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Abstract. In this paper, we concentrate on a class of time-fractional diffusion
and subdiffusion equations. To solve the mentioned problems, we construct two-
dimensional Genocchi-fractional Laguerre functions (G-FLFs). Then, the pseudo-
operational matrices are used to convert the proposed equations to systems of alge-
braic equations. The properties of pseudo-operational matrices have reflected well
in the process of the numerical technique and create an approximate solution with
high precision. Finally, several examples are presented to illustrate the accuracy and
effectiveness of the technique.
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1 Introduction

Recently, the fractional calculus has been applied to various branches of science
such as signal processing, fluid mechanics, diffusion processes, and continuum,
etc. [1, 15,30,35].
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In recent years, fractional partial differential equations (FPDEs) have at-
tracted considerable attention because of their application in the modeling of
various phenomena. The fractional diffusion equation is an important type of
FPDEs which has been studied widely. The physical application of fractional
diffusion equations (FDEs) is related to the phenomena of anomalous diffusion
in transport processes through complex and/or disordered systems including
fractal media and fractional kinetic equations have proved particularly useful
in the context of anomalous slow diffusion [32].

Moreover, the time-fractional subdiffusion equations (FSDEs) are created
by replacing the time derivative in ordinary diffusion by a fractional derivative
of order 0 < γ < 1. This class of equation is achieved from anomalous diffusive
systems. The FSDEs are considered as the following form [7,17,36]:

∂u

∂t
= D1−γ

t

(
κγ
∂2u

∂x2

)
+ f(x, t), 0 < γ ≤ 1,

where κγ generalized diffusion constant, γ is the anomalous diffusion exponent
and Dγ

t is the γth-order Caputo derivative operator [46].
Since analytic techniques for finding the solutions of FDEs and FSDEs can-

not work well. Therefore, the researchers seek to establish efficient and reliable
numerical techniques. Note that various numerical techniques have existed to
solve these problems that we are presenting some of them. Mustapha [34] solved
sub-diffusion equations by an implicit finite-difference time-stepping method,
Jiang et al. [23] derived and utilized high-order finite element methods for time-
fractional partial differential equations, Si et al. [40] presented Haar wavelet
operational matrix for solving fractional partial differential equations with
time-space variable coefficients, Gao et al. [17] have discussed on the fractional
sub-diffusion equations with the help of the compact finite difference scheme,
Wang et al. [43] investigated the solution of the modified anomalous fractional
sub-diffusion equation and the fractional diffusion-wave equation by compact
difference schemes, Yaseen et al. [44] derived a cubic trigonometric B-spline col-
location approach for the fractional sub-diffusion equations, Dehestani et al. [8]
established the fractional-order Legendre-Laguerre functions for approximate
solution of fractional partial differential equations. For more details about the
proposed equation, the reader is advised to see [4, 11,13,18,20,24,25,45].

Many references on the spectral approach for solving different kinds of frac-
tional partial differential equations have been presented. Researchers have also
come up with successful results with this method. For example, fractional-order
Jacobi pseudo-spectral method [6], operational method based on hybrid Legen-
dre functions [33], Chebyshev wavelets collocation method [48], RBF method
and Chebyshev polynomials [26], Haar wavelet collocation method [3], wavelet
collocation method [41] etc., (see [2, 8, 27,37,39] and the references therein).

The main purpose of the present numerical scheme is solving FDEs and
FSDEs based on the G-FLFs and collocation method. First, by combining the
Genocchi polynomials (GPs) [21, 22, 29] and fractional-order Laguerre func-
tions (FLFs), we introduce the bivariate G-FLFs. Then, by means of pseudo-
operational matrices (POMs), FDEs and FSDEs are reduced to a system of
algebraic equations.
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In this work, we apply FLFs to approximate the time variable because the
behavior of the physical problems for large time is important. The Laguerre
polynomials are orthogonal in the semi-infinite interval and also these poly-
nomials are appropriate for approximating problems in semi-infinite intervals.
Also, we utilize GPs for approximating variable x because these polynomials
are superior to other polynomials. So that the advantages of these polynomials
are mentioned in [9, 10].

The paper is structured as follows: In the next section, we present the
framework of numerical technique, which contains the GPs, FLFs and G-FLFs.
Pseudo-operational matrices of integration, derivative and some necessary for-
mulas of G-FLFs are introduced in Section 3. In Section 4, the formulation
of the method based on G-FLFs is explained. In Section 5, we discuss error
estimation. To verify the accuracy and efficiency of the proposed approach,
we examine several test problems in Section 6. Finally, the conclusions of the
proposed numerical scheme are discussed in last section.

2 Combination of GPs and FLFs

This section introduces the Genocchi-fractional Laguerre functions and their
features.

2.1 Genocchi polynomials

The Genocchi polynomials of degree m, which is defined as follows [9, 10]:

Gm(x) =

m∑
k=0

(
m

k

)
gm−kx

k,

where gk denotes the Genocchi numbers. Now, we mention some significant
properties of Genocchi polynomials [12]:∫ b

a

Gm(x)dx =
Gm+1(b)−Gm+1(a)

m+ 1
,

∫ x

0

Gm(t)dt =
Gm+1(x)− gm+1

m+ 1
.

Any function g defined over the interval [0, 1] can be expanded in terms of GPs
which is described in detail in [12].

2.2 Fractional-order Laguerre functions

The analytic form of FLFs is given by [8]:

Lβn(t) =

n∑
k=0

(−1)kn!

(k!)2(n− k)!
tβk.

The orthogonal property of the FLFs with respect to the weight function
wβ(t) = tβ−1 exp(−tβ) are presented in [8], which the following formula is
gotten: ∫ ∞

0

wβ(t)Lβm(t)Lβn(t)dt =
1

β
δmn, (2.1)

Math. Model. Anal., 27(1):19–40, 2022.
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where δmn is the Kronecker symbol. In addition, any function h defined over
the interval [0,∞), can be approximated by FLFs which is described in detail
in [8].

