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Abstract. In this paper, the classical Euler-Bernoulli beam equation is considered
by utilizing fractional calculus. Such an equation is called the time-fractional Euler-
Bernoulli beam equation. The problem of determining the time-dependent coefficient
for the fractional Euler-Bernoulli beam equation with homogeneous boundary condi-
tions and an additional measurement is considered, and the existence and uniqueness
theorem of the solution is proved by means of the contraction principle on a suffi-
ciently small time interval. Numerical experiments are also provided to verify the
theoretical findings.
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1 Introduction

Fractional derivatives and integrals are very important in many areas of mathe-
matics, physics and nano-engineering [11,13,19], and are widely used to capture
natural and physical phenomena which cannot be predicted by classical integral
and differential models.

Consider a partial differential equation (PDE) with a fractional derivative
in time t

∂αt w(x, t) + wxxxx(x, t) = F (x, t; a,w), (x, t) ∈ DT , (1.1)
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where DT = {(x, t) : 0 < x < `, 0 < t < T}, F (x, t; a,w) = a(t)w(x, t)+f(x, t),
and ∂αt is the left sided Caputo fractional derivative of order α satisfying 1 <
α < 2. Here the parameter α represents the material damage [4] or the damage
order index [22]. The so-called left sided Caputo fractional derivative of order
α on the interval (0, t) is defined by

∂αt w(x, t) =
1

Γ (2− α)

∫ t

0

∂ssw(x, s)

(t− s)α−1
ds

provided that Γ (·) is the Gamma function.
It is important to emphasize that the Equation (1.1) becomes known mod-

els for the other values of α, i.e. 0 < α ≤ 1 and α = 2. In the case of 0 < α ≤ 1
the Equation (1.1) is a model of fractional sub-diffusion equation [6,8]. In par-
ticular, Equation (1.1) is a well-known model of thermal grooving by surface
diffusion for α = 1, see [1, 3, 15]. In the case of α = 2, the Equation (1.1)
is the simplest model for the transverse motion of a beam called the Euler-
Bernoulli beam model. Vertical motion of each point x along the beam, with
vertical displacement at time t is represented by w(x, t). Sound wave distri-
bution problems, vibration, buckling and dynamic behavior of various build-
ing elements widely used in nano-technology are modeled with classical Euler-
Bernoulli beam [7,16]. Therefore, in this paper we will call Equation (1.1) the
fractional Euler-Bernoulli beam equation.

We consider the Equation (1.1) with the following initial and boundary
conditions

w(x, 0) =ϕ(x), wt(x, 0) = ψ(x), 0 ≤ x ≤ `, (1.2)

w(`, t) =wxx(`, t) = wx(0, t) = wxxx(0, t) = 0, 0 ≤ t ≤ T. (1.3)

The physical interpretations of the boundary conditions are as follows:
w(`, t) = 0 means that the right end of the beam is held in a fixed posi-
tion, wx(0, t) = 0 means that the beam centerline is perpendicular to the wall,
wxx(`, t) = 0 means that there is no curvature at the right end of the beam,
and wxxx(0, t) = 0 means that the curvature at the left end is not changing,
i.e., there is no external torque.

We refer to several works on the mathematical and physical treatments
for (1.1). A nonlinear fractional Euler-Bernoulli beam model was established
in [2] to investigate the size-dependent, geometrically nonlinear free vibration
of the fractional viscoelastic nano beams. In [21], the classical Euler-Bernoulli
beam theory is reformulated utilizing fractional calculus. In [23], the authors
presented a theoretical analysis of the free axial vibrations of rods described
in terms of the fractional continuum mechanics. The natural frequencies and
modal shapes for clamped rods are obtained, and the effects of the derivative or-
der, as well as the corresponding length-scale parameters in the fractional model
are discussed. Exact linking relationships between the elastic Euler-Bernoulli
beam response and the fractional viscoelastic Timoshenko beam response is
introduced in [17].

It is important to note that the non-local action of the fractional differential
operator can operate on different spaces. The non-locality in time is called the
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short memory [18]. The short memory principle takes account the behaviour
of w(x, t) only in the recent past, i.e., in the interval [t− L, t] where L is the
memory length. That is,

∂αt w(x, t) =t−L ∂
α
t w(x, t), t > L.

