. (3.31)

Splitting of such type is well-known and widely used, in particular, see [11,19],
and the implementation of this scheme is most simple and comes down to
sequential solving of systems with tridiagonal matrices in all n spatial directions
which are definitely non-singular under the hypotheses of Theorem 2 below.

The following relation between B̄N and s̄N holds B̄N = s̄N + 1
12h

2
t ĀN +R

with the “residual” operator

R :=

n∑
k=2

(
1
12h

2
t

)k ∑
1≤i1<...<ik≤n

a2
i1 . . . a

2
ik

( ∏
1≤l≤n, l 6=i1,...,ik

slN

)
(−Λi1) . . . (−Λik).

(3.32)
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Clearly R as the operator in Hh satisfies R = R∗ > 0. In particular, one has

R =( 1
12h

2
t

)2
a2

1a
2
2Λ1Λ2 for n = 2,

R =( 1
12h

2
t

)2(
a2

1a
2
2s3NΛ1Λ2 + a2

1a
2
3s2NΛ1Λ3 + a2

2a
2
3s1NΛ2Λ3

)
− ( 1

12h
2
t

)3
a2

1a
2
2a

2
3Λ1Λ2Λ3 for n = 3.

Since RΛtu = O(h4
t ) and R(δtu)0 = O(h4

t ) for functions u sufficiently
smooth in Q̄T , scheme (3.29)–(3.30) has the approximation error O(|h|4) as
scheme (3.26)–(3.27). Note that some other known methods of splitting are
able to deteriorate this approximation order.

Now we study the operator inequality in (2.1) for the above arisen operators.

Lemma 3. For the pairs of operators (Bh, Ah) = (sN , AN ) for n = 2,
(Bh, Ah) = (s̄N , AN ) for n = 3, (s̄N , ĀN ) for n ≥ 1 and (s̄N + R, ĀN ) for
n ≥ 2, the following inequality holds

Ah ≤ α2
hBh in Hh with α2

h < 6C0a
2
i /h

2
i , (3.33)

where C0 = 4
3 in the first case of (Bh, Ah) or C0 = 1 in other cases.

Proof. Let 1 ≤ k ≤ n and {λ(k)
l := 4

h2
k

sin2 πlhk
2Xk
}Nk−1
l=1 be the collection of

eigenvalues of the operator −Λk in Hh, with the maximal of them λ
(k)
max =

4
h2
k

sin2 π(Nk−1)
2Nk

< 4
h2
k

. The inequality −Λk ≤ α2
1hskN in Hh is equivalent to the

following inequality between the eigenvalues of these operators

λ
(k)
l ≤ α2

1h

(
1− 1

12h
2
kλ

(k)
l

)
, 1 ≤ l ≤ Nk − 1.

Consequently the sharp constant is

α2
1h = max

1≤l≤Nk−1

λ
(k)
l

1− 1
12h

2
kλ

(k)
l

=
λ

(k)
max

1− 1
12h

2
kλ

(k)
max

< 3
2λ

(k)
max < 6 1

h2
k
.

Herewith α2
1h = 6 1

h2
k

(
1 +O

(
1
N2
k

))
, thus the last bound is asymptotically sharp.

Similarly for n = 2 the inequality AN ≤ α2
hsN in Hh holds with

α2
h = max

1≤k≤N1−1, 1≤l≤N2−1

(
1− 1

12h
2
1λ

(1)
k

)
a2

2λ
(2)
l +

(
1− 1

12h
2
2λ

(2)
l

)
a2

1λ
(1)
k

1− 1
12h

2
1λ

(1)
k −

1
12h

2
2λ

(2)
l

.

It is not difficult to check that the function under the max sign has the posi-

tive partial derivatives with respect to arguments λ
(1)
k and λ

(2)
l on the natural

intervals of their values and thus

α2
h =

(
1− 1

12h
2
1λ

(1)
max

)
a2

2λ
(2)
max+

(
1− 1

12h
2
2λ

(2)
max

)
a2

1λ
(1)
max

1− 1
12h

2
1λ

(1)
max − 1

12h
2
2λ

(2)
max

< 2
(
a2

1λ
(1)
max+a2

2λ
(2)
max

)
.
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This implies (3.33) in the first case. The last bound is asymptotically sharp too.
Next, in virtue of the inequalities sNî < s̄Nî for n = 3 (see formula (3.28)

for n = 2) and −Λk < 3
2λ

(k)
maxskN in Hh, the following inequalities in Hh hold:

AN =− a2
i sNîΛi < a2

i s̄Nî
(

3
2λ

(i)
maxsiN

)
= 3

2

(
a2
iλ

(i)
max

)
s̄N for n = 3,

ĀN =− a2
i s̄NîΛi < a2

i s̄Nî
(

3
2λ

(i)
maxsiN

)
= 3

2

(
a2
iλ

(i)
max

)
s̄N < 3

2

(
a2
iλ

(i)
max

)
(s̄N+R)

for n ≥ 2. Therefore inequality (3.33) has been proved in all the cases. ut

Now we state a result on conditional stability in two norms for the con-
structed schemes.