2.3 Genocchi-fractional Laguerre functions

The G-FLFs GLβmn(x, t) are defined on the interval Ω = (x, t) ∈ [0, 1]× [0,∞),
as

GLβmn(x, t) = Gm(x)Lβn(t) =

m∑
i=0

n∑
j=0

(
m

i

)
(−1)jn!

(j!)2(n− j)!
gm−ix

itβj ,

m = 1, 2, . . . ,M, n = 0, 1, . . . , N. Any arbitrary function f(x, t) ∈ L2(Ω) can
be expanded with the first M(N + 1)-terms of G-FLFs as

f(x, t) =

M∑
m=1

N∑
n=0

fmnGLβmn(x, t) ' FTGLβ(x, t),

where

GLβ(x, t) = [GLβmn(x, t)]T =
[
GLβm(x, t)

]T
, F = [fmn]

T
,

m = 1, 2, . . . ,M, n = 0, 1, . . . , N.

3 POMs and some necessary formulas

The present section is devoted to the technique of computing the POMs.

3.1 POM of integration with respect to x

The integration of the G-FLFs, GLβ(x, t) with respect to the variable x is
determined by the following relation:∫ x

0

ξrGLβ(ξ, t)dξ ' xr+1PrGLβ(x, t), r = 0, 1, 2, . . . , (3.1)

where Pr denotes M(N +1)×M(N +1) POM of integration with respect to x.
To introduce the proposed matrix, we introduce the POM of GPs as follows:∫ x

0

ξrG(ξ)dξ ' xr+1P̄rG(x).

Now, to compute each element of the POM for GPs, we follow the below
process:∫ x

0

ξrGm(ξ)dξ =

∫ x

0

(
m∑
k=0

(
m

k

)
gm−kξ

k+r

)
dξ = xr+1

m∑
k=0

(
m

k

)
gm−k

k + r + 1
xk.
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Also, it can be written

xk '
M∑
i=1

bkiGi(x).

Then, by substituting the aforesaid equation in previous equation, we achieve

∫ x

0

ξrGm(ξ)dξ ' xr+1
m∑
k=0

(
m

k

)
gm−k

k + r + 1

[
M∑
i=1

bkiGi(x)

]

= xr+1
M∑
i=1

(
m∑
k=0

κmki

)
Gi(x)=xr+1

[
m∑
k=0

κmk1,

m∑
k=0

κmk2, . . . ,

m∑
k=0

κmkM

]
G(x),

where κmki =

(
m

k

)
gm−k

k + r + 1
bki. Therefore, we obtain the integral POM of

G-FLFs as

Pr=P̄r⊗I(N+1)×(N+1)=
[
P̄ rijI(N+1)×(N+1)

]
M(N+1)×M(N+1)

, i, j=1, 2, . . . ,M.

3.2 POM of fractional integration with respect to t

In this part, we present the pseudo-operational matrix of fractional integration
of order ν > 0 for G-FLFs vector GLβ(x, t) with respect to t as

Iνt

[
tlGLβ(x, t)

]
' tν+lΥ β,νl GLβ(x, t), l = 0, 1, 2, . . . .

Here Υ β,νl denotes the pseudo-operational matrix of fractional integration of

order ν and Υ β,νl = I ⊗Θβ,νl . So that

Iνt
[
tlLβ(t)

]
= tν+lΘβ,νl Lβ(t),

and Θβ,νl is the fractional integral pseudo-operational matrix of FLFs, which
is defined in [8].

3.3 POM of fractional derivative with respect to t

In the current section, we consider the pseudo-operational matrix of the frac-
tional derivative of order ν > 0 with respect to t. Then, we have

Dν
t

[
tsGLβ(x, t)

]
' ts−νΦβ,νs GLβ(x, t), s = 0, 1, 2, . . . . (3.2)

Here Φβ,νs denotes the pseudo-operational matrix of fractional derivative for
G-FLFs. To get the desired goal, we obtain the pseudo-operational matrix of
the fractional derivative for FLFs as

Dν
t

[
tsLβ(t)

]
' ts−νQβ,νs Lβ(t).

Math. Model. Anal., 27(1):19–40, 2022.
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Each component of the POM is determined by the following relations:

Dν
t

[
tsLβ(t)

]
= Dν

t

(
n∑
k=0

(−1)kn!

(k!)2(n− k)!
tβk+s

)
(3.3)

= ts−ν
n∑

k=d s−νβ e

(−1)kn!

(k!)2(n− k)!

Γ (βt+ s+ 1)

Γ (βt+ s− ν + 1)
tβk.

Also, it can be written tβk '
∑N
i=0 c

β
kiL

β
i (t). From Equation (3.3), we get

Dν
t

[
tsLβ(t)

]
' ts−ν

N∑
i=0

(

n∑
k=d s−νβ e

λnki)L
β
i (t),

where λnki = (−1)kn!
(k!)2(n−k)!

Γ (βt+s+1)
Γ (βt+s−ν+1)c

β
ki. Consequently, the POM of the frac-

tional derivative for G-FLFs is obtained by using the pseudo-operational matrix
of the fractional derivative of FLFs as Φβ,νs = I ⊗Qβ,νs .

3.4 Necessary relations

In the proceeding of the numerical algorithm, we need to calculate the following
formula: ∫ 1

0

xGLβ(x, t)dx = ΛLβ(t).

To achieve the sought goal, we use the below relation

GLβ(x, t) = Ψ(x)Lβ(t),

where
Ψ(x) = diag[G(x), G(x), . . . , G(x)]M(N+1)×(N+1).

Thus, the matrix Λ is obtained as

Λ = diag[S, S, . . . , S]M(N+1)×(N+1).

According to the Genocchi polynomials properties, we get the vector S as

S=

∫ 1

0

xG(x)dx=
[

G2(1)
2

−G3(1)
6

G3(1)
3

−G4(1)
12

. . .
GM+1(1)

M+1
− GM+2(1)

(M+1)(M+2)

]T
.

