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Abstract. Highly applied in machining, image compressing, network traffic predic-
tion, biological dynamics, nerve dendrite pattern and so on, self-similarity dynamic
represents a part of fractal processes where an object is reproduced exactly or approx-
imately exact to a part of itself. These reproduction processes are also very important
and captivating in chaos theory. They occur naturally in our environment in the form
of growth spirals, romanesco broccoli, trees and so on. Seeking alternative ways to
reproduce self-similarity dynamics has called the attention of many authors working
in chaos theory since the range of applications is quite wide. In this paper, three
combined notions, namely the step series switching process, the Julia’s technique and
the fractal-fractional dynamic are used to create various forms of self-similarity dy-
namics in chaotic systems of attractors, initially with two, five and seven scrolls. In
each case, the solvability of the model is addressed via numerical techniques and re-
lated graphical simulations are provided. It appears that the initial systems are able
to trigger a self-similarity process that generates the exact or approximately exact
copy of itself or part of itself. Moreover, the dynamics of the copies are impacted
by some model’s parameters involved in the process. Using mathematical concepts
to re-create features that usually occur in a natural way proves to be a prowess as
related applications are many for engineers.
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1 Introduction

Chaotic bifurcations, fractal processes, self-organization, auto-duplication, self-
assembly all started with the concept of dynamical system. The theory of
dynamical system has been studied for more than a century as it has never
stopped wondering scientists with its unpredictable dynamical systems which
cover a large number of applications related to scientific domains such as (ap-
plied) mathematics, engineering, physics, biology, electronics, economics and
even medical sciences [6, 11, 13, 16, 18]. One of the major applications of the
theory of dynamical systems is the study of chaotic systems that represents the
fundamentals of chaos theory and also of bifurcation theory. There are many
types of dynamical systems [1,7,10,11,12,16,17,19], including the classical dy-
namical system depicted in Figure 1 and the open dynamical system depicted
in Figure 2 where we can observe different orbits or trajectories.

Figure 1. Illustration of the basic principles of open dynamical systems. In (a), we
obverse a basic process depicting the phase portrait for a harmonic oscillator happening in

a plane and where the only fixed point is the origin and the circles represent the other
trajectories. In (b), we obverse another basic process depicting the phase portrait of

undamped pendulum happening in a cylinder and where trajectories are closed curves with
some going around the origin and other wrapping around the cylinder. Lastly, in (c), we

obverse a process depicting phase portrait for a damped pendulum with the difference that
the origin has become an attracting fixed point.

In Figure 1 (a), we obverse a basic process depicting the phase portrait
for a harmonic oscillator happening in a plane and where the only fixed point
is the origin and the circles represent the other trajectories. In Figure 1 (b),
we obverse another basic process depicting the phase portrait of undamped
pendulum happening in a cylinder and where trajectories are closed curves with
some going around the origin and other wrapping around the cylinder. Lastly,
in Figure 1 (c), we obverse a process depicting phase portrait for a damped
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pendulum with the difference that the origin has become an attracting fixed
point.

Figure 2. Basic principle of open dynamical system. We can see the initial behavior in
isolation of an agent dynamical system Tπ correctly defined on its suitable space Sπ (upper
right)). The process continues at the upper left-side where we can see how the decoupled
agent dynamical system Dπ , defined on its suitable total space Sτ joint together to form
the total system Tτ depicted in the lower left-side. It ends in the lower right-side which

depicts the projection or paths showing how an agent behaves in a particular environment
(Sπ). These last paths in the state Sπ are the ones which make the major contrast here and

that particularly characterize the so-called open system. Note the difference between the
orbits for the agent in isolation (upper right) and those in the open phase portrait for the

embedded agent dynamical system (lower right)), which are shown to overlap.

In Figure 2 we have the illustration of an open dynamical system where
we can see the initial behavior in isolation of an agent dynamical system Tπ
correctly defined on its suitable space Sπ (Figure 2 (upper right)). The process
continues with Figure 2 (upper left) where we can see how the decoupled agent
dynamical system Dπ, defined on its suitable total space Sτ joint together to
form the total system Tτ depicted in Figure 2 (lower left). It ends in Figure
2 (lower right) which depicts the projection or paths showing how an agent
behaves in a particular environment (Sπ). These last paths in the state Sπ
are the ones which make the major contrast here and that particularly char-
acterize the so-called open system. Indeed, we can observe difference between
the orbits for the agent in isolation (Figure 2 (upper right)) and those in the
open phase portrait for the embedded agent dynamical system (Figure 2 (lower
right)), which are shown to overlap. Hence, it is then more difficult to analyze
trajectories in open dynamical systems.

Fractal processes are also depicted in dynamical systems with a simple
principle as shown in Figure 3 where we can see an example of auto-replication
structures coupled with self-similar fluctuations. Indeed the tree-like structures
(Figure 2 (bottom)) , identified here as spatial fractal comprise branches dis-
posed in a self-similar process. There is an obvious resemblance between small-
scale tree-like structure and bigger ones. Such resemblance process couples
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Figure 3. Basic principle of auto-replication (self-similar) dynamics. The tree-like
structures (bottom), identified here as spatial fractal comprise branches disposed in a

self-similar process that couples with a fractal temporal process, the regulation rates (top),
which generate different fluctuations based on variable time scales. The said fluctuations

are also shown be statistically self-similar.

with a fractal temporal process, like for instance the regulation rates (Figure 2
(top)), which generate different variations (or fluctuations) based on variable
time scales. The said fluctuations are also shown be statistically self-similar.
In the next sections, we are going to use different processes to reproduce self-
similarity in dynamical systems.