Theorem 2. Let g = 0 in (3.2) and 0 < ε0 < 1. Let us consider schemes
(3.22)–(3.23), (3.24)–(3.25), (3.26)–(3.27) and (3.29)–(3.30) under the condi-
tion

C0h
2
t
a2i
h2
i
≤ 1− ε2

0 (3.34)

with the pairs of operators respectively (Bh, Ah) = (sN , AN ) for n = 2,
(Bh, Ah) = (s̄N , AN ) for n = 3, (s̄N , ĀN ) for n ≥ 1 (for n = 1, this covers also
scheme (3.20)-(3.21)) and (s̄N + R, ĀN ) for n ≥ 2. Here C0 is the same as
in Lemma 3. Then the solutions to all the listed schemes satisfy the following
bounds

max
1≤m≤M

[
ε2

0‖δ̄tvm‖2Bh + ‖s̄tvm‖2Ah
]1/2

≤
(
‖v0‖2Ah + ε−2

0 ‖B
−1/2
h u1N‖2h

)1/2
+ 2ε−1

0 ‖B
−1/2
h fN‖L1

ht
(Hh); (3.35)

the fN -term can be taken as 2IM−1
ht
‖A−1/2

h δ̄tfN‖h + 3 max
0≤m≤M−1

‖A−1/2
h fmN ‖h

as well, and

max
0≤m≤M

max
{
ε0‖vm‖Bh , ‖Imht s̄tv‖Ah

}
≤ ‖v0‖Bh + 2‖A−1/2

h u1N‖h + 2‖A−1/2
h fN‖L1

ht
(Hh);

for fN = δtg, the fN -term can be replaced with 2ε−1
0 IMht ‖B

−1/2
h

(
g − stg0

)
‖h.

Importantly, the both bounds hold for any free terms u1N ∈ Hh and fN :
{tm}M−1

m=0 → Hh (not only for those defined in Lemmas 1–2).

Proof. The theorem follows immediately from the above general stability The-
orem 1 applying assumption (2.4) for σ = 1/12, in virtue of inequality (2.5)
and Lemma 3. ut

Corollary 1. For the sufficiently smooth in Q̄T solution u to the IBVP (3.1)–
(3.2), v0 = u0 on ωh and under the hypotheses of Theorem 2 excluding g = 0,
for all the schemes listed in it, the following 4th order error bound in the strong
energy norm holds

max
1≤m≤M

[
ε2

0‖δ̄t(u− v)m‖2Bh + ‖s̄t(u− v)m‖2Ah
]1/2

= O(|h|4).
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The proof is standard (for example, see [11]) and follows from the stability
bound (3.35) applied to the error r := u − v (herewith r|∂ωh

= 0, r0 = 0).
The approximation errors play the role of fmN , 1 ≤ m ≤ M − 1, and u1N

in the equations of the schemes, and the above checked conclusion that these
errors have the order O(|h|4) for all the listed schemes is essential, as well as
ht = O(|h|) in Theorem 2.

Notice that, in the very particular case h1

a1
= . . . = hn

an
= ht, schemes (3.20)–

(3.21) and (3.29)–(3.30) become explicit (since then B̄N = I, see (3.31)) and,
moreover, the latter one differs from the simplest explicit scheme only by the
above derived approximations of the free terms in its equations. Herewith, for
scheme (3.20)–(3.21), condition (3.34) is valid with C0 = 1 and only ε0 = 0
(actually, with some 0 < ε0 = ε0(h) < 1 as one can check). But, for scheme
(3.29)–(3.30) and n ≥ 2, the condition even with ε0 = 0 fails; more careful
analysis of inequality (3.33) for this scheme still allows to improve the bound
for α2

h but not the drawn conclusion itself. According to Remark 1, for scheme
(3.20)–(3.21), even in this particular case some stability bounds still hold. The
bounds contain terms of the following type

‖w‖20,h =
(
(I +

h2
i

4 Λ1)w,w
)
h
≥ cos2 π(N1−1)

2N1
‖w‖2h ∀w ∈ Hh.