According to the short memory principle, the fractional derivative with the
lower limit 0 is approximated by the fractional derivative with moving lower
limit t − L. For instance, in [22], a hyper-elastic fractional damage material
model with memory is considered with the application of fractional calculus.
Based on the great amount of applications, we believe that the inverse problems
involving the short memory principle need to be considered in the future work.

Our aim is to find the pair of solution {a(t), w(x, t)} from the problem
(1.1)–(1.3) with the additional condition

w(0, t) = r(t), 0 ≤ t ≤ T. (1.4)

Here, the extra measurement (1.4) gives us the vertical displacement at x = 0.
In contrast to the fractional Euler-Bernoulli beam equation, the inverse

coefficient/source problems for the classical Euler-Bernoulli beam equation (i.e.,
α = 2 in Equation (1.1)) have been widely considered in the literature. The
following papers are some important studies of the inverse problems for the
classical Euler-Bernoulli equation. The inverse problem for the determination
of the time-dependent force function in the Euler-Bernoulli beam equation,
with the periodic boundary condition and an additional integral condition,
was investigated in [9]. The inverse problem for finding the time-dependent
potential for the Euler-Bernoulli beam equation was studied in [24]. In [14], a
special technique was introduced to identify of the solution and the unknown
coefficient of the Euler-Bernoulli equation. For more details, please see [5]
and [12].

Some numerical aspects of the inverse problems involving the classical Euler-
Bernoulli beam were investigated in [9,12,14]. In particular, the authors in [9]
proposed a direct numerical method based on the finite difference method,
to solve an inverse problem for the Euler-Bernoulli equation with a periodic
boundary condition. In [14], an iterative finite difference scheme was introduced
to solve the coefficient identification problem. In [12], numerical results were
obtained by a regularization algorithm. In this paper, we focus on the time-
fractional Euler-Bernoulli beam equation which is a more general model than
the classical Euler-Bernoulli beam equation in the aforementioned work.

The objective of this paper is to determine the time-dependent coefficient
in the fractional Euler-Bernoulli equation using the additional information
in (1.4), and prove the existence and uniqueness theorem for small T by means
of the contraction principle. In addition, we would like to design a simple direct
numerical method for solving the inverse problem.

The article is organized as following. In Section 2, we present some pre-
liminaries used in Section 3. In Section 3, we transform the inverse problem
(1.1)–(1.4) to a fixed-point system and prove the existence and uniqueness of a
solution on a sufficiently small time interval by means of the contraction princi-
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ple. In Section 4, we introduce the numerical methods for the inverse problem
and discuss the numerical results.

2 Preliminaries

Throughout this paper, we use the following definition and lemmas:

Definition 1 [ [10]]. The generalized Mittag-Leffler function is defined by

Eα,β(z) =

∞∑
k=0

zk

Γ (αk + β)
, z ∈ C,

where α > 0, β ∈ R.

Lemma 1 [ [18]]. Let 0 < α < 2, and β ∈ R be arbitrary. We suppose that
µ is such that πα

2 < µ < min {π, πα}. Then there exists a constant Cα,β such
that

|Eα,β(z)| ≤ Cα,β
1 + |z|

, µ ≤ |arg(z)| ≤ π.

Lemma 2 [ [18]]. Let α > 0, β > 0. Then we have∫ ∞
0

e−zttβ−1Eα,β(±atα)dt =
zα−β

zα ± a
, Re(z) > |a| 1α .

Lemma 3 [ [18]]. Let Re(s) > 0. Then for 1 < α < 2 we have

L{∂αt f(t)} = sαF(s)− sα−1f(0)− sα−2f ′(0),

where F(s) is the Laplace transform of f(t).

3 Solution of the inverse problem

In this section, we will examine the existence and uniqueness of the solution
of the inverse initial-boundary value problem for the Equation (1.1) with time-
dependent coefficient.

Definition 2. A solution of the inverse problem (1.1)–(1.4), which we called
the classical solution, is a pair of functions {a(t), w(x, t)} satisfying a(t) ∈
C[0, T ], w(x, t) ∈ C4([0, 1],R), and ∂αt w(x, t) ∈ C([0, T ],R).

Since a is solely time-dependent and the boundary conditions are homoge-
neous, we attempt to apply the Fourier method of eigenfunction expansion to
the problem (1.1)–(1.4). Consider first the auxiliary spectral problem given by{

X(4)(x)− λX(x) = 0, 0 ≤ x ≤ `,
X(`) = X ′(0) = X ′′(`) = X ′′′(0) = 0.

