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Abstract. In this paper we prove the existence of weak solutions for a class of
quasilinear parabolic systems, which correspond to diffusion problems, in the form

∂u
∂t
− divσ(x, t, u,Du) = v(x, t) + f(x, t, u) + div g(x, t, u) in Ω × (0, T ),

u(x, t) = 0 on ∂Ω × (0, T ),
u(x, 0) = u0(x) in Ω,

where Ω is a bounded open domain of Rn, 0 < T <∞ be given and u0 ∈ L2(Ω;Rm).

The function v belongs to Lp′(0, T : W−1,p′(Ω;Rm)) is in a moving and dissolving
substance, the dissolution is described by f and the motion by g. We prove the
existence result by using Galerkin’s approximation and the theory of Young measures.

Keywords: quasilinear parabolic systems, weak solutions, Young measures.

AMS Subject Classification: 35K55; 35D30.

1 Introduction

Let Ω be a bounded open set of Rn, n ≥ 2, T is a positive real number,
Q = Ω × (0, T ) and 1 < p < ∞. In this paper, we consider the following
quasilinear parabolic system:

∂u

∂t
− divσ(x, t, u,Du) = v(x, t) + f(x, t, u) + div g(x, t, u) in Q, (1.1)

u(x, t) = 0 on ∂Ω × (0, T ), (1.2)

u(x, 0) = u0(x) in Ω, (1.3)

�
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where u : Q → Rm is a vector-valued function and Du its gradient which
belongs to Mm×n. Here Mm×n stands for the real vector space of m×n matrices
equipped with the inner product ξ : η =

∑m
i=1

∑n
j=1 ξijηij . The functions

σ : Q×Rm×Mm×n →Mm×n, f : Q×Rm → Rm and g : Q×Rm →Mm×n are
assumed to satisfy some conditions (see below). Moreover, the function v : Q→
Rm is in Lp

′
(0, T ;W−1,p

′
(Ω;Rm)) the dual space of Lp(0, T : W 1,p

0 (Ω;Rm)),
with p′ = p/(p− 1) the conjugate exponent of p.

Consider first the quasilinear elliptic system

−divσ(x, u,Du) = f in Ω, (1.4)

endowed with the Dirichlet boundary condition. The existence result is proved
in [14] by Hungerbühler. The author used the tool of Young measures and
weak monotonicity over σ to achieve his result. See also [2] for a generalized
p-Laplacian system. We find a generalization of (1.4) in [1], where the following
quasilinear elliptic system

−divσ(x, u,Du) = v(x) + f(x, u) + div g(x, u) in Ω (1.5)

was considered. This system corresponds to a diffusion problem with a source
v in a moving and dissolving substance, where the motion is described by g and
the dissolution by f . The authors proved existence of a weak solution for this
system under classical regularity, growth, and coercivity conditions for σ, but
with only very mild monotonicity assumptions. See also [3,6] for more results.

For the evolutionary problems, Hungerbühler [15] considered

∂u

∂t
− divσ(x, t, u,Du) = v in Q (1.6)

with the initial and boundary conditions (1.2)–(1.3), where v ∈ Lp
′
(0, T :

W−1,p
′
(Ω;Rm)) for some p ∈ ( 2n

n+2 ,∞) and u0 ∈ L2(Ω;Rm). The existence of a
weak solution under classical regularity, growth, and coercivity conditions for σ
but with only very mild monotonicity assumptions is proved. We have extended
in [4] the problem (1.6) to a more general strongly quasilinear parabolic system
containing the lower term g(x, t, u,Du) in the following form

∂u

∂t
− divσ(x, t, u,Du) + g(x, t, u,Du) = v in Q. (1.7)

Under mild monotonicity assumptions on σ, we have proved the existence of
weak solutions. The elliptic case of (1.7) can be found in [5], where we have
investigated another mild monotonicity condition, called the strict quasimono-
tone. Note that, in all works mentioned above, the authors used the theory of
Young measures to achieve their results, since the classical monotone operator
theory can not be used for some reasons (see Remark 1). See also [8,9,10,18,19]
for similar problems.

Inspired by the previous works (especially [4, 15]), we want to study the
existence result for the problem (1.1)–(1.3). This work, can be seen as an
extension of [1] (i.e. of (1.5)) to a parabolic case and generalizes both works
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[4,15]. We will use the Young measure as a technical tool to obtain the desired
result.

The paper is organized as follows: In Section 2, we specify the assumptions
on σ, f , g and u0 needed in the present study and introduce the definition of
a weak solution of (1.1)–(1.3). We present in Section 3 an overview on Young
measures, while Section 4 is devoted to present the main result and its proof.

2 Assumptions on the data and the definition of a weak
solution

Throughout this paper, we suppose that the following assumptions hold true:
Ω is a bounded open set of Rn (n ≥ 2), T > 0 is given and we set Q = Ω×(0, T ).
Moreover, we assume:

(H0)(Continuity) σ : Q×Rm×Mm×n →Mm×n is a Carathéodory function,
i.e. measurable w.r.t (x, t) ∈ Q and continuous w.r.t other variables.