Thus ‖w‖0,h remains a norm in Hh but clearly it is no longer bounded from
below by ‖w‖h uniformly in h (since the constant in the last inequality is sharp
and has the order O

(
1
N2

1

)
).

The explicit scheme for n = 1 is very specific. Its equations are rewritten
using a 4-point rhomb stencil simply as

vm+1
k = vmk−1 + vmk+1 − vm−1

k + h2
tf
m
Nk on ωh, 1 ≤ m ≤M − 1, (3.36)

v|∂ωh
= g, v1

k = 1
2 (v0

k−1 + v0
k+1) + htu1Nk + 1

2h
2
tf

0
Nk on ωh. (3.37)

For clarity, let us pass to the related Cauchy problem with any k ∈ Z, xk = kh,
h = h1, a = a1 and the omitted boundary condition. Then the following
explicit formula holds

vmk = 1
2 (v0

k−m + v0
k+m) +

∑
l∈Imk

htu1Nl + 1
2h

2
tf

0
Nl + h2

t

m−1∑
p=1

∑
l∈Im−p

k

fpNl,

where k ∈ Z, 1 ≤ m ≤ M and Im−pk is the set of indices from k − (m− p− 1)
to k + (m − p − 1) with step 2. It can be verified most simply by induction
with respect to m. Notice that all the mesh nodes lie on the characteristics
x − xk = ±a1t of the equation. Of course, the stability of the scheme can be
directly proved applying this formula.

Let us take v0 = u0 and reset u1Nk = 1
2h

∫ xk+1

xk−1
u1(x) dx and

f0
Nk =

1

hht

∫
T 1
k

f(x, t) dxdt, fmNk =
1

2hht

∫
Rmk

f(x, t) dxdt;

here Tmk and Rmk are the triangle and rhomb with the vertices {(xk±m, 0),
(xk, tm)} and {(xk±1, tm), (xk, tm±1)}. Then the above formula for vmk takes
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the form

vmk = 1
2

(
u0(xk−m)+u0(xk+m)

)
+ 1

2a1

∫ xk+m

xk−m

u1(x) dx+ 1
2a1

∫
Tmk

f(x, t) dxdt.

Thus at the mesh nodes it reproduces the classical d’Alembert formula for
the solution u to the Cauchy problem for the 1D wave equation, where the
approximate and exact solution coincide: vmk ≡ u(xk, tm) for any k ∈ Z and
0 ≤ m ≤M . Concerning exact schemes, see also [7].

4 The case of non-uniform rectangular meshes

This section is devoted to a generalization to the case of non-uniform rect-
angular meshes. Let 1 ≤ k ≤ n. Define the general non-uniform meshes
0 = xk0 < xk1 < . . . < xkNk = Xk in xk with the steps hkl = xkl − xk(l−1) and
ωht with the nodes 0 = t0 < t1 < . . . < tM = T and steps htm = tm − tm−1.
Let ωhk = {xkl}Nk−1

l=1 . We set

hk+,l = hk(l+1), h∗k = 1
2 (hk + hk+), ht+,m = ht(m+1), h∗t = 1

2 (ht + ht+)

as well as hkmax = max1≤l≤Nk hkl and htmax = max1≤m≤M htm. Define the
difference operators

δkwl = 1
hk+,l

(wl+1 − wl), δ̄kwl = 1
hkl

(wl − wl−1), Λkw = 1
h∗k

(δkw − δ̄kw),

δty
m = 1

ht+,m
(ym+1 − ym), δ̄ty

m = 1
htm

(ym−ym−1), Λty = 1
h∗t

(δty−δ̄ty),

where wl = w(xkl) and ym = y(tm). The last four operators generalize those
defined above so their notation is the same.

We extend the above technique based on averaging Equation (3.1) and
generalize the above average in xk:

qkw(xkl) =
1

h∗k,l

∫ xk(l+1)

xk(l−1)

w(xk)ekl(xk) dxk,

ekl(xk) =
xk−xk(l−1)

hkl
on [xk(l−1), xkl], ekl(xk) =

xk(l+1)−xk
hk+,l

on [xkl, xk(l+1)].