2 Self-similarity in classical chaotic attractors with many
scrolls using step series switching

In the work [15] the authors introduced a method of step series switching able to
generate chaotic attractors with many scrolls from some simple linear models.
The following piecewise-linear function switching system was then proposed:

dX

dt
= M1[X − s(TM2X − 4)M3] (2.1)

with

X = X(t) = (x(t), y(t), z(t))
T
, s(ζ) =

{
1, when ζ > 0,
0, when ζ ≤ 0

M1 =

 1
2 10 0
−10 1

2 0
0 0 −10

 , M2 =T (d, 4, 4), M3 =T (0, 1, 1),

where d is a real number which, when vanishes (d = 0) causes the model (2.1)
to generate a chaotic attractor with two scrolls, as depicted in Figure 4.
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Figure 4. A chaotic attractor with two scrolls. The double-scroll attractor is generated
by (2.1) via the series switching technique with the parameter value d = 0.

The modification of the above function s(ζ) into

s(ζ) =

 s1, when ζ ≤ b1,
s2, when bi−1 < ζ ≤ bi for i = 2, 3, . . . , n− 1,
sn, when ζ > bn,

with {si}1≤i≤n and {bi}1≤i≤n representing series of constants that is strictly
increasing. The model (2.1) therefore takes the form

dX

dt
= M̃1[X − s(T M̃2X − 4)M̃3] (2.2)

with

M̃1 =

 a c 0
−c a 0
0 0 −e

 , M̃2 =T (0, f, f) and M̃3 =T (0, 1, 1).

For the parameter values

(b1, b2, b3, b4) =

(
−1

2
,

1

2
,

3

2
,

5

2

)
, (s1, s2, s3, s4, s5) = (−1, 0, 1, 2, 3),

(a, c, e, f) = (1/2, 10, 5, 1/2) ,

the model (2.2) generates a chaotic attractor with five scrolls, as depicted in
Figure 5.

There also exists circuit diagram, able to produce a similar result, like the
one depicted in Figure 6 that was proposed in [14] and whose equation reads
as du1

dt
du2

dt
du3

dt

 =
1

C

 0 1
Rf21

0
−1
Rf12

1
Rf22

0

0 0 −1
Rf33


 u1 −W (u1 + u3)

u2 −W (u2 + u3)
u3− 1

2W (u1+u3)− 1
2W (u2+u3)

 ,

(2.3)
where

W (η) =


0, when η < VCC

m ,
iVCCm , when (2i−1)VCCm ≤ η < (2i+1)VCCm for i = 2, 3, . . . , n−1,
nVCCm , when η ≥ (2n− 1)VCCm .

Math. Model. Anal., 26(4):591–611, 2021.
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Figure 5. A chaotic attractor with five scrolls. The quintuple-scroll attractor is
generated by (2.2) via the series switching technique with the parameter values

(b1, b2, b3, b4) =
(
− 1

2
, 1
2
, 3
2
, 5
2

)
, (s1, s2, s3, s4, s5) = (−1, 0, 1, 2, 3); (a, c, e, f) =

(
1
2
, 10, 5, 1

2

)
.

Figure 6. Circuit diagram, able to produce a chaotic attractor with seven scrolls.

The system (2.3) is transformed into the dimensionless state model that
reads as 

dx
dτ = y −W (y + z),
dy
dτ = −x+ by +W (x+ z)− bW (y + z),
dz
dτ = −z + dW (x+ z)− dW (y + z)

(2.4)

with W (η) = 0.5
∑

i=0
n v(η − i− 0.5), where v(·) represents the unit step func-

tion and where we have set

τ = t/RC, R = 3kΩ, C = 100pF, x = u1/1V, y = u2/1V, z = u3/1V.

Henceforth, the model (2.4) generates a chaotic attractor with seven scrolls, as
depicted in Figure 7 for the parameter values

(b, d, W (η)) =

(
1

10
,

1

2
,

1

2
v

(
η − 1

2

)
+

1

2
v

(
η − 3

2

))
.
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Figure 7. A chaotic attractor with seven scrolls. The 7-scroll attractor is generated by
(2.4) via the series switching technique with the parameter values

(b, d, W (η)) =
(

1
10
, 1

2
, 1

2
v
(
η − 1

2

)
+ 1

2
v
(
η − 3

2

))
.

3 Fractal (Julia’s) process in self-similarity for attractors
with many scrolls

As proposed in the article [4], we consider a vector state Uj = (gj , hj). Then,
Julia’s process is a technique that consists of getting the subsequent term Uj+1.
Take the complex number Zj = gj + ihj hence we have Zj+1 = Z2

j , that is
equivalent to {

gj+1 = g2j − h2j ,
hj+1 = 2gjhj .