(H1)(Growth and coercivity) There exist α1 ≥ 0, α2 > 0, d1 ∈ Lp
′
(Q) and

d2 ∈ L1(Q) such that

|σ(x, t, s, ξ)| ≤ d1(x, t) + α1(|s|p−1 + |ξ|p−1),

σ(x, t, s, ξ) : ξ ≥ α2|ξ|p − d2(x, t),

for almost every (x, t) ∈ Q and all (s, ξ) ∈ Rm ×Mm×n.
(H2)(Monotonicity) σ satisfies one of the following conditions:
(a) For a.e. (x, t) ∈ Q and all s ∈ Rm, ξ 7→ σ(x, t, s, ξ) is a C1-function and

is monotone, i.e., (
σ(x, t, s, ξ)− σ(x, t, s, η)

)
: (ξ − η) ≥ 0,

for all ξ, η ∈Mm×n.
(b) There exists a function (potential) W : Q×Rm×Mm×n → R such that

σ(x, t, s, ξ) = DξW (x, t, s, ξ) := ∂W
∂ξ (x, t, s, ξ), and ξ 7→ W (x, t, s, ξ) is convex

and C1 for a.e. (x, t) ∈ Q and all s ∈ Rm.
(c) σ is strictly monotone, i.e., σ is monotone and(

σ(x, t, s, ξ)− σ(x, t, s, η)
)

: (ξ − η) = 0 implies ξ = η.

(d) σ is strictly p-quasimonotone, i.e.,∫
Mm×n

(
σ(x, t, s, λ)− σ(x, t, s, λ)

)
: (λ− λ)dν(x,t)(λ) > 0,

where λ = 〈ν(x,t), id〉 and ν = {ν(x,t)}(x,t)∈Q is any family of Young measures
generated by a bounded sequence in Lp(Q) and not a Dirac measure for a.e.
(x, t) ∈ Q.

(H3)(i)(Continuity) f : Q × Rm → Rm is a Carathéodory function in the
sense of (H0).

(ii)(Growth) There exist α3 ≥ 0, 0 < γ < p− 1 and d3 ∈ Lp
′
(Q) such that

|f(x, t, s)| ≤ d3(x, t) + α3|s|γ ,

Math. Model. Anal., 26(4):669–683, 2021.
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for a.e. (x, t) ∈ Q and all s ∈ Rm.
(H4)(i)(Continuity) g : Q×Rm →Mm×n is a Carathéodory function in the

sense of (H0).
(ii)(Growth) There exist α4 ≥ 0, 0 < ρ < p− 1 and d4 ∈ Lp

′
(Q) such that

|g(x, t, s)| ≤ d4(x, t) + α4|s|ρ,

for a.e. (x, t) ∈ Q and all s ∈ Rm.

Remark 1. Assumption (H2)(b) allows to take a potential W (x, t, s, ξ), which
is only convex but not strictly convex in ξ ∈Mm×n, and to consider (1.1) with
σ = DξW . Note that if W is assumed to be strictly convex, then σ becomes
strictly monotone and the standard monotone operator may apply, but it is
not the case in this paper.

A prototype of our problem (1.1)–(1.3) can be given by
∂u
∂t − div

(
|Du|p−2Du

)
= v(x, t) + |u|γ + div

(
a(x, t)|u|ρ

)
in Q,

u(x, t) = 0 on ∂Ω × (0, T ),
u(x, 0) = u0(x) in Ω,

for 0 < γ < p− 1, 0 < ρ < p− 1 and a : Q→ Mm×n is a measurable function
and bounded. For the potential W , one can take W := 1

p |ξ|
p for ξ ∈Mm×n.

Now, we can define the weak solution of (1.1)–(1.3) as follows:

Definition 1. A weak solution of (1.1)–(1.3) is a function

u ∈ Lp(0, T ;W 1,p
0 (Ω;Rm)) ∩ L∞(0, T ;L2(Ω;Rm))

such that∫ T

0

〈∂u
∂t
, ϕ〉dt+

∫
Q

σ(x, t, u,Du) : Dϕ

=

∫ T

0

〈v, ϕ〉dt+

∫
Q

f(x, t, u) · ϕdx dt−
∫
Q

g(x, t, u) : Dϕdxdt

holds for every ϕ ∈ Lp(0, T ;W 1,p
0 (Ω;Rm)). Here 〈., .〉 denotes the dual pairing

of W−1,p
′
(Ω;Rm) and W 1,p

0 (Ω;Rm).

3 A review on Young measures

As stated in the introduction, we use the tool of Young measures to prove the
existence result. This concept of Young measures is a nice tool to understand
and control difficulties that arises when weak convergence does not behave as
one desires with respect to nonlinear functionals and operators. For convenience
of the readers not familiar with this concept, we give an overview needed in
this paper. See [7, 12,13] for more details.