For a function w(xk) smooth on [0, Xk], formula (3.6) remains valid and

qkw = w + qkρk1(∂kw),

qkw = w + 1
3 (hk+ − hk)∂kw + 1

12

[
h2
k+ − hk+hk + h2

k

]
∂2
kw + qkρk3(∂3

kw)

on ωhk, and the first bound (3.7) remains valid for s = 1, 3 with hk replaced
with h∗k, see also (3.8), that follows from Taylor’s formula after calculating the
arising integrals over [xk(l−1), xk(l+1)]. Due to Taylor’s formula we also have

∂kw = 1
2 (δ̄kw + δkw)− 1

4 (hk+ − hk)∂2
kw + ρ

(1)
k (∂3

kw), ∂2
kw = Λkw + ρ

(2)
k3 (∂3

kw),

|ρ(s)
k (∂3

kw)| ≤ c(s)h3−s
∗k ‖∂

3
kw‖C(Ikl), s = 1, 2,
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thus the above second expansion for qkw implies that

qkw = skNw + ρ̃k3(∂3
kw), |ρ̃k3(∂3

kw)| ≤ c̃3h3
∗k‖∂3

kw‖C(Ikl),

skN := I + 1
3 (hk+ − hk)

[
1
2 (δ̄k + δk)− 1

4 (hk+ − hk)Λk
]

+ 1
12

[
h2
k+ − hk+hk + h2

k

]
Λk = I + 1

6 (hk+ − hk)(δ̄k + δk) + 1
12hkhk+Λk,

i.e., skN = I + 1
12 (hk+βkδk − hkαk δ̄k) or, in the averaging form,

skNwl = 1
12 (αklwl−1 + 10γklwl + βklwl+1), αk = 2− h2

k+

hkh∗k
,

βk = 2− h2
k

hk+h∗k
, γk = 1 + (hk+−hk)2

5hkhk+
, αk + 10γk + βk = 12;

all the presented formulas are valid on ωhk. The operator skN generalizes one
defined above. Its another derivation was originally given in [5], see also [10,14].
Recall that the natural property αkl ≥ 0 and βkl ≥ 0 (not imposed below) is
equivalent to the rather restrictive condition on the ratio of the adjacent mesh
steps

0.618 ≈ 2√
5+1
≤ hk(l+1)

hkl
≤
√

5+1
2 ≈ 1.618. (4.1)

On ωht , the average qtw = qn+1w is defined similarly, and thus

qtw = stNw + ρ̃t3(∂3
tw), |ρ̃t3(∂3

tw)| ≤ c̃3h3
∗t‖∂3

tw‖C[tm−1,tm+1]

with stN = I + 1
12 (ht+βtδt − htαtδ̄t) or, in the averaging form,

stNy= 1
12 (αty̌ + 10γty + βtŷ), αt=2− h2

t+

hth∗t
, βt=2− h2

t

ht+h∗t
, γt = 1+ (ht+−ht)2

5htht+
.

Let ωh = ωh1 × . . .× ωhn. Formula (3.9) for u remains valid and implies now

s̄NΛtu− a2
i s̄NîstNΛiu = q̄qtf +O(h3

max) on ωh,

where hmax = max{h1 max, . . . , hnmax, htmax}. Formula (3.17) for u remains
valid as well. It involves only two first time levels thus easily covers the case of
the non-uniform mesh in t and implies now(
s̄N−h

2
t1

12 a
2
i s̄NîΛi

)
(δtu)0−ht12 a2

i s̄NîΛiu0=q̄u1+
h2
t1

12 a
2
i s̄NîΛiu1+q̄qtf

0+O(h3
max)

on ωh, where qty
0 is given by formula (3.16) with ht1 in the role of ht.

Owing to the above formulas, see also Remark 5, the last two formulas with
u lead us to the generalized scheme (3.26)–(3.27):

1
h∗t

[(
s̄N + h∗tht+

12 βtĀN
)
δtv −

(
s̄N + h∗tht

12 αtĀN
)
δ̄tv
]

+ ĀNv = s̄NstNf, (4.2)

v|∂ωh
= g,

(
s̄N +

h2
t1

12 ĀN
)
(δtv)0 + ht1

2 ĀNv0 = (s̄N − h2
t1

12 ĀN )u1 + ht1
2 f0

N (4.3)

with f0
N = s̄Nf0 + ht1

3 (δtf)0, where equations are valid respectively on ωh and
ωh and have the approximation errors of the order O(h3

max).
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For the uniform mesh in t, the left-hand side of (4.2) takes the previous
form whereas the term s̄NstNf can be simplified keeping the same order of the
approximation error:

(s̄N + 1
12h

2
t ĀN )Λtv + ĀNv = (s̄N + 1

12h
2
tΛt)f. (4.4)

The splitting version of equation (4.2) can be got by replacing the operators
in front of δtv and δ̄tv by the operators of the form

B̄N = (s1N − 1
12h∗th̃tσta

2
1Λ1) . . . (snN − 1

12h∗th̃tσta
2
nΛn),

where respectively h̃t = ht+ and σt = βt, or h̃t = ht and σt = αt. Since

B̄N = s̄N − 1
12h∗th̃tσta

2
i s̄NîΛi +R,

where the operator R satisfies formula (3.32) with h2
t replaced with h∗th̃tσt,

and this replacement conserves the approximation error of the order O(h3
max).