This spectral problem has the eigenvalues λn = µ4
n and the eigenfunctions

Xn(x) = 1√
`

cos(µnx), where µn = (2n+1)π
2` , n = 0, 1, 2, ....

In the rest of the paper, we will consider the following spaces to investigate
the inverse problem (1.1)–(1.4):
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I

B5
T =

{
w(x, t) =

∞∑
n=0

wn(t)Xn(x) : wn(t) ∈ C[0, T ],

JT (w) =
[ ∞∑
n=0

(
µ5
n max
0≤t≤T

|wn(t)|
)2]1/2

< +∞
}

with the norm ‖w(x, t)‖B5
T
≡ JT (w) which relates the Fourier coefficients

of the function w(x, t) by the eigenfunctions Xn(x), n = 0, 1, 2, .... It is
shown in Appendix that B5

T is a Banach space.

II The space E5
T = C[0, T ]× B5

T for the vector function z = [a(t), w(x, t)]T

with the norm

‖z‖E5
T

= ‖w(x, t)‖B5
T

+ ‖a(t)‖C[0,T ] .

Note that E5
T is also a Banach space.

Let us seek the solution of the problem (1.1)–(1.4) in the form

w(x, t) =

∞∑
n=0

wn(t)Xn(x), (3.1)

where wn(t) is the solution of the following initial value problem:{
∂αt wn(t) + µ4

nwn(t) = Fn(t; a,w), 0 ≤ t ≤ T,
wn(0) = ϕn, w

′
n(0) = ψn, n = 0, 1, 2, ....

(3.2)

Here Fn(t; a,w) = a(t)wn(t) + fn(t), fn(t) =
√

2
∫ `
0
f(x, t)Xn(x)dx,

ϕn =
√

2
∫ `
0
ϕ(x)Xn(x)dx, and ψn =

√
2
∫ `
0
ψ(x)Xn(x)dx, n = 0, 1, 2, ....

Applying the Laplace transform on both sides of (3.2) leads to

Wn(s) =
Fn(s; a,w)

sα + µ4
n

+
sα−1ϕn
sα + µ4

n

+
sα−2ψn
sα + µ4

n

.

By using the inverse Laplace transform, we can obtain the solution of the
Cauchy problems (3.2) as

wn(t) =ϕnEα,1(−µ4
nt
α) + ψntEα,2(−µ4

nt
α)

+

∫ t

0

(t− s)α−1Eα,α(−µ4
n (t− s)α)Fn(s; a,w)ds. (3.3)

Substituting (3.3) into (3.1), we obtain that

w(x, t) =

∞∑
n=1

[
ϕnEα,1(−µ4

nt
α) + ψntEα,2(−µ4

nt
α)

+

∫ t

0

(t− s)α−1Eα,α(−µ4
n (t− s)α)Fn(s; a,w)ds

]
Xn(x). (3.4)

Math. Model. Anal., 26(3):503–518, 2021.



508 I. Tekin and H. Yang

For the determination of a(t), we can derive

a(t) =
1

r(t)
[∂αt r(t)− f(0, t) + wxxxx(0, t)]

from the Equation (1.1) with the additional data (1.4). Considering the Equa-
tion (3.4) at x = 0 in the last equation of a(t), we get

a(t) =
1

r(t)

[
∂αt r(t)− f(0, t) +

∞∑
n=0

µ4
n

(
ϕnEα,1(−µ4

nt
α) + ψntEα,2(−µ4

nt
α)

+

∫ t

0

(t− s)α−1Eα,α(−µ4
n (t− s)α)Fn(s; a,w)ds

)]
. (3.5)

Thus we can reduce the problem (1.1)–(1.4) to the system (3.4)–(3.5) with
respect to the unknown functions a(t) and w(x, t).

Now we denote z = [a(t), w(x, t)]T and rewrite the system (3.4)–(3.5) in the
operator form

z = Φ(z), (3.6)

where Φ = [φ0, φ1]T and φ1 and φ0 are equal to the right hand sides of (3.4)
and (3.5), respectively. That is,

φ0(z) =
1

r(t)

[
∂αt r(t)− f(0, t) +

∞∑
n=0

µ4
nwn(t)

]
, (3.7)

φ1(z) =

∞∑
n=0

wn(t)Xn(x),

where

wn(t) =ϕnEα,1(−µ4
nt
α) + ψntEα,2(−µ4

nt
α)

+

∫ t

0

(t− s)α−1Eα,α(−µ4
n (t− s)α)Fn(s; a,w)ds.