4 Construction of the numerical method

This article is devoted to investigating the numerical solution of the following
form of the time-fractional diffusion equation:

Dν
t u(x, t) = F

(
u,
∂u

∂x
,
∂u

∂t
,
∂2u

∂x∂t
,
∂3u

∂x2∂t

)
, 0 < ν ≤ 2, (4.1)
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and the time-fractional subdiffusion equation

∂u

∂t
= D1−γ

t

(
∂2u

∂x2

)
+ F (x, t, u,

∂u

∂x
,
∂2u

∂x2
), 0 < γ ≤ 1, (4.2)

subject to the initial conditions u(x, 0) = ω0(x), ∂u(x,0)
∂t = ω1(x), x ∈ [0, 1],

and boundary conditions u(0, t) = ϕ0(t), u(1, t) = ϕ1(t), t ∈ [0,∞), where
F is a nonlinear function and the functions ω0(x), ω1(x), ϕ0(t) and ϕ1(t) are
known in the domain Ω, and also u is an unknown function to be calculated.
The involved fractional derivatives are described in the Caputo sense. In the
present approach, we approximate the higher order derivative by G-FLFs as

∂4u(x, t)

∂x2∂t2
' UTGLβ(x, t). (4.3)

By integrating from Equation (4.3) with respect to t and utilizing the initial
conditions and the POM of integration introduced in Section 3.2, we obtain

∂3u(x, t)

∂x2∂t
' tUTΥ β,10 GLβ(x, t) + ω′′1 (x), (4.4)

integrating from Equation (4.4), to obtain

∂2u(x, t)

∂x2
' t2UTΥ β,10 Υ β,11 GLβ(x, t) + tω′′1 (x) + ω′′0 (x). (4.5)

In the following, by integrating Equation (4.5) with respect to x and using the
POM of integration in Equation (3.1), we have

∂

∂x
u(x, t) 'xt2UTΥ β,10 Υ β,11 P0GLβ(x, t) + t (ω′1(x)− ω′1(0))

+ (ω′0(x)− ω′0(0)) +
∂u(0, t)

∂x
(4.6)

and

u(x, t) 'x2t2UTΥ β,10 Υ β,11 P0P1GLβ(x, t) + t (ω1(x)− ω1(0)− xω′1(0))

+ (ω0(x)− ω0(0)− xω′0(0)) + x
∂u(0, t)

∂x
+ u(0, t). (4.7)

To achieve the approximate solution, it is necessary to determine unknown

function ∂u(0,t)
∂x . Thus, integrate Equation (4.6) with respect to x from 0 to 1

as

∂u(0, t)

∂x
'u(1, t)− u(0, t)− t2UTΥ β,10 Υ β,11 P0ΛL

β(t)

+ t (ω1(1)− ω1(0)− ω′1(0))− (ω0(1)− ω0(0)− ω′0(0)) .

Then, by substituting the above relation in Equations (4.6) and (4.7), the de-
sired results are obtained. In a similar way, in order to express the approxima-
tion of the other unknown functions, we take integration from Equation (4.3)
and follow the process below:

∂3u(x, t)

∂x∂t2
' xUTP0GLβ(x, t) +

∂3u(0, t)

∂x∂t2
=
∂3uMN (x, t)

∂x∂t2
, (4.8)

Math. Model. Anal., 27(1):19–40, 2022.
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and also,

∂2u(x, t)

∂t2
' x2UTP0P1GLβ(x, t) + x

∂3u(0, t)

∂x∂t2
+ ϕ′′0(t) =

∂2uMN (x, t)

∂t2
. (4.9)

In order to calculate the unknown statement ∂3u(0,t)
∂x∂t2 , integrating Equation (4.8)

from 0 to 1 as

∂3u(0, t)

∂x∂t2
' ϕ′′1(t)− ϕ′′0(t)− UTP0ΛL

β(t). (4.10)

Then, from Equations (4.9) and (4.10), we get

∂u(x, t)

∂t
'x2tUTP0P1Υ

β,1
0 GLβ(x, t) + x (ϕ′1(t)− ϕ′1(0)− ϕ′0(t) + ϕ′0(0)

− tUTP0ΛΘ
β,1
0 Lβ(t)

)
+ ϕ′0(t)− ϕ′0(0) + ω1(x). (4.11)

By applying the properties of Caputo fractional derivative operator of order
0 < ν ≤ 1 in Equation (4.11), we have

Dν
t u(x, t) = I1−νt

(
∂u(x, t)

∂t

)
' x2t2−νUTP0P1Υ

β,1
0 Υ β,1−ν1 GLβ(x, t)

+ xI1−νt (ϕ′1(t)− ϕ′0(t)) + x
Γ (1)

Γ (2− ν)
t1−ν (ϕ′0(0)− ϕ′1(0))− xt2−νUTP0

× ΛΘβ,10 Θβ,1−ν1 Lβ(t) + I1−νt (ϕ′0(t)) +
Γ (1)

Γ (2− ν)
t1−ν (ω1(x)− ϕ′0(0)) .

For 1 < ν ≤ 2, we get

Dν
t u(x, t) = I2−νt

(
∂2u(x, t)

∂t2

)
' x2t2−νUTP0P1Υ

β,2−ν
0 GLβ(x, t)

+ xI2−νt (ϕ′′1(t)− ϕ′′0(t))− xt2−νUTP0ΛΘ
β,2−ν
0 Lβ(t) + I2−νt (ϕ′′0(t)) .

Also, to approximate the fractional differential part of subdiffusion equation,
we use Equation (4.5) as follows:

D1−γ
t

(
∂2u(x, t)

∂x2

)
' t1+γUTΥ β,10 Υ β,11 Φβ,1−γs GLβ(x, t) +

tγ

Γ (1 + γ)
ω′′1 (x).

Next, we substitute the approximations results in Equations (4.1) and (4.2) to
get an algebraic equation. Then, we utilize M nodal points of Newton-Cotes [8]
for variable x and N + 1 zeros of LPs for variable t, to collocate the proposed
equations. Consequently, we apply Newtons method or Broydens method or
any other iterative solver to get the solution of the nonlinear system.