By C0(Rm) we denote the Banach space of continuous functions on Rm
which satisfies lim|λ|→∞ ϕ(λ) = 0. Its dual is the well known space of signed
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Radon measures with finite mass denoted as M(Rm). The related duality is
given for ν : Ω →M(Rm), by

〈ν, ϕ〉 =

∫
Rm

ϕ(λ)dν(λ).

A particular case of ϕ is the identity id, thus 〈ν, id〉 =
∫
Rm λdν(λ).

Lemma 1. [12] Let {zj}j≥1 be a measurable sequence in L∞(Ω;Rm). Then
there exists a subsequence {zk}k ⊂ {zj}j and a Borel probability measure νx on
Rm for almost every x ∈ Ω, such that for ϕ ∈ C0(Rm) we have

ϕ(zk) ⇀∗ ϕ weakly in L∞(Ω;Rm),

where ϕ(x) = 〈νx, ϕ〉 =
∫
Rm ϕ(λ)dνx(λ) for almost every x ∈ Ω.

Definition 2. The map νx : Ω → M(Rm) in Lemma 1 is called the Young
measure generated by the subsequence {zk}k.

Lemma 2. [13] (1) If |Ω| <∞ and νx is the Young measure generated by the
(whole) sequence zj, then there holds

zj → z in measure ⇐⇒ νx = δz(x) for a.e. x ∈ Ω.

(2) If further wj : Ω → Rd generates the Young measure δw(x), then (zj , wj)
generates the Young measure νx ⊗ δw(x).

Remark 2. (1) It is shown in [7] that for any Carathéodory function ϕ : Ω ×
Rm → R and {zk}k generating a Young measure νx, we have

ϕ(x, zk) ⇀∗ 〈νx, ϕ(x, .)〉 =

∫
Rm

ϕ(x, λ)dνx(λ)

weakly in L1(Ω′) for all measurable Ω′ ⊂ Ω, provided that the negative part
ϕ−(x, zk) is equiintegrable.
(2) The previous properties remain true on Mm×n if we replace zk by Dwk,
where wk : Ω → Rm.

Lemma 3. [4] If {Dwk}k is bounded in Lp(Q;Mm×n), then the Young mea-
sure ν(x,t) generated by Dwk has the following properties:
(i) ν(x,t) is a probability measure, i.e., ‖ν(x,t)‖M(Mm×n) :=

∫
Mm×n dν(x,t)(λ) = 1

for almost every (x, t) ∈ Q.
(ii) The weak L1-limit of Dwk is given by 〈ν(x,t), id〉 =

∫
Mm×n λdν(x,t)(λ).

(iii) ν(x,t) satisfies 〈ν(x,t), id〉 = Du(x, t) for almost every (x, t) ∈ Q.

We conclude this section by recalling the following useful Fatou-type in-
equality.

Lemma 4. [11] Let ϕ : Q×Rm×Mm×n → R be a Carathéodory function and
wk : Q→ Rm a sequence of measurable functions such that wk → w in measure
and such that Dwk generates the Young measure ν(x,t), with ‖ν(x,t)‖M = 1 for
almost every (x, t) ∈ Q. Then

lim inf
k→∞

∫
Q

ϕ(x, t, wk, Dwk) dx dt ≥
∫
Q

∫
Mm×n

ϕ(x, t, w, λ)dνx(λ) dx dt

provided that the negative part ϕ−(x, t, wk, Dwk) is equiintegrable.

Math. Model. Anal., 26(4):669–683, 2021.
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4 Existence result

In this section we present the main result and its proof. Consider the quasilinear
parabolic system (1.1)–(1.3). Let p be a real number such that 1 < p < ∞.
The result of this paper reads as follows:

Theorem 1. If σ satisfies the conditions (H0)–(H2), then the problem (1.1)–
(1.3) has a weak solution u ∈ Lp(0, T ;W 1,p

0 (Ω;Rm)) ∩ C(0, T ;L2(Ω;Rm)) for

every v ∈ Lp′(0, T ;W−1,p
′
(Ω;Rm)), every f satisfying (H3) and every g satis-

fying (H4).

Proof. The proof is divided into five steps. In Step 1, we present local
approximating solutions by the well known Galerkin method. Step 2 is devoted
to extend these solutions to the whole interval [0, T ]. In Step 3, some a priori
estimates will be presented. Step 4 shows the div-curl inequality which is the
key ingredient to pass to the limit in Step 5.
Step 1: We define

uk(x, t) =

k∑
i=1

αki(t)wi(x)

to approximate the solutions of (1.1)–(1.3), where αki : [0, T )→ R+ satisfy∫
Ω

∂uk
∂t

wi(x)dx+

∫
Ω

σ(x, t, uk, Duk) : Dwi(x)dx

= 〈v(t), wi〉+

∫
Ω

f(x, t, uk) · wi(x)dx−
∫
Ω

g(x, t, uk) : Dwi(x)dx

(4.1)

and {wi}i≥1 is an L2-orthonormal base, such that

{wi}i≥1 ⊂ C∞0 (Ω;Rm) ⊂ ∪
k≥1

Vk
C1(Ω;Rm)