Let us show that Φ maps E5
T onto itself continuously. In other words,

we need to show that φ0(z) ∈ C[0, T ] and φ1(z) ∈ B5
T , for arbitrary z =

[a(t), w(x, t)]T with a(t) ∈ C[0, T ] and w(x, t) ∈ B5
T .

We will use the following assumptions on the data of problem (1.1)–(1.4):

(A0)


ϕ(x), ψ(x) ∈ C5[0, `],
ϕ(`) = ϕ′′(`) = ϕ(4)(`) = 0, ϕ′(0) = ϕ′′′(0) = 0,
ψ(`) = ψ′′(`) = ψ(4)(`) = 0, ψ′(0) = ψ′′′(0) = 0,

(A1)

 r(t) ∈ C1[0, T ], r(t) 6= 0, ∀t ∈ [0, T ],
∂αt r(t) ∈ C[0, T ],
r(0) = ϕ(0), r′(0) = ψ(0),

(A2)

 f(x, t) ∈ C(DT ), fx ∈ C[0, `],∀t ∈ [0, T ],
f(`, t) = fxx(`, t) = fxxxx(`, t) = 0,
fx(0, t) = fxxx(0, t) = 0.
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By using integration by parts under the assumptions (A0)–(A2), it easy to
show that

ϕn =
1

µ5
n

ηn, ψn =
1

µ5
n

ξn, fn(t) =
1

µ5
n

γn(t),

where ηn = −
√

2
∫ `
0
ϕ(5)(x) sin (µnx) dx, ξn = −

√
2
∫ `
0
ψ(5)(x) sin (µnx) dx,

γn(t) = −
√

2
∫ `
0
fxxxxx(x, t) sin (µnx) dx.

First, let us show that φ0(z) ∈ C[0, T ]. Under the assumptions (A0)–(A2)
and using Cauchy-Schwartz and Bessel inequalities, we obtain from (3.7) that

max
0≤t≤T

|φ0(t)| ≤ 1

min
0≤t≤T

|r(t)|

[
max
0≤t≤T

|∂αt r(t)|+ max
0≤t≤T

|f(0, t)|

+

( ∞∑
n=0

1

µ2
n

)1/2 {
Cα,1

( ∞∑
n=0

|ηn|2
)1/2

+ TCα,2

( ∞∑
n=0

|ξn|2
)1/2

+
TαCα,α

α

( ∞∑
n=0

(
max
0≤t≤T

|γn(t)|
)2
)1/2

+
TαCα,α

α
max
0≤t≤T

|a(t)|

( ∞∑
n=0

(
µ5
n max
0≤t≤T

|wn(t)|
)2
)1/2 }]

, (3.8)

where Cα,i, i = 1, 2 are constants defined in Lemma 1. Since the right hand
side of (3.8) is bounded, we have φ0(z) ∈ C[0, T ].

Next, let us show that φ1(z) ∈ B5
T , i.e., we need to show that

JT (φ1) =

[ ∞∑
n=0

(
µ5
n max
0≤t≤T

|φ1n(t)|
)2
]1/2

< +∞,

where φ1n(t) is equal to the right hand side of wn(t) as in (3.3). After some
manipulations on the last equality under the assumptions (A0)–(A2), we get

∞∑
n=0

(
µ5
n max
0≤t≤T

|φ1n(t)|
)2

≤ 4 (Cα,1)
2
∞∑
n=0

|ηn|2 + 4T 2 (Cα,2)
2
∞∑
n=0

|ξn|2

+ 4

(
TαCα,α

α

)2
[ ∞∑
n=0

(
max
0≤t≤T

|γn(t)|
)2

+

(
max
0≤t≤T

|a(t)|
)2 ∞∑

n=0

(
µ5
n max
0≤t≤T

|wn(t)|
)2
]
. (3.9)

From the Bessel inequality and [
∑∞
n=0(µ5

n max
0≤t≤T

|wn(t)|)2]1/2 < +∞, series on

the right side of the (3.9) are convergent. Thus JT (φ1) < +∞ and φ1(z) belongs
to the space B5