5 Error bound

This section investigates the error bound of the integral POM and the error of
partial derivative of the approximate solution. To compute the upper bound of
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error for POM of integration with respect to variable x, we use Equation (3.1),
Lemmas 1 and 2 in [12], and the following relation:

Er1,x =

∫ x

0

ξrGLβ(ξ, t)dξ − xr+1PrGLβ(x, t), r = 0, 1, 2, . . . ,

Er1,x =
[
e1,xj1

]
, j = 1, 2, . . . ,M(N + 1).

On the other hand, according to the above relation, we obtain

Er1,x =

∫ x

0

ξrΨ(ξ)Lβ(t)dξ − xr+1PrΨ(x)Lβ(t)

=

[∫ x

0

ξrΨ(ξ)dξ − xr+1PrΨ(x)

]
Lβ(t) = Rr

1,xL
β(t).

Then, we get

‖Er1,x‖L2
wβ(x,t)

(Ω) ≤ ‖Rr
1,x‖L2[0,1]‖Lβ(t)‖L2

wβ(t)
[0,∞),

where

Rr
1,x = diag[R̄

r
1,x, R̄

r
1,x, . . . , R̄

r
1,x]M(N+1)×(N+1).

Each component of R̄
r
1,x is given by

R̄
r
1,x =

∫ x

0

ξrG(ξ)dξ − xr+1P̄rG(x), R̄
r
1,x =

[
r1,xm

]
, m = 1, 2, . . . ,M.

Therefore, due to the orthogonal property of fractional-order Laguerre func-
tions in Equation (2.1), we have

‖e1,xj1 ‖L2
wβ(x,t)

(Ω) ≤
1√
β
‖r1,xm ‖L2[0,1].

Moreover, from Equation (3.1) the following result is achieved:

‖r1,xm ‖L2[0,1]=
∥∥∥∫ x

0

ξrGm(ξ)dξ−xr+1
m∑
k=0

(
m

k

)
gm−k
k+r+1

[ M∑
i=1

bkiGi(x)
]∥∥∥
L2[0,1]

≤|
m∑
k=0

(
m

k

)
gm−k

k + r + 1
|‖xk −

M∑
i=1

bkiGi(x)‖L2[0,1]

=|
m∑
k=0

(
m

k

)
gm−k

k + r + 1
|
(
Gram(xk, G1(x), . . . , , GM (x))

Gram(G1(x), . . . , GM (x))

) 1
2

.

The above discussion indicates that with increasing the number of G-FLFs
bases, each element of R̄

r
1,x tends to zero quickly.

Theorem 1. Suppose that uMN (x, t) is the approximate of the exact solution
u(x, t) obtained by the proposed method over the region Ω, then the upper bound

Math. Model. Anal., 27(1):19–40, 2022.



28 H. Dehestani, Y. Ordokhani and M. Razzaghi

of error is given by∥∥∥∥∂2u(x, t)

∂t2
− ∂2uMN (x, t)

∂t2

∥∥∥∥
L2
wβ(x,t)

(Ω)

≤
∥∥UT∥∥

2
‖Er2,x‖L2

wβ(x,t)
(Ω)

+
∥∥UT∥∥

2
‖Er1,x‖L2

wβ(x,t)
(Ω),

where Er2,x is calculated as Er1,x.

Proof. From the algorithm of the method mentioned in Section 4, the second
derivative of u(x, t) with respect to t is expressed by

∂2u(x, t)

∂t2
=UT

∫ x

0

∫ x

0

GLβ(ξ, t)dξdξ

+ x(ϕ′′1(t)− ϕ′′0(t)− UT (

∫ x

0

GLβ(ξ, t)dξ)ΛLβ(t)) + ϕ′′0(t).

Considering Equation (4.9), the following expression is established:

‖∂
2u(x, t)

∂t2
− ∂2uMN (x, t)

∂t2
‖L2

wβ(x,t)
(Ω)

≤ ‖UT [

∫ x

0

∫ x

0

GLβ(ξ, t)dξdξ]− x2UTP0P1GLβ(x, t)‖L2
wβ(x,t)

(Ω)

+ ‖xUT [

∫ 1

0

∫ x

0

GLβ(ξ, t)dξdx]− xUT [

∫ 1

0

xP0GLβ(ξ, t)dx]‖L2
wβ(x,t)

(Ω)

≤ ‖UT ‖2‖
∫ x

0

∫ x

0

GLβ(ξ, t)dξdξ − x2P0P1GLβ(x, t)‖L2
wβ(x,t)

(Ω)

+ ‖x‖L2
wβ(x,t)

(Ω)‖UT ‖2
∥∥∥∫ 1

0

[ ∫ x

0

GLβ(ξ, t)dξ−xP0GLβ(x, t)
]
dx
∥∥∥
L2
wβ(x,t)

(Ω)

= ‖UT ‖2‖Er2,x‖L2
wβ(x,t)

(Ω) + ‖UT ‖2‖Er1,x‖L2
wβ(x,t)

(Ω).

ut

From the above theorem, it can be inferred that for large values of M and N
the upper bound of error tends to zero. In a similar manner, it can be deduced
that

M,N →∞ ⇒
∥∥∥∂3u(x, t)

∂x∂t2
− ∂3uMN (x, t)

∂x∂t2

∥∥∥
L2
wβ(x,t)

(Ω)
→ 0.