The splitting version of Equation (4.3) is got simply by replacing s̄N +
h2
t1

12 ĀN
with the above operator (3.31) with ht1 in the role of ht.

One can check also that the approximation errors still has the 4th order
O(h4

max) for smoothly varying non-uniform meshes, cf. [15], provided that, for

example, f0
N = s̄Nf

0 − f0 + f
(0)
dht

.
Here we do not touch the stability study in the case of the non-uniform

mesh (even only in space) but this is noticeably more cumbersome like in [15]
(since the operator skN is not self-adjoint any more) and, moreover, imposes
stronger conditions on ht, see also [17,18].

5 Numerical experiments

5.1. In the IBVP (3.1)–(3.2) in the 1D case, we now take Ω := (−X/2, X/2)
and rewrite the boundary condition as u|x=−X/2 = g0(t) and u|x=X/2 = g1(t),
t ∈ (0, T ). We intend to analyze the practical error orders γpr of r = u− v in
three uniform in time mesh norms

max
0≤m≤M

‖rm‖h, max
0≤m≤M, 0≤k≤N

|rmk |, max
1≤m≤M

max
{
‖δ̄trm‖h, ‖δ̄1rm‖h̃

}
, (5.1)

which below are denoted respectively as L2
h, Ch and Eh (the 2nd and 3rd norms

are the uniform and strong energy-type ones). Here ‖w‖h̃ =
(
h
∑N
k=1 w

2
k

)1/2
and N = N1. The respective expected theoretical error orders γth are

min
{

4
5α, 4

}
, α ≥ 0; 4

5 (α− 1
2 ), 1

2 < α ≤ 11
2 ; 4

5 (α− 1), 1 ≤ α ≤ 6 (5.2)

(in the spirit of [1]), where α is the parameter defining the weak smoothness of
the data, see details below (concerning the first order, for α ≤ 1, it should refer
to the continuous L2 norm rather than the mesh one but that we will ignore).
The proof of the first order in the case u1 = f = 0 see in [6]. For compar-
ison, recall that for the 2nd approximation order methods the corresponding

theoretical error orders γ
(2)
th are

min
{

2
3α, 2

}
, α ≥ 0; min

{
2
3 (α− 1

2 ), 2
}
, α > 1

2 ; min
{

2
3 (α−1), 2

}
, α ≥ 1, (5.3)
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according to [19]; recall that the middle error order is derived from two other
ones. These orders also have recently been confirmed practically in [16].

Let P0(x) = (sgnx + 1)/2 be the step Heaviside-type function, P1(x) =
1 − 2|x|, Pk(x) = (sgnx)(2x)k (k ≥ 2) and Ql(t) = P0(t − t∗)(t − t∗)l (l ≥ 0
and t∗ ∈ (0, T ) is fixed) be piecewise-polynomial functions. For uniformity, we
also set P−1(x) = δ(x) and Q−1(t) = δ(t − t∗) as the Dirac delta-functions
concentrated at x = 0 and t = t∗. We put X = T = 1.

We consider six typical Examples Eα, α = 1/2, 3/2, . . . , 11/2, of non-smooth
data supplementing the study in [16]. The initial functions u0 = P[α] and
u1 = c1P[α]−1 are piecewise-polynomial functions of the degree [α] and [α]− 1
respectively, with a unique singularity point x = 0, excluding the case [α] = 0
for u1, where u1(x) = c1δ(x). Thus u0 belongs to the Nikolskii space Hα

2 (Ω) [9]
(and to the Sobolev-Slobodetskii space Wα−ε

2 (Ω), 0 < ε < 1/2), and u1 ∈
Hα−1

2 (Ω) (for α > 1).
The free term f(x, t) = c2P−1(x)Q−1(t) = c2δ(x, t− t∗) is concentrated at