T . Now we show that Φ is a contraction mapping on E5
T . Let

zi =
[
ai(t), wi(x, t)

]T
for i = 1, 2 be any two elements of E5

T . We know that
‖Φ(z1)− Φ(z2)‖E5

T
= ‖φ0(z1)− φ0(z2)‖C[0,T ] + ‖φ1(z1)− φ1(z2)‖B5

T
.
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Under the assumptions (A0)–(A2) and considering (3.8)–(3.9), we obtain
that

‖Φ(z1)− Φ(z2)‖E5
T
≤ A(T )C(a1, w2) ‖z1 − z2‖E5

T
,

where A(T ) =
TαCα,α

α

(√
2 + 1

min
0≤t≤T

|r(t)|
(∑∞

n=0
1
µ2
n

)1/2)
and C(a1, w2) is a con-

stant that depends on the norms of
∥∥a1(t)

∥∥
C[0,T ]

and
∥∥w2(x, t)

∥∥
B5
T

.

A(T ) has limit zero as T tends to zero. It means that for sufficient small T ,
the operator Φ is contraction mapping which maps E5

T onto itself continuously.
Then, according to the Banach fixed point theorem there exists unique solution
of (3.6). Thus, we proved the following theorem:

Theorem 1 [Existence and uniqueness]. Let the assumptions (A0)–(A2) be
satisfied. Then the inverse problem (1.1)–(1.4) has unique solution for small
T .

4 Numerical experiments

In this section, we will discuss the numerical results for the inverse initial-
boundary value problem (1.1)–(1.4) with a time-dependent coefficient.

Throughout this section, we use w(x, t) and W (x, t) to represent the exact
and the numerical solution to the inverse problem (1.1)–(1.4), respectively.

Based on the discussion in Section 3, we know that the exact solution w(x, t)
can be written as w(x, t) =

∑∞
n=0 wn(t)Xn(x), where Xn(x) = cos(µnx) with

µn = (2n+1)π
2` , and wn(t) for n = 0, 1, 2, . . . are the Fourier coefficients. In order

to obtain the numerical solution, we look for solution of the form W (x, t) =∑N
n=0 wn(t)Xn(x), which is the truncated Fourier series of w(x, t). Here (N+1)

is the number of Fourier modes in the truncated Fourier series. Such a truncated
series will converge to w(x, t) as N goes to infinity. However, in the numerical
computations, we have to choose the suitable values of N and the time step size
to ensure the numerical stability. We will define our numerical scheme before
we specify the assumption of N . Equations (1.1)–(1.3) lead to{

∂αt wn(t) + µ4
nwn(t) = a(t)wn(t) + fn(t), 0 ≤ t ≤ T,

wn(0) = ϕn, w
′
n(0) = ψn, n = 0, 1, . . . , N.

(4.1)

To solve the equations (4.1) numerically, we partition the temporal domain
[0, T ] into uniform subintervals, each of which has length ∆t. We then let
tm = m∆t for all m. Thus at t = tm, the first fractional differential equation
in (4.1) can be approximated as

(∆t)−α

Γ (3− α)

m−1∑
i=0

dm,i(W
i+2
n − 2W i+1

n +W i
n) + µ4

nW
m
n = amWm

n + fn(tm), (4.2)

for n = 0, 1, . . . , N . Here W i
n denotes the numerical approximation of wn(t) at

t = ti and dm,i = (m − i)2−α − (m − i − 1)2−α for 0 ≤ i ≤ m − 1. Note that
the approximation of the time-fractional derivative in equation (4.2) is of first
order [20]. The investigation of higher-order time discretization methods will
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be left as future work. Also, from equation (4.2), if we let α goes to 2, we can
get

Wm+1
n − 2Wm

n +Wm−1
n

(∆t)2
+ µ4

nW
m
n = amWm

n + fn(tm),

for n = 0, 1, . . . , N . To ensure the stability of the difference scheme above, we
assume that (∆t)2µ4

N is of order O(1) or smaller. That is, N must satisfy the

assumption that ∆t ((2N + 1)π/(2l))
2

is of order 1 or smaller. For example, if
the spatial domain is [0, 1] and we take ∆t = 10−3, then we choose N to be
less than 10.