,

where Vk = span{w1, .., wk}. Assume that uk ∈ Lp(0, T ;W 1,p
0 (Ω;Rm)), thus

uk satisfies the condition (1.2) by construction. For the condition (1.3), we can
choose αki(0) := (u0, wi)L2(Ω) such that

uk(., 0) =

k∑
i=1

αki(0)wi(.) −→ u0 in L2(Ω) as k →∞,

where (., .)L2 is the inner product of L2(Ω;Rm). Let us fix k ∈ N, 0 < τ < T
and set I = [0, τ ]. We choose r > 0 large enough, such that Br(0) := B(0, r) ⊂
Rk contains the vectors (αk1(0), .., αkk(0)). Consider the operator

T : I ×Br(0) −→ Rk

(t, α1, .., αk) 7→
(
〈v(t), wj〉+

∫
Ω

f(x, t, uk) · wjdx−
∫
Ω

g(x, t, uk) : Dwjdx

−
∫
Ω

σ(x, t, uk, Duk) : Dwjdx
)
j=1,...,k

,
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where uk :=
∑k
i=1 αki(t)wi(x). T is a Carathéodory function by (H0), (H3)(i)

and (H4)(i). By the growth conditions in (H1), (H3)(ii) and (H4)(ii), we can
write (without loss of generality, we can assume that γ = p− 1 and ρ = p− 1)∫

Ω

|σ(x, t, uk, Duk)|p
′
dx ≤ c

∫
Ω

(
|d1(x, t)|p

′
+ |uk|p + |Duk|p

)
dx,∫

Ω

|f(x, t, uk)|p
′
dx ≤ c

∫
Ω

(
|d3(x, t)|p

′
+ |uk|p

)
dx,∫

Ω

|g(x, t, uk)|p
′
dx ≤ c

∫
Ω

(
|d4(x, t)|p

′
+ |uk|p

)
dx

for a positive constant c which may change values from line to line. By Hölder’s
inequality, it follows for the component Tj that it can be estimated as follows

|Tj(t, α1, .., αk)| ≤ C(r, k)l(t) uniformly on I × Br(0), where l(t) ∈ L1(I) does
not depend on r and k, and C(r, k) is a constant which depends on k and r.
Therefore, the Carathéodory existence result on ordinary differential equations
(see, e.g. Kamke [16]) applied to the system{

α′j(t) = Tj(t, α1(t), ..., αk(t)),
αj(0) = αkj(0),

(4.2)

for j = 1, ..., k ensures existence of a distributional, continuous solution αj
depending on k of the Equation (4.2) on a time interval [0, τ ′), where τ ′ > 0, a
priori may depend on k. The corresponding integral equation of (4.2) is given
by

αj(t) = αj(0) +

∫ t

0

Tj(s, α1(s), ..., αk(s))ds

holds on [0, τ ′). Hence uk(x, t) =
∑k
i=1 αki(t)wi(x) is the desired solution of

(4.1) with the initial condition uk(., 0) =
∑k
i=1 αki(0)wi(.)→ u0 in L2(Ω;Rm)

for k →∞.
Step 2: Now, we extend the local solution constructed in Step 1 to the whole
interval [0, T ). To this purpose, we multiply the Equation (4.1) by αkj(t) and
we sum over j = 1, ..., k, we get for τ ∈ [0, T )∫

Qτ

∂uk
∂t

uk dx dt+

∫
Qτ

σ(x, t, uk, Duk) : Duk dx dt

=

∫ τ

0

〈v(t), uk〉dt+

∫
Qτ

f(x, t, uk) · uk dx dt−
∫
Qτ

g(x, t, uk) : Duk dx dt,

where Qτ = Ω × (0, τ). We have

I1 ≡
∫
Qτ

∂uk
∂t

uk dx dt =
1

2
‖uk(., τ)‖2L2(Ω) −

1

2
‖uk(., 0)‖2L2(Ω).

The coercivity condition in (H1) yields

I2 ≡
∫
Qτ

σ(x, t, uk, Duk) : Duk dx dt ≥ α2

∫
Qτ

|Duk|p dx dt−
∫
Qτ

d2(x, t) dx dt.

Math. Model. Anal., 26(4):669–683, 2021.