6 Numerical experiments

In this section to illustrate the applicability and validity of the numerical
scheme performed in the previous sections, we give seven examples. The cal-
culations were performed on a personal computer and the codes were written
in MATLAB 2016.
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Example 1. First, we consider the one-dimensional linear inhomogeneous time
fractional Burgers equation [31,42]

Dν
t u(x, t) =

∂2u

∂x2
(x, t)− ∂u

∂x
(x, t) +

2t2−ν

Γ (3− ν)
+ 2x− 2, 0 < ν ≤ 1, (6.1)

subject to the initial condition u(x, 0) = x2, x ∈ [0, 1] and the boundary
condition u(0, t) = t2, u(1, t) = 1 + t2, t > 0. The exact solution is u(x, t) =
x2 + t2. From the algorithm of the proposed approach, we obtain

∂2u(x, t)

∂x2
'tUTΥ β,10 GLβ(x, t) + 2,

∂u(x, t)

∂x
'xtUTΥ β,10 P0GLβ(x, t) + 2x+ 1− tUTΥ β,10 P0ΛL

β(t),

u(x, t) 'x2tUTΥ β,10 P0P1GLβ(x, t) + x2 + x
(

1− tUTΥ β,10 P0ΛL
β(t)

)
+ t2,

Dν
t u(x, t) 'x2t1−νUTP0P1Υ

β,1−ν
0 GLβ(x, t)− xt1−νUTP0ΛΘ

β,1−ν
0 Lβ(t)

+
2Γ (2)

Γ (3− ν)
t2−ν .

Then, by replacing the obtained results in Equation (6.1) and considering
M = N = 2 for various values of β, ν, we get u(x, t) = x2 + t2, which is
the exact solution of Equation (6.1). The maximum absolute error on the in-
terval [0, 1]× [0, 2] for N = 51 by meshless method [31] is 5.4666×10−5 and by
Rbfs approximation method [31] is 6.086× 10−2. From the obtained results, it
can be concluded that the proposed method is more accurate than the meshless
method [42] and Rbfs approximation method [31].

Example 2. We consider the following fractional Klein–Gordon equation [19]

Dν
t u(x, t)− ∂2u

∂x2
(x, t) = u(x, t), 1 < ν ≤ 2, (6.2)

subject to the initial conditions u(x, 0) = 1 + sin(x), ut(x, 0) = 0, x ∈ [0, 1],
and the boundary conditions u(0, t) = cosh(t), u(1, t) = sin(1)+cosh(t), t > 0.
The exact solution of this problem is u(x, t) = sin(x) + cosh(t) for special value
of ν = 2. According to the mentioned approach, we obtain

∂2u(x, t)

∂x2
't2UTΥ β,10 Υ β,11 GLβ(x, t)− sin(x),

u(x, t) 'x2t2UTΥ β,10 Υ β,11 P0P1GLβ(x, t)− xt2UTΥ β,10 Υ β,11 P0ΛL
β(t)

+ sin(x) + cosh(t),

Dν
t u(x, t) 'x2t2−νUTP0P1Υ

β,2−ν
0 GLβ(x, t)

− xt2−νUTP0ΛΘ
β,2−ν
0 Lβ(t) + cosh(t).

By taking ν = 2,M = N = 2 and replacing the aforesaid relation in Equa-
tion (6.2), we get u(x, t) = sin(x) + cosh(t), which is the exact solution of the

Math. Model. Anal., 27(1):19–40, 2022.
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Table 1. Absolute error for different values of ν with β = 1 and M = N = 2 on the interval
[0, 1] × [0, 5] for Example 2.

(x, t) ν = 1.8 ν = 1.85 ν = 1.9 ν = 1.95

(0, 0) 0 0 0 0
(0.2, 1) 1.05 × 10−2 7.30 × 10−3 4.45 × 10−3 2.00 × 10−3

(0.4, 2) 3.79 × 10−2 2.63 × 10−2 1.60 × 10−2 7.19 × 10−3

(0.6, 3) 2.86 × 10−2 1.79 × 10−2 1.19 × 10−2 5.31 × 10−3

(0.8, 4) 3.33 × 10−2 2.33 × 10−2 1.44 × 10−2 6.57 × 10−3

(1, 5) 0 0 0 0

Figure 1. The absolute errors of ν = 1.75 (left) and ν = 1.95 (right) with β = 0.5 and
M = 4, N = 4 on the interval [0, 1] × [0, 5] of Example 2.

present example. From Table 1, it is clear that with approaching the values of
ν to 2 the approximate solution tends to the exact solution.

Also, the absolute errors for the different choice of ν with β = 0.5 and
M = N = 4 on the interval [0, 1]× [0, 5] are demonstrated in Figure 1.

Example 3. Let us consider the following two-term wave-diffusion equation with
damping [5, 28,38]:

Dν
t u(x, t) +

∂u

∂t
(x, t) =

∂2u

∂x2
(x, t) +

(
6t3−ν

Γ (4− ν)
+ 3t2 − t3

)
ex, 1 < ν ≤ 2,

subject to the initial conditions u(x, 0) = 0, ut(x, 0) = 0, x ∈ [0, 1] and the
boundary conditions u(0, t) = t3, u(1, t) = et3, t > 0. The exact solution is
u(x, t) = t3ex. Table 2 represents the absolute errors by the present technique
and methods in [5,28,38]. From Table 2, we conclude that the results produced
by our technique with a few terms of G-FLFs are more accurate than methods
in [5, 28, 38]. Also, the absolute errors for ν = 1.5 and β = 1 on interval
[0, 1] × [0, 50] are plotted in Figure 2. It illustrates that the proposed method
has high precision in the large interval.

Example 4. We consider the time-fractional sine-Gordon equation with the fol-
lowing form [8,14,16]:

Dν
t u(x, t) =

∂2u

∂x2
(x, t)− sin(u(x, t)) + f(x, t), 1 < ν ≤ 2,
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Table 2. Comparison of the maximum absolute errors for different values of M with
methods in [5, 28,38] with ν = 1.85 and β = 1 on the interval [0, 1] × [0, 1] for Example 3.