Since dm,m−1 = 1, equation (4.2) can be rewritten as

Wm+1
n =2Wm

n −Wm−1
n + (∆t)αΓ (3− α)

(
−µ4

nW
m
n + amWm

n + fn(tm)
)

−
m−2∑
i=0

dm,i(W
i+2
n − 2W i+1

n +W i
n), (4.3)

for n = 0, 1, . . . , N and m ≥ 1. Equation (4.3) denotes a three-time-level
scheme such that the value of Wm+1

n can be updated using the numerical
solution at the previous two time levels, i.e., Wm

n and Wm−1
n , as well as the

value of am. Thus, equation (4.3) can be regarded as the scheme for the direct
problem.

The scheme of the inverse initial-boundary value problem (1.1)–(1.4) with
a time-dependent coefficient is given as follows. We first update W 0

m and W 1
m

using the initial conditions. In particular, we compute W 0
n for n = 0, 1, . . . , N

using the discrete cosine transformation of ϕ(x), and we compute W 1
m using

the cosine transformation of ϕ(x) + ψ(x)∆t. In addition, a0 is updated using

a0 =
∂αt r(t)|t=0 + ϕ(4)(0)− f(0, 0)

r(0)
.

In order to compute a1, we let x = 0 and t = t1 in Equation (1.1). Then we
have

∂αt w(0, t1) + wxxxx(0, t1) = a1w(0, t1) + f(0, t1).

Since w(0, t1) = r(t1), there is

∂αt r(t)|t=t1 + wxxxx(0, t1) = a1r(t1) + f(0, t1),

which leads to

a1 =
∂αt r(t)|t=t1 + wxxxx(0, t1)− f(0, t1)

r(t1)
.

Next, we can use Equation (4.3) with m = 1 to get the formulation of w2
n.

We then let x = 0 and t = t2 in Equation (1.1), and use w(0, t2) = r(t2) to
obtain the formulation of a2. For general m ≥ 1, we compute am and Wm+1

n

(with n = 0, 1, . . . , N) in an alternating order as follows: we first compute
am using Equation (4.4), and then compute Wm+1

n for n = 0, 1, . . . , N using
Equation (4.5), where

am =
∂αt r(t)|t=tm + wxxxx(0, tm)− f(0, tm)

r(tm)
, (4.4)
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and

Wm+1
n =2Wm

n −Wm−1
n + (∆t)αΓ (3− α)

(
−µ4

nW
m
n + amWm

n + fn(tm)
)

−
m−2∑
i=0

dm,i(W
i+2
n − 2W i+1

n +W i
n). (4.5)

Note that the term wxxxx(0, tm) in Equation (4.4) should be computed using∑N
n=0 µ

4
nW

m
n . Finally, the numerical solution of w(x, t) at final time T can be

computed using the inverse cosine transformation of WNt
n (for n = 0, 1, . . . , N)

where Nt is the time level for t = T . Note that the numerical methods pre-
sented here are similar to that in [25]. Now, we discuss some numerical results.
Without loss of generality, we choose the spatial domain to be [0, 1].

Example 1. In the first numerical example, we consider the inverse initial-
boundary value problem (1.1)–(1.4) with the following data:

ϕ(x) = cos(
πx

2
), ψ(x) = 0, r(t) = 1 + t2,

f(x, t) =

[
2t2−α

Γ (3− α)
+ (

π

2
)4(1 + t2)− e−t(1 + t2)

]
cos(

πx

2
),

for x ∈ [0, 1] and t ∈ [0, T ]. The exact solution to the inverse problem is
w(x, t) = (1 + t2) cos(πx2 ) and a(t) = e−t. In our numerical simulations, we
choose α = 1.9, ∆t = 1 × 10−4, T = 0.1. The numerical solution of a(t) for
t ∈ [0, T ] and its error are shown in Figure 1.
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T

0.9
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0.98

1

(a) Numerical solution of a(t)

0 0.02 0.04 0.06 0.08 0.1
T

0

1

2

3

4

5

6
10-5

(b) Error of a(t)

Figure 1. Numerical solution and the error of a(t) for t ∈ [0, T ] in example 1. α = 1.9,
T = 0.1 and ∆t = 10−4 are used.