(3.1)

The inverse map is established by expressing gj and hj in terms of gj+1

and hj+1. Therefore, we obtain the dynamics that takes the form Uj+1 =
(gj+1, hj+1) = B(gj , hj) with B denoting the treatment process. Hence, the
real part and imaginary part are separately computed following the Algo-
rithm 1.

More generally, fractal processes consider the complete metric unit denoted
here by F. We can therefore consider fractal processes system, namely Ψ and
defined in F by

Ψ : F→ F so that Ψ(gj , hj) = (gm, hm).

Hence, the system Ψ takes the iterative representation:

Ψ



(g0, h0),
(gj+1, hj+1) = B1(θgj + γ, βhj + λ),
(gj+2, hj+2) = B2(gj+1, hj+1),
(gj+3, hj+3) = K1(gj+2, hj+2),
(gj+4, hj+4) = B3(gj+3, hj+3),
...
(gk+1, hk+1) = Kl(gk−1, hk−1),
...
(gm, hm) = Bm−l(gm−1, hm−1),

(3.2)

Math. Model. Anal., 26(4):591–611, 2021.
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Algorithm 1. Computing Uj+1 = (gj+1, hj+1) = B(gj , hj)

1: if gj < 0 then

2: gj+1 =

(
gj
2

+
[
g2j + h2j

] 1
2

) 1
2

3: hj+1 =
hj

2hj+1

4: end if
5: if gj = 0 then

6: hj+1 =
( |hj |

2

) 1
2

7: if gj > 0 then

8: gj+1 =
hj

2hj+1

9: end if
10: if gj < 0 then
11: hj+1 = 0
12: end if
13: end if
14: if gj > 0 then

15: hj+1 =

(
− gj

2
+
[
g2j + h2j

] 1
2

) 1
2

16: gj+1 =
hj

2hj+1

17: if hj < 0 then
18: hj+1 = −hj+1

19: end if
20: end if

where m, l, j are natural numbers and θ, γ, β, λ real numbers. This system of
m equations comprises different types of transformations (Bk) and processes
(Kk), namely and l transformations and m− l processes with many iterations
starting at (g0, h0). Applying this process to the system (2.1) transforms it into
the discredited system (at the iteration j) given by

dXj

dt
= M1[Xj − s(TM2Xj − 4)M3] (3.3)

with Xj = Xj(t) =
(
xj(t), yj(t), zj(t)

)T
. Let us now associate to the process

(3.2) the transformation S defined as

S



B0 = g0 + h0,
Bj+1 = gj+1 + hj+1 = B1 [(θgj + γ) + (βhj + λ)] ,
Bj+2 = gj+2 + hj+2 = B2(gj+1 + hj+1),
Bj+3 = gj+3 + hj+3 = K1(gj+2 + hj+2),
Bj+4 = gj+4 + hj+4 = B3(gj+3 + hj+3),

...
Bk+1 = gk+1 + hk+1 = Kl(gk−1 + hk−1),

...
Bk+1 = gm + hm = Bm−l(gm−1 + hm−1).

We can now use the so-called partial composition applicable in multivariate
functions.
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Definition 1. Let B be a multivariate function defined on Cn as

B : Cn −→ Cn, (g1, g2, · · · , hn) 7−→ B(g1, g2, · · · , hn)

and g defined as

g : Cn −→ C, (g1, g2, · · · , gn) 7−→ g(g1, g2, · · · , gn),

the partial composition B|gj=g of B and g is the function obtained when the
function g takes the place of an argument gj of B leading to

B|gj=g = B(g1, · · · , gj−1, g(g1, g2, · · · , hn), gj+1, · · · , gn).

If the function g is a constant g0 ∈ C the partial composition becomes

B|gj=g = B(g1, · · · , gj−1, g0, · · · , gn).

We can now defined the modified fractal processes system Ψ̃ that takes the
iterative representation:

Ψ̃



(g0, h0),

(gj+1, hj+1) = B1|θgj+γ=B1
+B1|βhj+λ=B1

,

(gj+2, hj+2) = B2|gj+1=B2
◦ (B1|θgj+γ=B1

+B1|βhj+λ=B1
),

(gj+3, hj+3) = K1|gj+2=K1 ◦ (B2|gj+1=B2 ◦ (B1|θgj+γ=B1 +B1|βhj+λ=B1)),

(gj+4, hj+4) = B3|gj+3=B3 ◦ (K1|gj+2=K1 ◦ (B2|gj+1=B2 ◦ (B1|θgj+γ=B1

+B1|βhj+λ=B1
))),

· · ·
(gk+1, hk+1) = Kl|gk=Kl ◦ (K1|gk=K1

◦ (B2|gk−1=B2
◦ (B1|θgk−2+γ=B1

+B1|βhk−2+λ=B1
))),

· · ·
(gm, hm) = Bm−l|gm−1=Bm−l ◦ (B1|gm=K1 ◦ (B2|gm−1=B2

◦(B1|θgm−2+γ=B1
+B1|βhm−2+λ=B1

))).