Method M N L∞ − error CPU

Present method 2 2 4.1933 × 10−4 0.1762
4 2 7.4878 × 10−7 0.2152
8 2 8.4505 × 10−13 0.3147

Semi-analytical collocation method [38] 4 4 3.38 × 10−3 −
8 8 9.69 × 10−4 −
16 16 2.53 × 10−4 −

Jacobi tau spectral method [5] 4 4 5.46 × 10−5 −
8 8 5.50 × 10−6 −
16 16 2.42 × 10−7 −

Predictor-corrector method [28] 4 4 1.09 × 10−1 −
8 8 2.76 × 10−2 −
16 16 6.72 × 10−3 −

Figure 2. The absolute errors for ν = 1.5 and β = 1 with M = 7, N = 2 (left) and
M = 10, N = 2 (right) on the interval [0, 1] × [0, 50] of Example 3.

subject to the initial conditions u(x, 0) = 0, ut(x, 0) = 0, x ∈ [0, 1] and the
boundary conditions u(0, t) = 0, u(1, t) = t2 sin(1), t > 0, where f(x, t) =(

2t2−ν

Γ (3−ν) + t2
)

sin(x) + sin(t2 sin(x)). The exact solutions is u(x, t) = t2 sin(x).

Table 3. Absolute error for different values of M with β = 1 and ν = 2 on the interval
[0, 1] × [0, 10] for Example 4.

(x, t) N = 2,M = 3 N = 2,M = 5 N = 2,M = 7 N = 2,M = 10

(0, 0) 0 0 0 0
(0.2, 2) 4.2101 × 10−5 1.6382 × 10−7 1.3178 × 10−10 3.7485 × 10−16

(0.4, 4) 3.2681 × 10−4 1.0324 × 10−8 1.9122 × 10−10 2.1658 × 10−17

(0.6, 6) 6.5825 × 10−4 1.4881 × 10−7 3.5734 × 10−10 1.3180 × 10−14

(0.8, 8) 7.2652 × 10−4 2.6302 × 10−6 2.2944 × 10−9 3.7462 × 10−14

(1, 10) 1.7768 × 10−16 1.7768 × 10−16 1.7768 × 10−16 1.7768 × 10−16

In Table 3, we present the absolute errors for different values of M with
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N = 2, β = 1 and ν = 2 on the interval [0, 1] × [0, 10]. Table 3 indicates that
with the increase in the number of G-FLFs bases the error decreases sharply.

Moreover, we observe the comparison of the absolute errors by G-FLFs for
different choices of β and methods in [14,16], in Table 4.

Table 4. Comparison of the absolute errors obtained by presented approach for various
values of β and M = 8, N = 2 with method in [14,16] of Example 4.

x = t Present method Method in [14] Method in [16]
β = 0.5 β = 1 M = N = 8 M = N = 8

1
10

3.3232 × 10−15 3.6083 × 10−15 9.83 × 10−3 7.79 × 10−14

1
20

1.8092 × 10−15 1.7705 × 10−15 4.59 × 10−3 2.17 × 10−14

1
40

6.3314 × 10−16 6.2835 × 10−16 2.24 × 10−3 9.43 × 10−16

1
80

1.1921 × 10−16 1.1863 × 10−16 1.11 × 10−3 6.57 × 10−16

1
160

1.8000 × 10−17 1.7928 × 10−17 5.52 × 10−4 1.21 × 10−16

CPU 0.3451 0.3128 - -

Figure 3. The absolute error for ν = 1.75 (left) and ν = 1.95 (right) with M = 8, N = 2
and β = 1 on the interval [0, 1] × [0, 100] of Example 4.

In Figure 3, the absolute errors are illustrated by considering the points in
the interval [0, 1]× [0, 100] for different values of ν = 1.75, 1.95 and β = 1,M =
2, N = 8. Due to the obtained results and results of the method in [8], it can
be concluded that the present method is more accurate than the mentioned
method.

Example 5. Consider the following subdiffusion equation [45,47]:

∂u

∂t
(x, t) = D1−γ

t

(
∂2u

∂x2
(x, t)

)
+ f(x, t), 0 < γ < 1,

subject to the initial conditions u(x, 0) = exp(x), x ∈ [0, 1] and the boundary
conditions u(0, t) = t2+t+1, u(1, t) = exp(1)(t2+t+1), t > 0, where f(x, t) is
defined such that the exact solution of this example is u(x, t) = exp(x)(t2+t+1).

The absolute error for various values of M,N, β, γ on the interval [0, 1] ×
[0, 100] are presented in Table 5.
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Table 5. Absolute errors for different values of M,N, β, γ on the interval [0, 1]× [0, 100] for
Example 5.

(x, t) M = 5, N = 3, β = 1 M = 5, N = 5, β = 0.5
γ = 0.25 γ = 0.5 γ = 0.25 γ = 0.5

(0, 0) 0 0 0 0
(0.1, 10) 7.3360 × 10−7 7.2895 × 10−7 7.3393 × 10−10 7.2881 × 10−7

(0.2, 20) 3.0724 × 10−5 3.0772 × 10−5 3.0704 × 10−5 3.0756 × 10−5

(0.3, 30) 3.3782 × 10−5 3.3883 × 10−5 3.3674 × 10−5 3.3794 × 10−5

(0.4, 40) 1.3335 × 10−5 1.3289 × 10−5 1.3474 × 10−5 1.3392 × 10−5

(0.5, 50) 6.2643 × 10−6 6.4562 × 10−6 5.9209 × 10−6 6.0693 × 10−6

(0.6, 60) 1.0418 × 10−5 9.8118 × 10−6 1.2239 × 10−5 1.1795 × 10−5

(0.7, 70) 2.1813 × 10−4 2.1890 × 10−4 2.1412 × 10−4 2.1469 × 10−4

(0.8, 80) 5.2874 × 10−4 5.2947 × 10−4 5.2355 × 10−4 5.2395 × 10−4

(0.9, 90) 8.5065 × 10−5 8.4643 × 10−5 8.8203 × 10−5 8.8102 × 10−5

(1, 100) 3.0251 × 10−12 3.0251 × 10−12 3.0251 × 10−12 3.0251 × 10−12

Table 6. Comparison of the L2 and L∞ errors for different values of M,γ and β = 1 with
methods in [45] on the interval [0, 1] × [0, 1] for Example 5.