676 F. Balaadich and E. Azroul

By Hölder’s inequality and the growth condition (H3)(i) and (H4)(i), it follows
that

|I3| ≡
∣∣∣ ∫ τ

0

〈v(t), uk〉dt
∣∣∣ ≤ ‖v‖−1,p′‖uk‖1,p,

|I4| ≡
∣∣∣ ∫
Qτ

f(x, t, uk).uk dx dt
∣∣∣ ≤ ‖d3‖p′‖uk‖p + α3‖uk‖γ+1

p

≤ θ‖d3‖p′‖Duk‖p + α3θ
γ+1‖Duk‖γ+1

p ,

|I5| ≡
∣∣∣ ∫
Qτ

g(x, t, uk) : Duk dx dt
∣∣∣ ≤ ‖d4‖p′‖Duk‖p + α4‖uk‖ρp‖Duk‖p

≤ ‖d4‖p′‖Duk‖p + α4θ
ρ‖Duk‖ρ+1

p ,

where θ is the constant of Poincaré’s inequality:

‖z‖p ≤ θ‖Dz‖p ∀z ∈ Lp(0, T ;W 1,p
0 (Ω;Rm)).

The constant θ depends on diam(Ω) (see e.g. [17]). We know that uk(x, 0) =
ψk(x) −→ u0 in L2(Ω), thus∫

Ω

u2k(x, 0)dx =

∫
Ω

|ψk(x)|2dx ≤ c for all k.

Consequently, from the estimates on Iε, ε = 1, ..., 5 we deduce that
‖uk(., τ)‖2L2(Ω) ≤ c. Let us consider now

Λ :=
{
t ∈ [0, T ) : there exists a weak solution of (4.2) on [0, t)

}
.

The set Λ is non-empty since it contains a local solution. Moreover, it is an
open set and closed (see e.g. [15]). Therefore, Λ = [0, T ).

Step 3: By virtue of the estimations on Iε, ε = 1, ..., 5, we can write

1

2
‖uk(., τ)‖2L2(Ω)+α2

∫
Qτ

|Duk|p dx dt ≤
1

2
‖uk(., 0)‖2L2(Ω)+‖d2‖L1(Qτ )

+ θ‖d3‖p′‖Duk‖p + ‖v‖−1,p′‖uk‖1,p
+ α3θ

γ+1‖Duk‖γ+1
p + ‖d4‖p′‖Duk‖p + α4θ

ρ‖Duk‖ρ+1
p . (4.3)

If ‖Duk‖p is unbounded, then
∫
Qτ
|Duk|p dx dt is unbounded, and this contra-

dict (4.3) since p > max{1, γ+1, ρ+1}. Therefore the sequence (uk) is bounded
in Lp(0, T ;W 1,p

0 (Ω;Rm)) ∩ L∞(0, T ;L2(Ω;Rm)). For a suitable subsequence
(still denoted by (uk)),

uk ⇀ u in Lp(0, T ;W 1,p
0 (Ω;Rm)), uk ⇀

∗ u in L∞(0, T ;L2(Ω;Rm)).

The function u ∈ Lp(0, T ;W 1,p
0 (Ω;Rm)) ∩ L∞(0, T ;L2(Ω;Rm)) is a candidate

to be a weak solution for (1.1)–(1.3).
Owing to the growth conditions (H1), (H3)(ii) and (H4)(ii), we obtain∫
Q

|σ(x, t, uk, Duk)|p
′
dx dt≤c

∫
Q

(
|d1(x, t)|p

′
+c(|uk|p+|Duk|p)

)
dxdt, (4.4)∫

Q

|f(x, t, uk)|p
′
dx dt ≤ c

∫
Q

(
|d3(x, t)|p

′
+ c|uk|p

)
dx dt (4.5)
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and ∫
Q

|g(x, t, uk)|p
′
dx dt ≤ c

∫
Q

(
|d4(x, t)|p

′
+ c|uk|p

)
dx dt (4.6)

(without loss of generality, we have assumed γ = p − 1 and ρ = p − 1). Since
d1, d3, d4 ∈ Lp

′
(Q) and (uk)k is bounded in Lp(0, T ;W 1,p

0 (Ω;Rm)), then

σ(x, t, uk, Duk) ⇀ χ, f(x, t, uk) ⇀ F, g(x, t, uk) ⇀ G

in Lp
′
(Q) (for a proper subsequence). According to the argument of Aubin-

Simon (see also [4]) we then have u ∈ C(0, T ;L2(Ω;Rm)) and there is a weak
convergence uk(., T ) ⇀ u(., T ) in L2(Ω).
Step 4: From Step 3, we have that (uk)k is bounded in Lp(0, T ;W 1,p

0 (Ω;Rm)).
Then by Lemma 1, it follows the existence of a Young measure ν(x,t) generated
by Duk in Lp(Q) such that ν(x,t) satisfies the properties of Lemma 3. Now,
we show the following lemma, namely a div-curl inequality, which is the key
ingredient to pass to the limit in the approximating equations.

Lemma 5. Suppose that σ, f and g satisfy (H0)–(H4). Then the Young mea-
sure ν(x,t) associated to Duk has the following property:∫

Q

∫
Mm×n

(
σ(x, t, u, λ)− σ(x, t, u,Du)

)
: (λ−Du)dν(x,t)(λ) dx dt ≤ 0.