Taking the parameter value d = 0 for two consecutive iterations Ij and Ij+1,
and taking Kj as

Kj =

(
−gj × (1− gj) h1 × (1− hj)
hj × (1− hj) g1 × (1− gj)

)
,

and taking m = 6, Ψ̃ becomes

Ψ̃



(g1, h1) = B1|θgγ=B1
+B1|βhλ=B1

,

(g2, h2) = B2|g1=B2 ◦ (B1|θgγ=B1 +B1|βhλ=B1),

(g3, h3) = K1|g2=K1 ◦ (B2|g1=B2 ◦ (B1|θgγ=B1 +B1|βhλ=B1)),

(g4, h4) = B3|g3=B3
◦ (K1|g2=K1

◦ (B2|g1=B2
◦ (B1|θgγ=B1

+B1|βhλ=B1
))),

(g5, h5) = B4|g4=B4
◦ (B3|g3=B3

◦ (K1|g2=K1
◦ (B2|g1=B2

◦ (B1|θgγ=B1

+B1|βhλ=B1
)))),

(g6, h6) = B5|g5=B5
◦ (B4|g4=B4

◦ (B3|g3=B3
◦ (K1|g2=K1

◦ (B2|g1=B2

◦(B1|θgγ=B1 +B1|βhλ=B1))))).

Math. Model. Anal., 26(4):591–611, 2021.
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The implementation of this scheme with gk = xj+1−xj , hk = yj+1−yj , k, j =
1, 2, . . . , 3, depicts the illustration shown in Figure 8.

Figure 8. Self-similarity dynamic for the chaotic attractor with two scrolls generated by
the model (3.3) using the Fractal (Julia’s) process with d = 0. We can see a set of six similar

double-scroll chaotic attractors grouped to form a symmetry around the axis z = 0.05.

It shows the elf-similarity dynamic for the chaotic attractor with two scrolls
generated by the model (3.3) using the Fractal (Julia’s) process with d = 0.
We can see a set of six similar double-scroll chaotic attractors grouped to form
a symetry aroud the axis z = 0.05.

Similarly, we apply the above process to the system (2.2) and transform it
into the discredited system (at the iteration j) given by

dXj

dt
= M̃1[Xj − s(T M̃2Xj − 4)M̃3] (3.4)

with

M̃1 =

 a c 0
−c a 0
0 0 −e

 , M̃2 =T (0, f, f) and M̃3 =T (0, 1, 1),

with the constants taken for two consecutive iterations Ij and Ij+1 as in Table 1.

Table 1. Parameter values.

b1 b2 b3 b4 s1 s2 s3 s4 s5 a c e f

Ij
−1
4

1
4

3
4

5
4

−1
2

0 1
2

1 3
2

1
4

5 5
2

1
4

Ij+1
−1
8

1
8

3
8

5
8

−1
4

0 1
4

1
2

3
4

1
8

5
2

5
4

1
8

Then, we have the implementation of this scheme with gk = xj+1−xj , hk =
yj+1 − yj , k, j = 1, 2, . . . , 3, that generates the illustration shown in Figure 9.
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It shows self-similarity dynamic for the chaotic attractor with five scrolls gener-
ated by the model (3.4) using the Fractal (Julia’s) process with the parameter
values shown in Table 1. We can see a set of six similar quintuple-scroll chaotic
attractors grouped to form a symmetry around the axis y = 3.

Figure 9. Self-similarity dynamic for the chaotic attractor with five scrolls generated by
the model (3.4) using the Fractal (Julia’s) process with the parameter values shown in

Table 1. We can see a set of six similar quintuple-scroll chaotic attractors grouped to form
a symmetry around the axis y = 3.

4 Fractal-fractional process in self-similarity for
attractors with many scrolls

We continue the analysis in this section by applying the fractal operator com-
bined with the fractional dynamics that gives the so-called fractal-fractional
operator defined as follows [2, 3, 8, 9]:

Definition 2. Let X ∈ A ⊆ R3, and a0, b0 ∈ R. We assume that the func-
tion w(X, t) defined on A× (a0, b0) is fractal differentiable with respect to the
t−variable on (a0, b0) with order σ then, the Riemann-Liouville sense fractal-
fractional derivative of w with order σ and power law is defined as:

FFDσ
t w(X, t) =

1

Γ (1− σ)

∂

∂tσ

∫ t

0

w (X, ζ) (t− ζ)−σdζ, (4.1)

where ∂
∂tσw is defined as

∂

∂tσ
w(X, t0) = lim

t→t0

w(X, t)− w(X, t0)

tσ − tσ0
.

The general version of that definition is given by

FFDσ,ς
t w(X, t) =

1

Γ (1− σ)

∂ς

∂tσ

∫ t

0

w (X, ζ) (t− ζ)−σdζ,

Math. Model. Anal., 26(4):591–611, 2021.
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with ς > 0 and ∂ς

∂tσw given by

∂ς

∂tσ
w(X, t0) = lim

t→t0

wς(X, t)− wς(X, t0)

tσ − tσ0
.