We can see that the error of a(t) increases as t increases. The numerical re-
sults also show that the the absolute maximum error of a is 6.0411×10−5, which
indicates that our numerical method can recover the function a(t) accurately.
The numerical solution and error of w(x, t) are given in Figure 2.

We observe that at each fixed time t, the maximum absolute error of w
occurs at the left boundary x = 0. Due to the fact that we use truncated Fourier
series, the error of w at the right boundary stays at zero. The numerical results
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(a) Numerical solution of w(x, t) (b) Error of w(x, t)

Figure 2. Numerical solution and the error of w(x, t) for (x, t) ∈ [0, 1]× [0, T ] in example
1. α = 1.9, T = 0.1 and ∆t = 10−4 are used.

show that the absolute maximum error of w(x, t) is 1.0023× 10−5. Therefore,
our numerical method lead to accurate recovery of both a(t) and w(x, t). In
addition, when we further increase the value of α to let it approach 2, we
observe that both the errors of a(t) and w(x, t) decrease. In particular, when
we choose α = 1.99, then the absolute maximum errors of w(x, t) and a(t)
are 1.0016 × 10−5 and 6.0377 × 10−5, respectively. Such a result makes sense
because when α approaches 2 from the left, the time-fractional Euler-Bernoulli
beam equation approaches the classical Euler-Bernoulli beam equation, and
our temporal discretization will approach a second-order accuracy scheme.

The absolute maximum error of w(x, t) for different values of α can be seen
in Figure 3.

1.7 1.75 1.8 1.85 1.9 1.95
1.0015

1.002

1.0025

1.003

1.0035

1.004

1.0045
10-5

Figure 3. The absolute maximum error of w(x, t) for different α in example 1. T = 0.1
and ∆t = 10−4 are used.

We observe that the absolute maximum error of w(x, t) decreases monoton-
ically as α increases. This is also consistent with the fact that the convergence
order for the discretization of ∂αt wn(t) increases as α increases. In order to
see the influence of ∆t on the accuracy of the numerical solution, we fix the
value of α and N (i.e., α = 1.9 and N = 4), choose various values of ∆t, and
compute the absolute maximum errors of w(x, t) and a(t) for each choice of
∆t. When we use ∆t = 10−3, the absolute maximum errors of w(x, t) and a(t)
are 1.0022 × 10−4 and 6.0413 × 10−4, respectively. If we decrease the value
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of ∆t by a factor of 10, such errors decrease to 1.0023 × 10−5 for w(x, t), and
6.0411× 10−5 for a(t). When we further decrease the value of ∆t to be 10−5,
the absolute maximum error of w(x, t) becomes 1.0022 × 10−6, and the error
of a(t) becomes 6.0378× 10−6. This implies the convergence of our scheme as
∆t approach 0.

Example 2. Next, we consider the another numerical example, where we choose
the following given data:

ϕ(x) = cos(
πx

2
) + 0.01 cos(

3πx

2
), ψ(x) = 0, r(t) = 1.01 + 0.01t3,

f(x, t) =

[
3t3−α

50Γ (4− α)
+

81π4(1 + t3)

1600
− sin(t)

1 + t3

100

]
cos(

3πx

2
)

+
[
(
π

2
)4 − sin(t)

]
cos(

πx

2
).

The exact solution to the inverse initial-boundary value problem (1.1)–(1.4)

with the data above is w(x, t) = cos(πx2 ) + 1+t3

100 cos( 3πx
2 ) and a(t) = sin(t). In

this example, we compute the numerical solution when α = 1.8 and T = 0.1.
The numerical solution and the error of a(t) are given in Figure 4, from which
we can observe that the error of a(t) increases as t increases.
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(a) Numerical solution of a(t)
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(b) Error of a(t)

Figure 4. Numerical solution and the error of a(t) for t ∈ [0, T ] in example 2. α = 1.8,
T = 0.1 and ∆t = 10−4 are used.

Numerical results show that the absolute maximum error of a(t) is 1.2587×
10−5. The numerical solution and the error of w(x, t) are given in Figure 5.
Unlike the distribution of error in Figure 2(b), the absolute maximum error of
w(x, t) for this example is not located at the boundary. Numerical results show
that the absolute maximum error of w(x, t) is 3.3290× 10−8.