Proof. Let consider the sequence

Ik :=
(
σ(x, t, uk, Duk)− σ(x, t, u,Du)

)
: (Duk −Du)

= σ(x, t, uk, Duk) : (Duk −Du)− σ(x, t, u,Du) : (Duk −Du)

=: Ik,1 + Ik,2.

As in the Equation (4.4), σ(., u,Du) ∈ Lp′(Q;Mm×n) for arbitrary u ∈
Lp(0, T ;W 1,p

0 (Ω;Rm)). Then by virtue of Lemma 3, we can write

lim inf
k→∞

∫
Q

Ik,2 dx dt =

∫
Q

∫
Mm×n

σ(x, t, u,Du) : (λ−Du)dν(x,t)(λ) dx dt

=

∫
Q

σ(x, t, u,Du) :
(∫

Mm×n
λdν(x,t)(λ)︸ ︷︷ ︸

=:Du(x,t)

−Du
)
dx dt = 0.

Since uk ⇀ u in Lp(0, T ;W 1,p
0 (Ω;Rm)), then uk → u in measure (for a sub-

sequence). By the growth condition in (H1), (σ(x, t, uk, Duk) : Du)− is equi-
integrable. Now, let Q′ ⊂ Q be measurable. The coercivity condition in (H1)
yields ∫

Q′

∣∣min
(
σ(x, t, uk, Duk) : Duk, 0

)∣∣ dx dt
≤ α2

∫
Q′
|Duk|p dx dt+

∫
Q′
|d2(x, t)| dx dt <∞.
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Hence (σ(x, t, uk, Duk) : Duk)− is equiintegrable. According to Lemma 4, it
follows that

I := lim inf
k→∞

∫
Q

Ik dx dt ≥
∫
Q

∫
Mm×n

σ(x, t, u, λ) : (λ−Du)dν(x,t)(λ) dx dt.

It is now sufficient to show that I ≤ 0. By Step 3, we have the following energy
equality which is the first property of χ, F and G:

1

2
‖u(., T )‖2L2(Ω) −

1

2
‖u(., 0)‖2L2(Ω) +

∫
Q

χ : Dudx dt

=

∫ T

0

〈v(t), u〉dt+

∫
Q

F · u dx dt−
∫
Q

G : Dudx dt.

On the one hand, we have

lim inf
k→∞

(
−
∫
Q

σ(x, t, uk, Duk) : Dudx dt
)

= −
∫
Q

χ : Dudx dt

=
1

2
‖u(., T )‖2L2(Ω) −

1

2
‖u(., 0)‖2L2(Ω) −

∫ T

0

〈v(t), u〉dt−
∫
Q

F · u dx dt

+

∫
Q

G : Dudx dt.

(4.7)

On the other hand, the Galerkin equations allow to write

lim inf
k→∞

∫
Q

σ(x, t, uk, Duk) : Duk dx dt = lim inf
k→∞

(
−
∫
Q

∂uk
∂t

uk dx dt

+

∫ T

0

〈v(t), uk〉dt+

∫
Q

f(x, t, uk) · uk dx dt−
∫
Q

g(x, t, uk) : Duk dx dt
)

≤ −1

2
‖u(., T )‖2L2(Ω) +

1

2
‖u(., 0)‖2L2(Ω) +

∫ T

0

〈v(t), u〉dt

+

∫
Q

F · u dx dt−
∫
Q

G : Dudx dt, (4.8)

where we have used uk(., T ) ⇀ u(., T ) in L2(Ω;Rm) and uk(., 0) → u0(.) =
u(., 0) as k →∞. The combination of (4.7) and (4.8) implies

I = lim inf
k→∞

∫
Q

σ(x, t, uk, Duk) : (Duk −Du) dx dt ≤ 0

as desired. ut

Step 5: In this step, we will pass to the limit in the Galerkin equations by
considering the conditions (a)− (d) listed in (H2). Note that, as in [4], we have(

σ(x, t, u, λ)− σ(x, t, u,Du)
)

: (λ−Du) = 0 on supp ν(x,t). (4.9)

Let start with the case (c): the strict monotonicity of σ together with (4.9)
implies that ν(x,t) = δDu(x,t). By virtue of Lemma 2, it follows that Duk → Du
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in measure and almost everywhere in Q as k → ∞. The continuity of σ gives
σ(x, t, uk, Duk) → σ(x, t, u,Du) almost everywhere. Since σ(x, t, uk, Duk) is
bounded (see the Equation (4.4)), then σ(x, t, uk, Duk) → σ(x, t, u,Du) in
Lβ(Q), ∀β ∈ [0, p′) by the Vitali convergence theorem. Hence

σ(x, t, uk, Duk) ⇀ χ = σ(x, t, u,Du) in Lp
′
(Q).