We associate to that fractal-fractional operator (4.1), its anti-derivative
also known as the fractal-fractional integral of same order σ, very important in
solving systems of fractional differential equations and defined by:

FF Iσt w(t) =
σ

Γ (σ)

∫ t

0

ζ−σw(ζ)(t− ζ)σ−1dζ, t > 0. (4.2)

The application of the fractal-fractional operator (4.1) to the system of
equations (2.1) yields

FFDσ
t X(t) = M1[X − s(TM2X − 4)M3], (4.3)

where we recall that

X = X(t) =

 x(t)
y(t)
z(t)

 , s(ζ) =

{
1, when ζ > 0,
0, when ζ ≤ 0

,

M1 =

 1
2 10 0
−10 1

2 0
0 0 −10

 , M2 =T (d, 4, 4) and M3 =T (0, 1, 1).

In order to adequately solve this combined system, we are forced to add the
initial conditions given as follows:

x(0) = x(x), y(0) = y(y), z(0) = z(z). (4.4)

Making use of the Legendre wavelets method as proposed in [5,20], we can
go on now by transforming the system (4.3)–(4.4) into a compact form. Using
now the associated antiderivative (4.2) and applying on both sides of the model
(4.3) leads to 

FFDσ
t x(t) = TP 1

r Φr(t),
FFDσ

t y(t) = TP 2
r Φr(t),

FFDσ
t z(t) = TP 3

r Φr(t).

Here Φr(t) is the matrix whose elements define the Legendre wavelets given as

ϕnr(t) =

{
2m/2

√
2r + 1L∗r(2mt− n)), if t ∈ [ n2m ,

n+1
2m ];

0, elsewhere
(4.5)

with L∗r the shifted Legendre polynomial defined on [0, 1] as L∗r(t) = Lr(2t−1),
(Lr(2t− 1))r being the family

L0 = 1, L1 = x, Lr+1(x) =
1+2r

r+1
xLr(x)− r

1+r
Lr−1(x), r=1, 2, . . . , N−1.
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Moreover, N a positive integer number, n = 1, 2, . . . , 2m−1 and m = 0, 1, 2, . . . .
P ir =T [r1r, r

2
r, . . . , r

r
r] are coefficients to be found with TM1

r ,
T M2

r and TM3
r are

the transpose of the matrices M1
r ,M

2
r and M3

r respectively. Associating the
initial conditions yields x(t) ≈ TP 1

rQ
σ
r×rΦr(t) + x,

y(t) ≈ TP 2
rQ

σ
r×rΦr(t) + y,

z(t) ≈ TP 3
rQ

σ
r×rΦr(t) + z,

(4.6)

where Qσr×r is the Legendre operational matrix of integration and the sub-
script r denotes its dimension. We know that [5,20], Legendre wavelets can be
expanded into an r-term form as

Φr(t) = Ξr×rAr(t), (4.7)

where Ar(t) =T [a1(t), a2(t), . . . , ar(t)] is the Block Pulse Functions so that

al(t) =

{
1, if t ∈ [m−1r , mr ];
0, elsewhere

for each m = 1, 2, . . . r, and Ξ the Legendre wavelet matrix

Ξr×r =

[
Φr

(
1

2r

)
Φr

(
3

2r

)
· · ·Φr

(
2r − 1

2r

)]
.

Now the substitution of (4.7) into system (4.6) leads to x(t) ≈ TP 1
rQ

σ
r×rΞr×rAr(t) + [xi]Ar(t),

y(t) ≈ TP 2
rQ

σ
r×rΞr×rAr(t) + [yi]Ar(t),

z(t) ≈ TP 3
rQ

σ
r×rΞr×rAr(t) + [zi]Ar(t),

(4.8)

where

[xi] = [x1,x2, . . . ,xr], [yi] = [y1,y2, . . . ,yr], [zi] = [z1, z2, . . . , zr].

Now let
TP irQ

σ
r×rΞr×r =Mσ,i

1×r = [rσ,i1 , rσ,i2 , . . . , rσ,ir ]. (4.9)

Now using the collocations points ti = 2i−1
2m+1N , i = 1, 2, 3, . . . , r, N ∈ N, to

disperse t, the substitution of (4.8) and (4.9) into the system (4.3) and lead to

TP 1
rΞr×r = b[rσ,21 , rσ,22 , . . . , rσ,2r ] + (a− p)[rσ,11 , rσ,12 , . . . , rσ,1r ]

+[x1,x2, . . . ,xr],
TP 2

rΞr×r = a[rσ,11 , rσ,12 , . . . , rσ,1r ]− (b+ p)[rσ,21 , rσ,22 , . . . , rσ,2r ]
+[y1,y2, . . . ,yr],

TP 3
rΞr×r = pe1[1, 1 . . . , 1] + c[rσ,31 , rσ,32 , . . . , rσ,3r ]

+[z1, z2, . . . , zr].

Hence, we obtain this non-linear system equations with 3r unknown coefficients,
leading to the 1× 3r unknown coefficients rσ,im of the matrix

Mσ
3×r =T (Mσ,1

1×r,M
σ,2
1×r,M

σ,3
1×r) =

 rσ,11 , rσ,12 , . . . , rσ,1r
rσ,21 , rσ,22 , . . . , rσ,2r
rσ,31 , rσ,32 , . . . , rσ,3r

 ,

which unknown coefficients are easily found using Newton iteration method.
Then exploiting (4.6), leads the sought numerical solution (x(t), y(t), z(t)).