(x, t) = (0, t∗) for α = 1/2, or has the form f(x, t)=f1(x)f2(t)=c2P0(x)Q−1(t)
for α = 3/2, or the form of two such type summands f(x, t)=c2P0(x)Q[α]−2(t)
+ c3P1(x)Q[α]−3(t) for α ≥ 5/2. The term f1 is piecewise-constant (the case
α1 = 1/2) for α ≥ 3/2 or also piecewise-linear (the case α1 = 3/2) for α ≥ 5/2,
with a unique singularity point x = 0. Respectively the term f2(t) = δ(t− t∗)
for α = 3/2 or f2(t) = Qα2(t) is a piecewise-polynomial function of the degree
α2 = α − 2 − α1 = [α] − 2 − [α1] for α ≥ 5/2, with a unique singularity
point t = t∗. Recall that, for α2 > 0, such f2 belongs to the Sobolev-Nikolskii
space WHα2

1 (0, T ) (for example, see [19]), though not to the less broad Sobolev
space Wα2

1 (0, T ). Thus f itself or its both summands has the so called weak
dominated mixed smoothness of the order α1 in x and α2 in t, with α1 + α2 =
α − 1. Recall that this property is much broader than the standard weak
smoothness of the order α− 1 in both x and t in L2(Q); in particular, the case
of f discontinuous in x is covered for any considered α.

Here (c1, c2) = (0.4, 0.4), (1.9, 1.1) and (c1, c2, c3) = (0.58, 2.1, 2.3), (2.8, 6.8,
7.3), (3.7, 13, 31), (4.6, 24, 51) for α = 1

2 ,
3
2 , . . . ,

11
2 respectively. We use these

multipliers to make the contributions to r(·, T ) due to u0, u1 and f of the
similar magnitude, and thus they all are significant.

We also take smooth g0 and g1 (not affecting γpr) to simplify the explicit
forms of u (which we omit here) based on the d’Alembert formula. Namely, we

set g0 = 0 and g1(t) = (c1t)
k for α = 1

2 ,
3
2 ; g0 = (−1)k(−g(0k)

1 + c1g
(1k)
1 ) and

g1 = g
(0k)
1 + c1g

(1k)
1 for α ≥ 5

2 , where k = [α] and

g
(0k)
1 (t) = 1

2

[
(1− 2at)k + (1 + 2at)k

]
, k ≥ 2,

g
(1k)
1 (t) = 0, k = 2, g

(1k)
1 (t) = 1

4ak

[
(1 + 2at)k − (1− 2at)k

]
, k ≥ 3.

The properties of u in Example Eα have been described in [16] or are similar.
Recall that, for example, u is piecewise-constant and discontinuous on Q̄ for
α = 1

2 , or u is piecewise-linear with discontinuous piecewise-constant derivatives
on Q̄ for α = 3

2 , etc. The straight singularity lines are characteristics and t = t∗.
Notice that u is not the classical solution for any α but is strong one for α ≥ 7

2
and one of several weak solutions for α ≤ 5

2 , see details in [16] (but note that,
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for f(x, t) = P1(x)δ(t− t∗), α = 5
2 , the jump of ∂tu across t = t∗ was not taken

into account there).
We set v0 = u0; u1N = q1u1 for α ≤ 3

2 , or as in (3.12) for α ≥ 5
2 , and

fmN = (q1f1)qtf
m
2 on ωh, see Remark 4. For xk ∈ ωh and even N , we have

q1δ(·)k = 1
h for xk = 0, or q1δ(·)k = 0 otherwise, and (q1P0)k = P0(xk). Also,

if t∗ = tm∗ ∈ ωht and 1 ≤ k ≤ 5, then (qtQk)m = (stNQk)m for tm ∈ ωht ,

m 6= m∗, or (qtQk)m∗ = τk

(k+1)(k+2) . We choose a = 1√
5
, t∗ = T

2 and τ = h (so

the mesh is not adjusted to the characteristics).
To identify error orders more reliably, we compute the errors for N =

200, 400, . . . , Nmax, where Nmax = 3200, 2000, 800 respectively for 1
2 ≤ α ≤

5
2 ,

α = 7
2 ,

9
2 ; also N = 200, 300, . . . , Nmax with Nmax = 600 for α = 11

2 (Nmax

is lesser for α ≥ 7
2 to avoid an impact of the round-off errors on γpr). We

plot graphs of log10 ‖r‖ versus log10N , where ‖r‖ is each of the three norms
(5.1), and seek the almost linear dependence between them by the least square
method. Thus we calculate the dependence ‖r‖ ≈ c0hγpr = c0(XN )γpr .

For α = 3
2 ,

5
2 ,

7
2 ,

9
2 and the extended set N = 200, 400, . . . , 3200, we present

E , Ch, L2
h-norms of the error denoted respectively by 4,2,♦ on Figures 1–2.

a) α = 3/2 b) α = 5/2

Figure 1. Examples E3/2 (left) and E5/2 (right): E, Ch, L2
h-norms of the error denoted

respectively by 4,2,♦, for N = 200, 400, . . . , 3200.