Method γ M N L2-error L∞-error

Present method 0.25 3 3 8.9419 × 10−5 3.9728 × 10−5

5 3 1.2958 × 10−7 1.1557 × 10−7

7 3 1.0903 × 10−10 9.3169 × 10−11

0.75 3 3 8.9272 × 10−5 5.8494 × 10−5

5 3 1.2904 × 10−7 1.1517 × 10−7

7 3 1.0843 × 10−10 9.2733 × 10−11

Crank-Nicolson finite element 0.25 - 16 1.3462 × 10−4 1.8404 × 10−4

method [45] - 32 3.4450 × 10−5 4.7114 × 10−5

- 64 9.4175 × 10−6 1.2889 × 10−5

0.75 - 16 1.3615 × 10−4 1.8612 × 10−4

- 32 3.4028 × 10−5 4.6532 × 10−5

- 64 8.5093 × 10−6 1.1645 × 10−5

The root-mean-square error L2 and maximum absolute error L∞ in some
nodes on interval [0, 1] × [0, 1] for different choices of γ,M with N = 3, β = 1
are listed in Table 6.

Also, Table 6 observed that the proposed method is more accurate than the
Crank-Nicolson finite element method [45]. Figure 4 shows the behavior of the
absolute error on the interval [0, 1] × [0, 200] for γ = 0.25 (left) and γ = 0.5
(right) with M = 10, N = 3 and β = 1.

Example 6. Consider the following subdiffusion equation [7, 17,20]:

∂u

∂t
(x, t)=D1−γ

t

(
∂2u

∂x2
(x, t)

)
+ exp(x)

(
(1+γ)tγ−Γ (2 + γ)

Γ (1+2γ)
t2γ
)
, 0 < γ < 1,

subject to the initial conditions u(x, 0) = 0, x ∈ [0, 1] and the boundary
conditions u(0, t) = t1+γ , u(1, t) = exp(1)t1+γ , t > 0, The exact solution
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Figure 4. The absolute errors for γ = 0.25 (left) and γ = 0.5 (right) with M = 10, N = 3
and β = 1 on the interval [0, 1] × [0, 200] of Example 5.

of this example is u(x, t) = exp(x)t1+γ . We implement the suggested method
for different values of M,N, β, γ on the interval [0, 1]× [0, 1] in Table 7.

Table 7. Comparison of the absolute errors for different values of M,N, β, γ with method
in [20] on the interval [0, 1] × [0, 1] for Example 6.

Present method
β = γ = 0.25 β = γ = 0.5

x = t M = 2, N = 6 M = 5, N = 6 M = 2, N = 4 M = 4, N = 4

0.1 1.09 × 10−5 1.17 × 10−8 8.38 × 10−6 1.06 × 10−8

0.3 2.55 × 10−4 7.94 × 10−7 1.78 × 10−4 4.16 × 10−7

0.5 8.51 × 10−4 4.13 × 10−7 6.99 × 10−4 3.08 × 10−7

0.7 6.91 × 10−4 1.84 × 10−6 6.17 × 10−4 1.65 × 10−6

0.9 3.22 × 10−4 3.29 × 10−7 3.20 × 10−4 3.33 × 10−7

CPU 0.1563 0.2061 0.1917 0.3035

Wavelets Galerkin method [20]
γ = 0.25 γ = 0.5

x = t k = 2,M = 12 k = 2,M = 12

0.1 4.4010 × 10−6 5.8425 × 10−6

0.3 3.0210 × 10−6 7.4888 × 10−6

0.5 7.0767 × 10−7 5.7963 × 10−6

0.7 1.4172 × 10−6 2.7013 × 10−6

0.9 1.6218 × 10−6 5.9588 × 10−8

The results of the present approach with wavelet Galerkin method [20] are
compared in Table 7. It is clear that our method with a few numbers of G-FLFs
is more accurate than wavelets Galerkin method. The author in [7] presented
the maximum absolute errors for different cases γ by high-order compact finite
difference method. Therefore, γ = 0.25 and γ = 0.75 are obtained 1.8928×10−5

and 5.6363×10−5, respectively. Also, Gao and Sun [17] presented the maximum
absolute errors by compact finite difference scheme for γ = 0.25 and γ = 0.75
are 1.4338 × 10−8 and 7.1085 × 10−6, respectively. In addition, the graph of
absolute error for different values of M and N with β = 0.5, γ = 0.25 are plotted
in Figure 5. From the obtained results, we can conclude that the mentioned
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approach is in excellent agreement with the exact solution.

Figure 5. The absolute errors for β = 0.5 and γ = 0.25 with M = 4, N = 6 (left) and
M = 6, N = 6 (right) on the interval [0, 1] × [0, 10] of Example 6.

Example 7. We consider the following nonlinear generalized Benjamin-Bona-
Mahony-Burgers equation:

∂u

∂t
(x, t)−D1−γ

t

(
∂2u

∂x2
(x, t)

)
− ∂

2u

∂x2
(x, t) +

∂u

∂x
(x, t) = u(x, t)

∂u

∂x
(x, t) + f(x, t),

0 < γ ≤ 1, subject to the initial condition u(x, 0) = sech(x), x ∈ [0, 1] and
the boundary conditions u(0, t) = sech(−t), u(1, t) = sech(1 − t), t > 0,
where f(x, t) is defined such that the exact solution of this example is u(x, t) =
sech(x − t). The behavior of the absolute error of this problem for different
values of γ with M = N = 5 are expressed in Table 8.