For the case (d), we suppose by contradiction that ν(x,t) is not a Dirac
measure on a set (x, t) ∈ Q′ ⊂ Q of positive Lebesgue measure. We have by
the strict p-quasimonotone of σ that

0 <

∫
Q

∫
Mm×n

(
σ(x, t, u, λ)− σ(x, t, u, λ)

)
: (λ− λ)dν(x,t)(λ) dx dt

=

∫
Q

∫
Mm×n

σ(x, t, u, λ) : (λ− λ)dν(x,t)(λ) dx dt,

where we have used∫
Q

∫
Mm×n

σ(x, t, u,λ) : (λ− λ)dν(x,t)(λ) dx dt

=

∫
Q

σ(x, t, u, λ) :
(∫

Mm×n
λdν(x,t)(λ)︸ ︷︷ ︸−λ

=:λ

)
dx dt = 0.

Thus∫
Q

∫
Mm×n

σ(x, t, u, λ) : λdν(x,t)(λ) dxdt >

∫
Q

∫
Mm×n

σ(x, t, u, λ) : λdν(x,t)(λ) dxdt.

By virtue of Lemma 5 (i.e. I ≤ 0), we then have∫
Q

∫
Mm×n

σ(x, t, u, λ) : λdν(x,t)(λ) dx dt ≥
∫
Q

∫
Mm×n

σ(x, t, u, λ) : λdν(x,t)(λ) dx dt

>

∫
Q

∫
Mm×n

σ(x, t, u, λ) : λdν(x,t)(λ) dx dt,

which is a contradiction. Therefore ν(x,t) = δh(x,t). Then

h(x, t) =

∫
Mm×n

λdδh(x,t)(λ) =

∫
Mm×n

λdν(x,t)(λ) = Du(x, t).

Hence ν(x,t) = δDu(x,t) and by virtue of Lemma 2, Duk → Du in measure for
k →∞. The remains of the proof in this case is similar to that in case (c).

Consider now the case (a). Let us prove first that for all ξ ∈Mm×n

σ(x, t, u, λ) : ξ = σ(x, t, u,Du) : ξ +
(
∇σ(x, t, u,Du)ξ

)
: (Du− λ) (4.10)

holds on supp ν(x,t), where ∇ is the derivative of σ with respect to its last
variable.
The monotonicity of σ allows to write for all τ ∈ R and ξ ∈Mm×n(

σ(x, t, u, λ)− σ(x, t, u,Du+ τξ)
)

: (λ−Du− τξ) ≥ 0,
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thus

− σ(x, t, u, λ) : τξ ≥ −σ(x, t, u, λ) : (λ−Du)

+ σ(x, t, u,Du+ τξ) : (λ−Du− τξ)
= −σ(x, t, u,Du) : (λ−Du) + σ(x, t, u,Du+ τξ) : (λ−Du− τξ)

by (4.9). Using the fact

σ(x, t, u,Du+ τξ) = σ(x, t, u,Du) +∇σ(x, t, u,Du)τξ + o(τ),

we deduce that

−σ(x, t, u, λ) : τξ ≥ τ
[(
∇σ(x, t, u,Du)ξ

)
: (λ−Du)−σ(x, t, u,Du) : ξ

]
+o(τ).

Since τ is arbitrary in R, the needed equality (4.10) follows. As σ(x, t, uk, Duk)
is equiintegrable, then its weak L1-limit is given by

σ:=

∫
Mm×n
σ(x, t, u, λ)dν(x,t)(λ)=

∫
supp ν(x,t)

σ(x, t, u, λ)dν(x,t)(λ)
(4.10)

=

∫
supp ν(x,t)

(
σ(x, t, u,Du)

+ (∇σ(x, t, u,Du)) : (Du− λ)
)
dν(x,t)(λ) = σ(x, t, u,Du)

∫
supp ν(x,t)

dν(x,t)(λ)

+ (∇σ(x, t, u,Du))t :

∫
supp ν(x,t)

(Du− λ)dν(x,t)(λ) = σ(x, t, u,Du).

Consequently

σ(x, t, uk, Duk) ⇀ σ(x, t, u,Du) in Lp
′
(Q).

For the case (b), we show that supp ν(x,t) ⊂ K(x,t), where

K(x,t)=
{
λ ∈Mm×n : W (x, t, u, λ)=W (x, t, u,Du)+σ(x, t, u,Du) : (λ−Du)

}
.

Let λ ∈ K(x,t), then by the Equation (4.9)

(1− τ)
(
σ(x, t, u, λ)− σ(x, t, u,Du)

)
: (λ−Du) = 0 ∀τ ∈ [0, 1].

Using this equation and the monotonicity of σ to obtain

0 ≤ (1− τ)
(
σ(x, t, u,Du+ τ(λ−Du))− σ(x, t, u, λ)

)
: (Du− λ)

= (1− τ)
(
σ(x, t, u,Du+ τ(λ−Du))− σ(x, t, u,Du)

)
: (Du− λ).