Notice the abrupt decrease of the error range as α grows. We also observe
the slight oscillation of the data for α = 3

2 that is an exception (they also
present for α = 1

2 ); instead, the linear behavior is typical for other α and
the values 200 ≤ N ≤ Nmax. The slight growth of L2

h-norm for α = 7
2 and

much more significant growth of all the norms for α = 9
2 as N increases reflect

the impact of the round-off errors; the value of N when the error begins to
increase depends on the norm. For α = 11

2 the situation is even more strong
(not presented).

The computed c0 and γpr together with the respective theoretical orders

γth and γ
(2)
th , see (5.2)–(5.3), and the error norms ‖rN‖ and ‖r(2)

N ‖ for N =
200, Nmax are collected in Table 1. For more visibility, here we include the

error norms ‖r(2)
N ‖ for the standard 2nd order scheme like (3.20)–(3.21) but

with the multiplier −σa2
1h

2
t substituted for 1

12 (h2
1 − a2

1h
2
t ), with the weight

σ = 1
2 , the same v0 and fN but u1N = q1u1 for α ≤ 3

2 , or u1N = u1 for α ≥ 5
2 .
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a) α = 7/2 b) α = 9/2

Figure 2. Examples E7/2 (left) and E9/2 (right): E, Ch, L2
h-norms of the error denoted

respectively by 4,2,♦, for N = 200, 400, . . . , 3200.

The main observation is the nice agreement between γpr and γth for all
three norms in all Examples Eα, thus the sensitive dependence of γpr on the
data smoothness order α becomes quite clear. This agreement is mainly better

for the first and second norms (5.1) (similarly to [16]). Notice that γ
(2)
th /γpr

and the error ‖r200‖ in each norm decrease rapidly as α grows. Clearly the

errors ‖rN‖ are much smaller than ‖r(2)
N ‖ for N = 200 and Nmax especially as

α grows. This demonstrates the essential advantages of the 4th approximation
order scheme over the 2nd order one in the important case of non-smooth data
as well. This is essential, in particular, in some optimal control problems [13].

We also remind the explicit scheme (3.36)–(3.37). For the same X and a
but ht = h/a and T = Mht > 1, for example, the Ch-norm of the error equals
0.311E−14 even for N = 20 and M = 10 already in Example E3/2; thus clearly
it is caused purely by the round-off errors.

5.2. Also we analyze numerically scheme (4.4) and (4.3) (with f0
N = sNf

0+
2
3 (fτ/2−f0)) on non-uniform spatial meshes such that xk = ϕ( kN )−X

2 , 0 ≤ k ≤
N , and hk = xk−xk−1. Here ϕ ∈ C[0, 1] is a given increasing node distribution
function with the range ϕ([0, 1]) = [0, X]. We take again X = T = 1 and
a = 1√

5
but consider only the smooth (analytic) exact solution u for the data

u0(x) = sin(2π(x+ 0.5)), u1(x) = 4 sin(3π(x+ 0.5)), f(x, t) = ex+0.5−t,

g0(t) = 1
2a

(
1
a+1e

at + 1
a−1e

−at − 2a
a2−1e

−t) (a 6= 1), g1(t) = eg0(t).

We base on the practical stability condition h2
t
a2

h2
min
≤ 1

2 with hmin =

min1≤k≤N hk (cp. (3.34) for C0 = 1 and ε2
0 = 1

2 ), thus we set M = M0 :=⌊√
2aT
hmin

⌋
, where bbc is the maximal integer less or equal b. It turns out to be

accurate in practice, see below. We take N = 50, 100, . . . , 1000.
In Table 2, the error behavior in the Ch norm is represented for several

functions ϕl, 0 ≤ l ≤ 6. Clearly ϕ0(t) = t sets the uniform mesh and is included
for comparison only. Notice that ϕ′3(0) = 0 whereas ϕ′l(+0) = +∞, l = 4, 5, 6;
both cases are more complicated than the standard one 0 < c ≤ ϕ′l(ξ) ≤ c̄ on
[0, 1] , l = 1, 2, in the existing theory [15].

Math. Model. Anal., 26(3):479–502, 2021.
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Table 1. Numerical results for the uniform mesh.