Math. Model. Anal., 26(4):591–611, 2021.
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4.1 Error analysis

We assume here that the solution X(t) = (x(t), y(t), z(t)) is a function whose
second order derivative is bounded as |X ′′(t)| ≤ θ0, equivalently

|x′′(t)| ≤ θ10, |y′′(t)| ≤ θ10 |z′′(t)| ≤ θ10.

Making use of the Legendre wavelets schemes described here above to approx-
imate the solution X(t) means it can be expanded as a uniformly convergent
series that reads as

x(t) =

∞∑
n=0

∞∑
r=0

rσ,1nr ϕnr(t), y(t) =

∞∑
n=0

∞∑
r=0

rσ,2nr ϕnr(t), z(t) =

∞∑
n=0

∞∑
r=0

rσ,2nr ϕnr(t)

with

rσ,1nr = 〈x(t), ϕnr(t)〉, rσ,2nr = 〈y(t), ϕnr(t)〉, rσ,3nr = 〈z(t), ϕnr(t)〉. (4.10)

We have the following convergence results.

Proposition 1. Let θi0>0, i=1, 2, 3. Assuming that the solution (x(t), y(t), z(t))
is made of continuous functions on [0, 1] whose second order derivatives are
bounded as

|x′′(t)| ≤ θ10, |y′′(t)| ≤ θ20 |z′′(t)| ≤ θ30,
then the coefficients rσ,inr , i = 1, 2, 3, satisfy

|rσ,1nr | <
(12)1/2θ10

(2r−3)2
(√

2n
)5 , |rσ,2nr | < (12)1/2θ20

(2r−3)2
(√

2n
)5 , |rσ,3nr | < (12)1/2θ30

(2r−3)2
(√

2n
)5 .

Proof. Let us start with the function x(t) and using definition the Legendre
wavelets coefficients given in (4.10) and taking into account (4.5) we have

rσ,1nr =

∫ 1

0

x(t)ϕnr(t)dt

=

∫ n+1
2m

n
2m

x(t)2m/2
√

2r + 1L∗r(2mt− n)dt =

√
1 + 2r

2m

∫ 1

0

x

(
n+ δ

2m

)
L∗r(δ)dδ,

where we have changed the variable as t =
n+ δ

2m

=

√
1

(2r + 1)23m+2

∫ 1

0

dx

dt

(
n+ δ

2m

)(
L∗r+1(δ)− L∗r−1(δ)

)
dδ

=

√
1

(2r + 1)25m+2

∫ 1

0

d2x

dt2

(
n+δ

2m

)(
L∗r+2(δ)−L∗r(δ)

6 + 4r
−
L∗r(δ)−L∗r−2(δ)

−2 + 4r

)
dδ,

where we have used the derivative properties of the shifted Legendre polyno-
mials [5, 20]. Hence

|rσ,1nr | ≤

∣∣∣∣∣
√

1

(2r + 1)25m+2

∣∣∣∣∣
∫ 1

0

∣∣∣∣d2xdt2
(
n+ δ

2m

)∣∣∣∣
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×
∣∣∣∣(L∗r+2(δ)− L∗r(δ)

6 + 4r
−
L∗r(δ)− L∗r−2(δ)

−2 + 4r

)∣∣∣∣ dδ.
After developing the right hand side of inequality and making use of the con-
straint property |x′′(t)| ≤ θ10 and the orthogonality property of the shifted
Legendre polynomials finally leads to

|rσ,1nr | ≤

√
1√

2r + 1

1

2(5/2)m+1
θ10

√ √
3

(2r − 3)

1

2r − 1
<

(12)1/2θ10

(2r − 3)2
(√

2n
)5 .

We do the similar analysis for the functions y(t) and z(t) and the proposition
is concluded. ut

This result leads to the following error estimate:

Corollary 1. Let θi0 > 0, i = 1, 2, 3. Assuming that the solution (x(t), y(t), z(t))
is made of continuous functions on [0, 1] whose second order derivatives are
bounded as

|x′′(t)| ≤ θ10, |y′′(t)| ≤ θ20, |z′′(t)| ≤ θ30,

then the error made when xkN =
∑2m−1
n=0

∑N−1
r=0 rσ,1nr ϕnr(t) approximates x(t)

satisfies

∆1
kN < (12)1/2θ10

√√√√ ∞∑
n=2m

∞∑
r=N

1

32n5(2r − 3)4
.

Table 2. Errors made when using the Legendre wavelets for the model (4.3).