Table 8. Absolute errors for various values of γ with β = 1 and M = N = 5 on the interval
[0, 1] × [0, 1] for Example 7.

x = t γ = 0.8 γ = 0.85 γ = 0.9 γ = 0.95 γ = 1

0 0 0 0 0 0
0.1 2.7218×10−6 2.2850×10−6 1.8066×10−6 1.2749×10−6 6.7496×10−7

0.3 1.6089×10−5 1.3164×10−5 9.9425×10−6 6.3449×10−6 2.2667×10−6

0.5 3.0084×10−5 2.4436×10−5 1.8196×10−5 1.1211×10−5 3.2766×10−6

0.7 3.7621×10−5 3.1051×10−5 2.3785×10−5 1.5645×10−5 6.3977×10−6

0.9 2.4285×10−5 2.0655×10−5 1.6640×10−5 1.2144×10−5 7.0420×10−6

1 0 0 0 0 0

The given results illustrate that proposed approximate solution converges
to the exact solution when γ approaches 1. The root-mean-square error L2 and
maximum absolute error L∞ on interval [0, 1] × [0, 1] for various values of h
and M = N = 5 are listed in Table 9.

Table 10 displays the absolute error for various values of β with γ = 1,M =
N = 3 and h = 1

10 on interval [0, 1]× [0, 10]. This table demonstrates that the
presented method is efficient for different choices of β.
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Table 9. Errors for various values of h with γ = 1 and M = N = 5 on the interval
[0, 1] × [0, 1] for Example 7.

h L2-error L∞-error

1/10 1.4149 × 10−5 7.9337 × 10−6

1/20 2.4886 × 10−5 1.1646 × 10−5

1/30 1.1447 × 10−5 5.5130 × 10−6

1/40 6.5008 × 10−6 3.1302 × 10−6

Table 10. Absolute errors for various values of β with γ = 1,M = N = 3 and h = 1
10

on
the interval [0, 1] × [0, 10] for Example 7.

(x, t) β = 0.25 β = 0.5 β = 0.75 β = 1

(0.1, 1) 9.5033 × 10−5 8.7834 × 10−5 8.9462 × 10−5 9.4025 × 10−5

(0.3, 3) 1.6723 × 10−3 1.6723 × 10−3 1.6717 × 10−3 1.6686 × 10−3

(0.5, 5) 5.4746 × 10−3 5.4723 × 10−3 5.4741 × 10−3 5.4813 × 10−3

(0.7, 7) 9.3681 × 10−3 9.3866 × 10−3 9.3633 × 10−3 9.2682 × 10−3

(0.9, 9) 7.3145 × 10−3 7.3535 × 10−3 7.2919 × 10−3 7.0379 × 10−3

(1, 10) 2.8480 × 10−40 2.6884 × 10−40 2.6864 × 10−40 2.7345 × 10−40

7 Conclusions

In this work, a Genocchi-fractional Laguerre collocation method was applied
successfully for the numerical solution of FDEs and FSDEs. Then, we intro-
duced the pseudo-operational matrices in implementation of the method. The
great advantages of the presented scheme are the novel G-FLFs, the pseudo-
operational matrices with high accuracy, and quick reduction of FDEs and
FSDEs to systems of nonlinear algebraic equations. The outcomes illustrate
that the computed solutions for various values of β have good agreement with
the exact solution. From the tables and graphs plotted, it can be inferred that
by applying a small value of G-FLFs the satisfactory results with high accuracy
is obtained.

Acknowledgements

This work is supported by Alzahra University. We express our sincere thanks
to the anonymous referees for their valuable suggestions that improved the final
manuscript.

References

[1] O.P. Agrawal. A general formulation and solution scheme for fractional
optimal control problems. Nonlinear Dynamics, 38(1-4):323–337, 2004.
https://doi.org/10.1007/s11071-004-3764-6.

https://doi.org/10.1007/s11071-004-3764-6


A Spectral Approach for Time-Fractional Diffusion and Subdiffusion ... 37

[2] A. Aminataei and S.K. Vanani. Numerical solution of fractional Fokker-Planck
equation using the operational collocation method. Applied Mathematics and
Computation, 12(1):33–43, 2013.

[3] I. Aziz, S. Islamb and M. Asif. Haar wavelet collocation method
for three-dimensional elliptic partial differential equations. Com-
puters & Mathematics with Applications, 73(9):2023–2034, 2017.
https://doi.org/10.1016/j.camwa.2017.02.034.

[4] A. Bhardwaj and A. Kumar. A meshless method for time fractional nonlinear
mixed diffusion and diffusion-wave equation. Applied Numerical Mathematics,
160:146–165, 2021. https://doi.org/10.1016/j.apnum.2020.09.019.

[5] A.H. Bhrawy, E.H. Doha, D. Baleanu and S.S. Ezz-Eldien. A spectral tau algo-
rithm based on Jacobi operational matrix for numerical solution of time fractional
diffusion-wave equations. Journal of Computational Physics, 293:142–156, 2015.
https://doi.org/10.1016/j.jcp.2014.03.039.

[6] A.H. Bhrawy and M.A. Zaky. Shifted fractional-order Jacobi or-
thogonal functions: application to a system of fractional differen-
tial equations. Applied Mathematical Modelling, 40(2):832–845, 2016.
https://doi.org/10.1016/j.apm.2015.06.012.

[7] M. Cui. Compact finite difference method for the fractional diffusion
equation. Journal of Computational Physics, 228(20):7792–7804, 2009.
https://doi.org/10.1016/j.jcp.2009.07.021.

[8] H. Dehestani, Y. Ordokhani and M. Razzaghi. Fractional-order Legendre–
Laguerre functions and their applications in fractional partial differential
equations. Applied Mathematics and Computation, 336:433–453, 2018.
https://doi.org/10.1016/j.amc.2018.05.017.

[9] H. Dehestani, Y. Ordokhani and M. Razzaghi. Hybrid functions for nu-
merical solution of fractional Fredholm-Volterra functional integro-differential
equations with proportional delays. International Journal of Numerical
Modelling: Electronic Networks, Devices and Fields, 32(5):e2606, 2019.
https://doi.org/10.1002/jnm.2606.

[10] H. Dehestani, Y. Ordokhani and M. Razzaghi. A numerical technique for solv-
ing various kinds of fractional partial differential equations via Genocchi hybrid
functions. Revista de la Real Academia de Ciencias Exactas, F́ısicas y Naturales.
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