α ‖ · ‖ c0 γpr γth γ
(2)
th ‖r200‖ ‖rNmax‖ ‖r(2)200‖ ‖r(2)Nmax

‖

1/2 L2
h 0.514 0.406 0.4 1/3 .595E−1 .192E−1 .943E−1 .373E−1

Eh 1.24 0.346 0.4 1/3 .201E−0 .751E−1 .404E−0 .172E−0
3/2 Ch 0.245 0.742 0.8 2/3 .475E−2 .582E−3 .180E−1 .294E−2

L2
h 0.393 1.217 1.2 1 .635E−3 .215E−4 .272E−2 .168E−3

Eh 0.924 1.167 1.2 1 .188E−2 .745E−4 .965E−2 .628E−3
5/2 Ch 0.211 1.615 1.6 4/3 .406E−4 .461E−6 .480E−3 .121E−5

L2
h 0.305 2.007 2 5/3 .734E−5 .281E−7 .103E−3 .999E−6

Eh 1.49 1.975 2 5/3 .422E−4 .448E−6 .766E−3 .169E−4
7/2 Ch 0.377 2.403 2.4 2 .111E−5 .440E−8 .993E−4 .102E−5

L2
h 0.435 2.798 2.8 2 .160E−6 .260E−9 .391E−4 .394E−6

Eh 3.23 2.787 2.8 2 .125E−5 .261E−7 .408E−3 .256E−4
9/2 Ch 1.17 3.205 3.2 2 .492E−7 .579E−9 .144E−3 .906E−5

L2
h 1.21 3.601 3.6 2 .628E−8 .427E−10 .858E−4 .536E−5

Eh 11.2 3.597 3.6 2 .593E−7 .114E−8 .125E−2 .139E−3
11/2 Ch 8.02 3.997 4 2 .508E−8 .631E−10 .502E−3 .558E−4

L2
h 3.77 3.966 4 2 .285E−8 .370E−10 .310E−3 .347E−4

Table 2. Numerical results for non-uniform spatial meshes, with ϕ2(ξ) =
ln(60ξ+1)

ln 61
.

l ϕl(ξ) c0 γpr ‖r200‖Ch ‖r400‖Ch ‖r800‖Ch
hmax
hmin

[ρmin, ρmax] M
N

0 ξ 42.0 4.001 .262E−7 .164E−8 .103E−9 1 [1, 1] .631

1 e5ξ−1
e5−1

15878 3.988 .107E−4 .668E−6 .418E−7 147.5 [1.006, 1.006] 18.6

2 ϕ2(ξ) 966736∗ 3.945∗ .784E−3 .533E−4 .341E−5 58.78 [.9325, .9988] 2.64

3 ξ3/2 161.7 4.001 .101E−6 .629E−8 .392E−9 42.41 [1.001, 1.828] 17.9

4 ξ3/4 495.2 3.600 .265E−5 .216E−6 .173E −7 7.090 [.6818, .9997] .843

5 ξ5/8 468.7 3.019 .556E−4 .672E −5 .792E −6 19.62 [.5422, .9995] 1.01

6 ξ1/2 427.0∗ 2.411∗ .118E−2 .230E−3 .427E−4 56.55 [.4142, .9994] 1.26

The error orders γpr are close to 4 for 0 ≤ l ≤ 3 but decrease down to 2.411
as in the formula ϕl(ξ) = ξal the power al = 3

4 ,
5
8 ,

1
2 diminishes, l = 4, 5, 6. Thus

the approximation orders 3 or 4, see Section 4, are not always the practical error
orders as well. For l = 2, 6, the values of c0 and γpr are marked by ∗ meaning
that the results are yet too rough for N = 50, 100, 150 and thus ignored in
their computation. For any l, the graphs of log10 ‖rN‖Ch versus log10N are
very close to straight lines (omitted for brevity).

The mesh data hmax

hmin
, ρmin := min1≤k≤N−1

hk+1

hk
, ρmax := max1≤k≤N−1

hk+1

hk

and M
N , all for N = 800 only, are also included into the table. Note that

condition (4.1) is violated for l = 3, 5, 6, but this does not essentially affect the
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results. For l = 1, ρmin = ρmax since the steps hk form a geometric progression.
Also ϕl is strictly convex (or concave) on [0, 1] for l = 1, 3 (or l = 2, 4, 5, 6),
accordingly hk = ϕ′l(ξk), where ξk ∈ (k−1

N , kN ), increases and ρmin > 1 (or

decreases and ρmax < 1) as k grows. The ratios M
N are not high except l = 1, 3.

Taking smaller M by replacing
√

2 with 1√
2

in the above formula, for l =

0, 1 (the cases of the uniform and non-uniform meshes), leads us to highly
unstable computations for N ≥ 100: the Ch-norm of numerical solutions grows
exponentially.
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