σ = 1 σ = 0.9

t (∆1)x(t) (∆2)y(t) (∆3)z(t) (∆1)x(t) (∆2)y(t) (∆3)z(t)

0.1 2.342e−4 1.276e−4 3.562e−3 2.672e−4 3.577e−4 3.044e−3

0.2 4.245e−4 1.287e−5 2.245e−4 6.782e−4 0.266e−3 7.244e−4

0.3 5.167e−4 2.298e−4 6.234e−2 3.892e−4 0.552e−4 3.332e−4

0.4 2.896e−5 3.109e−5 5.223e−4 2.902e−3 5.446e−4 3.332e−4

0.6 3.201e−4 2.900e−3 3.212e−3 1.092e−5 3.332e−5 4.332e−4

0.7 2.223e−3 4.782e−3 2.221e−4 3.985e−4 5.522e−5 3.442e−5

0.8 2.245e−4 4.562e−4 4.643e−3 3.872e−5 3.112e−5 3.244e−4

0.9 1.267e−3 4.342e−3 0.254e−4 3.787e−5 3.722e−3 4.266e−4

1 2.892e−5 3.022e−4 3.265e−3 4.988e−5 2.349e−3 3.235e−4

Similarly, the error made when ykN =
∑2m−1
n=0

∑N−1
r=0 rσ,2nr ϕnr(t) and zkN =∑2m−1

n=0

∑N−1
r=0 rσ,3nr ϕnr(t) respectively approximate y(t) and z(t) satisfy

∆2
kN < (12)1/2θ20

√√√√ ∞∑
n=2m

∞∑
r=N

1

32n5(2r − 3)4
,

∆3
kN < (12)1/2θ30

√√√√ ∞∑
n=2m

∞∑
r=N

1

32n5(2r − 3)4
.
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5 Numerical simulations

We can now implement the above scheme using the parameter values given by
d = 0. Hence, for m = 2, N = 3 and σ = 1(σ = 0.9), the errors made when
approximating are in the Table 2.

The implementation of this Legendre wavelets scheme generates the illustra-
tion shown in Figures 10–12 depicting the self-similarity process for the chaotic
attractor with two scrolls generated by the model (4.3)–(4.4) using the using
the Legendre wavelets scheme with d = 0 and for σ = 1, σ = 0.9 and σ = 0.8
respectively.

Figure 10. Self-similarity dynamic for the chaotic attractor with two scrolls generated by
the model (4.3)–(4.4) using the using the Legendre wavelets scheme with d = 0 and σ = 1.

We can see a set of three similar double-scroll chaotic attractors grouped to form a
symmetry around the axis z = 0.06.

The simulations show a set of three similar double-scroll chaotic attractors
grouped to form a symmetry around the axis z = 0.06. In Figure 11, the two
scrolls seem to move way from each other compared to those of Figure 10.

Figure 11. Self-similarity dynamic for the chaotic attractor with two scrolls generated by
the model (4.3)–(4.4) using the using the Legendre wavelets scheme with d = 0 and σ = 0.9.

We can see a set of three similar double-scroll chaotic attractors grouped to form a
symmetry around the axis z = 0.06 . The two scrolls seem to move way from each other

compared to Figure 10.

Such a distance is shown to increase in Figure 12 where the derivative order
σ has decreased to 0.8.
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In the same way, we apply of the fractal-fractional operator (4.1) to the
system of equations (2.2) as

FFDσ
t X(t) = M̃1[X − s(T M̃2X − 4)M̃3] (5.1)

where we recall

M̃1 =

 a c 0
−c a 0
0 0 −e

 , M̃2 =T (0, f, f) and M̃3 =T (0, 1, 1).

and implement the Legendre wavelets scheme described above. Making use the
parameter values given by

(b1, b2, b3, b4) =

(
−1

2
,

1

2
,

3

2
,

5

2

)
, (s1, s2, s3, s4, s5) = (−1, 0, 1, 2, 3),

(a, c, e, f) = (1/2, 10, 5, 1/2) .

Figure 12. Self-similarity dynamic for the chaotic attractor with two scrolls generated by
the model (4.3)–(4.4) using the using the Legendre wavelets scheme with d = 0 and σ = 0.8.

We can see a set of three similar double-scroll chaotic attractors grouped to form a
symmetry around the axis z = 0.06 . The two scrolls seem to further move way from each

other compared to Figure 11.

Hence, for m = 2, N = 3 and σ = 1, we get the illustration shown in
Figure 13. Lastly, we apply the fractal-fractional operator (4.1) to the system
of equations (2.4) as

FFDσ
τ x(τ) = y −W (y + z),

FFDσ
τ y(τ) = −x+ by +W (x+ z)− bW (y + z),

FFDσ
τ z(τ) = −z + dW (x+ z)− dW (y + z),

(5.2)

where we recall W (η) = 0.5
∑

i=0
n v(η − i− 0.5), where v(·) represents the unit

step function and where we have set

τ = t/RC, R = 3kΩ, C = 100pF, x = u1/1V, y = u2/1V, z = u3/1V.

We implement the Legendre wavelets scheme described above. Making use the
parameter values given by

(b, d, W (η)) =

(
1

10
,

1

2
,

1

2
v

(
η − 1

2

)
+

1

2
v

(
η − 3

2

))
.
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Figure 13. Self-similarity dynamic for the chaotic attractor with five scrolls generated by
the model (5.1)–(4.4) using the using the Legendre wavelets scheme with the parameter

values
(b1, b2, b3, b4) =

(
− 1

2
, 1
2
, 3
2
, 5
2

)
,(s1, s2, s3, s4, s5) = (−1, 0, 1, 2, 3), (a, c, e, f) =

(
1
2
, 10, 5, 1

2

)
,

and σ = 1. We can see a set of three similar quintuple-scroll chaotic attractors grouped to
form a symmetry around the axis z = 0.