(4.11)

Using again the monotonicity of σ for the right hand side of the above inequal-
ity, yields(

σ(x, t, u,Du+ τ(λ−Du))− σ(x, t, u,Du)
)

: τ(λ−Du) ≥ 0,

which implies since τ ∈ [0, 1] that(
σ(x, t, u,Du+ τ(λ−Du))− σ(x, t, u,Du)

)
: (1− τ)(λ−Du) ≥ 0. (4.12)
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From (4.11) and (4.12) it follows that(
σ(x, t, u,Du+ τ(λ−Du))− σ(x, t, u,Du)

)
: (λ−Du) = 0 ∀τ ∈ [0, 1],

i.e.,

σ(x, t, u,Du+ τ(λ−Du)) : (λ−Du) = σ(x, t, u,Du) : (λ−Du), (4.13)

whenever λ ∈ supp ν(x,t). Integrate the Equation (4.13) over [0, 1] and use the
fact that σ := DξW , we deduce that

W (x, t, u, λ) = W (x, t, u,Du) +

∫ 1

0

σ(x, t, u,Du+ τ(λ−Du)) : (λ−Du)dτ

= W (x, t, u,Du) + σ(x, t, u,Du) : (λ−Du).

Therefore supp ν(x,t) ⊂ K(x,t). The convexity of W implies for all λ ∈Mm×n

W (x, t, u, λ)︸ ︷︷ ︸
=:A(λ)

≥W (x, t, u,Du) + σ(x, t, u,Du) : (λ−Du)︸ ︷︷ ︸
=:B(λ)

.

Since λ 7→ A(λ) is a C1-function, then for ξ ∈Mm×n and τ ∈ R we have

A(λ+ τξ)−A(λ)

τ
≥ B(λ+ τξ)−B(λ)

τ
for τ > 0,

A(λ+ τξ)−A(λ)

τ
≤ B(λ+ τξ)−B(λ)

τ
for τ < 0.

Thus DλA = DλB, i.e.,

σ(x, t, u, λ) = σ(x, t, u,Du) ∀λ ∈ K(x,t) ⊃ supp ν(x,t), (4.14)

and then

σ =

∫
Mm×n

σ(x, t, u, λ)dν(x,t)(λ) =

∫
supp ν(x,t)

σ(x, t, u, λ)dν(x,t)(λ)

=

∫
supp ν(x,t)

σ(x, t, u,Du)dν(x,t)(λ) = σ(x, t, u,Du).

(4.15)

Consider the Carathéodory function h(x, t, s, λ) = |σ(x, t, s, λ) − σ(x, t)|. The
equiintegrability of σ(x, t, uk, Duk) implies that hk(x, t) := h(x, t, uk, Duk) is
equiintegrable, and its weak L1-limit is given as

h(x, t) =

∫
Rm×Mm×n

h(x, t, s, λ)dδu(x,t)(s)⊗ dν(x,t)(λ)

=

∫
supp ν(x,t)

|σ(x, t, u, λ)− σ(x, t)|dν(x,t)(λ) = 0 (by (4.14), (4.15)).

The weak L1-limit of hk is in fact strong since hk ≥ 0. Therefore

hk −→ 0 in L1(Q).
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Since hk is bounded in Lp
′
(Q), the Vitali convergence theorem implies that

σ(x, t, uk, Duk) ⇀ σ(x, t, u,Du) in Lp
′
(Q).

To conclude the proof of Theorem 1, it remains to pass to the limit on
f(x, t, uk) and g(x, t, uk). Since uk → u in measure for k → ∞, we may infer
that, after extraction of a suitable subsequence, if necessary,

uk → u almost everywhere for k →∞.

Thus for arbitrary ϕ ∈ Lp(0, T ;W 1,p
0 (Ω;Rm)), it follows from the continuity

property in (H3)(i) and (H4)(i) that f(x, t, uk)·ϕ→ f(x, t, u)·ϕ and g(x, t, uk) :
Dϕ → g(x, t, u) : Dϕ almost everywhere. Since, by (4.5) and (4.6), f(x, t, uk)
and g(x, t, uk) are equiintegrable, it follows that f(x, t, uk)·ϕ→ f(x, t, u)·ϕ and
g(x, t, uk) : Dϕ→ g(x, t, u) : Dϕ in L1(Q) by the Vitali convergence theorem.

Now, we take a test function w ∈ ∪
i∈N

Vi and φ ∈ C∞0 ([0, T ]) in (4.1) and

integrate over (0, T ) and pass to the limit k →∞. The resulting equation is∫
Q

∂u

∂t
φ(t)w(x) dx dt+

∫
Q

σ(x, t, u,Du) : Dw(x)φ(t) dx dt

=

∫ T

0

〈v(t), φw〉dt+
∫
Q

f(x, t, u) · φ(t)w(x) dxdt−
∫
Q

g(x, t, u) : Dw(x)φ(t) dxdt

for arbitrary w ∈ ∪
i∈N

Vi and φ ∈ C∞0 ([0, T ]). By density of the linear span of

these functions in Lp(0, T ;W 1,p
0 (Ω;Rm)), this proves that u is in fact a weak

solution. Hence the proof of Theorem 1 is complete.
ut
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