Henceforth, the model (5.2) generates a chaotic attractor with seven scrolls,
as depicted in Figure 14.

Figure 14. Self-similarity dynamic for the chaotic attractor with seven scrolls generated
by the model (5.2)–(4.4) using the using the Legendre wavelets scheme with the parameter
values (b, d, W (η)) =

(
1
10
, 1

2
, 1

2
v
(
η − 1

2

)
+ 1

2
v
(
η − 3

2

))
and σ = 1. We can see a set of

two similar 7-scroll chaotic attractors grouped to form a double symmetry around the axis
z = 0 in one side and y = 1 in the other side.

It depicts the self-similarity process for the chaotic attractor with seven
scrolls generated by the model (5.2)–(4.4) using the using the Legendre wavelets
scheme with the parameter values (b, d,W (η))=( 1

10 ,
1
2 ,

1
2v(η− 1

2 )+ 1
2v(η− 3

2 )) and
σ = 1. It shows a set of two similar 7-scroll chaotic attractors grouped to form
a double symmetry around the axis z = 0 in one side and y = 1 in the other
side.
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6 Conclusions

Self-similarity processes are not only very important in image compressing and
machining but also in network traffic prediction that represents both a huge
academic problem and a concern for the industry and network performance
environment. Moreover, some of other self-similarity’s applications in real life
consist of predicting number of biological dynamics or phenomena including
bacteria growth pattern or nerve dendrite pattern. Hence, looking for alter-
native ways to reproduce and control self-similarity dynamics in a science lab-
oratory, workstation or path lab has also become fascinating for researchers,
especially since the phenomenon occurs naturally around us. Hence, we have
used three major combined concepts, namely the step series switching process,
the Julia’s technique and fractal-fractional dynamic to generate various forms
of self-similarity dynamics related to chaotic attractors which, initially com-
prise two, five and seven scrolls. The model obtained in each case has been
solved using numerical techniques and related numerical simulations have been
performed. We have noticed that the initial attractors can engage in the self-
similarity dynamics, thereby generating the exact or approximately exact copy
of themselves or part of themselves. Moreover, the dynamics of the copies have
been proved to be influenced and controlled by some of the model’s parameters
involved in the process. This work improves the preceding ones with the appli-
cation of three combined operations to generate self-similarity processes while
maintaining some important properties such as symmetry, invariance of the
number of scrolls, dynamical sense and orientation. This may then open more
doors for engineers, mathematicians and computer scientists looking for deeper
investigations in physical and mathematical concepts capable of re-generating
features that already exist naturally in our environment.
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[16] P. Melby, N. Weber and A. Hübler. Dynamics of self-adjusting systems with
noise. Chaos: An Interdisciplinary Journal of Nonlinear Science, 15(3):033902,
2005. https://doi.org/10.1063/1.1953147.

[17] S.S. Motsa, Y. Khan and S. Shateyi. Application of piecewise successive lineariza-
tion method for the solutions of the Chen chaotic system. Journal of Applied
Mathematics, 2012, 2012. https://doi.org/10.1155/2012/258948.

[18] C. Ravichandran, K. Jothimani, H.M. Baskonus and N. Valliammal. New
results on nondensely characterized integro differential equations with frac-
tional order. The European Physical Journal Plus, 133(3):1–9, 2018.
https://doi.org/10.1140/epjp/i2018-11966-3.

[19] C. Ravichandran, K. Logeswari, S.K. Panda and K.S. Nisar. On new approach
of fractional derivative by Mittag-Leffler kernel to neutral integro-differential
systems with impulsive conditions. Chaos, Solitons & Fractals, 139:110012,
2020. https://doi.org/10.1016/j.chaos.2020.110012.

https://doi.org/10.1016/j.amc.2014.11.079
https://doi.org/10.1016/j.chaos.2017.08.038
https://doi.org/10.1016/j.chaos.2019.06.025
https://doi.org/10.1016/j.aej.2020.03.011
https://doi.org/10.1142/S0218127420501801
https://doi.org/10.1016/j.cam.2017.08.026
https://doi.org/10.1111/j.1551-6709.2010.01151.x
https://doi.org/10.1142/S0218348X21500043
https://doi.org/10.1007/s00521-012-1208-7
https://doi.org/10.1049/el:20030847
https://doi.org/10.1109/TCSI.2002.808241
https://doi.org/10.1063/1.1953147
https://doi.org/10.1155/2012/258948
https://doi.org/10.1140/epjp/i2018-11966-3
https://doi.org/10.1016/j.chaos.2020.110012


Self-Similarity for Chaotic Attractors with Many Scrolls 611

[20] M. Razzaghi and S. Yousefi. The Legendre wavelets operational matrix of
integration. International Journal of Systems Science, 32(4):495–502, 2001.
https://doi.org/10.1080/00207720120227.

Math. Model. Anal., 26(4):591–611, 2021.

https://doi.org/10.1080/00207720120227

	Introduction
	Self-similarity in classical chaotic attractors with many scrolls using step series switching
	Fractal (Julia's) process in self-similarity for attractors with many scrolls
	Fractal-fractional process in self-similarity for attractors with many scrolls
	Error analysis

	Numerical simulations
	Conclusions
	References