To see the influence of time step size, we choose different ∆t and compute
the error of w and a. When we use ∆t = 10−3, the absolute error of w(x, t) and
a(t) are 2.6788× 10−7 and 1.0221× 10−4, respectively. When we use the time
step size ∆t = 10−5, the absolute maximum error of w(x, t) and a(t) become
3.6648 × 10−9 and 1.3462 × 10−6, respectively. Hence, the observation above
suggests that if ∆t decreases within a certain range, then the error of w and a
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(a) Numerical solution of w(x, t) (b) Error of w(x, t)

Figure 5. Numerical solution and the error of w(x, t) for (x, t) ∈ [0, 1]× [0, T ] in example
2. α = 1.8, T = 0.1 and ∆t = 10−4 are used.

will also decrease. Next, we fix the time step size to be ∆t = 10−4 and change
the value of α. In particular, when α = 1.7, the absolute maximum error
of w(x, t) and a(t) are 6.1008 × 10−8 and 1.1300 × 10−4, respectively; when
α = 1.9, the absolute maximum error of w(x, t) and a(t) are 1.6229 × 10−8

and 6.5163× 10−6, respectively. When we compare the results for α = 1.7, 1.8
and 1.9, we observe the pattern that larger value of α leads to more accurate
results, which is consistent with the discussion in Example 1.
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Figure 6. The absolute maximum error of w(x, t) for different α in example 2. T = 0.1
and ∆t = 10−4 are used.

When we fix the value of α and compare the results for ∆t = 10−3, 10−4 and
10−5, we can also see the monotonically decreasing of the absolute maximum
errors of w(x, t) and a(t), see Figure 6. In particular, when we choose α = 1.8,
T = 0.1 and ∆t = 10−5, the absolute maximum errors of w(x, t) and a(t) are
1.8281× 10−9 and 7.8356× 10−7, respectively. This example also verifies that
our numerical methods can lead to accuracy solution to the inverse problem
for small T .

Math. Model. Anal., 26(3):503–518, 2021.
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5 Conclusions

The paper considers the problem of determining the time-dependent coeffi-
cient for the fractional Euler-Bernoulli equation with homogeneous boundary
conditions and an additional measurement. The existence and uniqueness of a
solution on a sufficiently small time interval are proved by means of the contrac-
tion principle. The fixed-point system is presented via Fourier series. Such a
form of the system brings along computations that are technically simpler than
the system in the case of the usual variational approach. A numerical method
using the truncated Fourier series is proposed. The numerical results show that
our method lead to accurate solutions to the inverse problem for small time
interval, and the absolute maximum error of the solutions decreases as the or-
der of the time-fractional derivative approaches 2 from the left. Higher-order
temporal discretization methods for the inverse problem are currently under
investigation.
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axial vibration of non-local rods with fractional continuum mechanics. Mecca-
nica, 50(9):2309–2323, 2015. https://doi.org/10.1007/s11012-015-0157-5.

[24] I. Tekin. Reconstruction of a time-dependent potential in a pseudo-hyperbolic
equation. UPB Scientific Bulletin-Series A-Applied Mathematics and Physics,
81:115–124, 2019.

[25] H. Yang. An inverse problem for the sixth-order linear Boussinesq-type equation.
UPB Scientific Bulletin, Series A: Applied Mathematics and Physics, 82(2):27–
36, 2020.

Math. Model. Anal., 26(3):503–518, 2021.

https://doi.org/10.1023/A:1013378221617
https://doi.org/10.1093/imamat/62.2.101
https://doi.org/10.1016/j.camwa.2007.11.048
https://doi.org/10.1063/1.1722742
https://doi.org/10.1063/1.2432025
https://doi.org/10.1007/s00707-014-1144-y
https://doi.org/10.1103/PhysRevE.55.3581
https://doi.org/10.1142/S0218127412500757
https://doi.org/10.1016/j.euromechsol.2015.07.002
https://doi.org/10.1016/j.ijsolstr.2017.06.024
https://doi.org/10.1007/s11012-015-0157-5


518 I. Tekin and H. Yang

Appendix

In this section, we show that the space B5
T is a Banach space. Since a Banach

space is a complete normed space, we need to demonstrate that the normed
space B5

T is complete. If every Cauchy sequence in B5
T converges, the space

B5
T is said to be complete.

We consider any Cauchy sequence {um(x, t)} in B5
T , writing um(x, t) =∑∞

n=0 u
(m)
n (t) cosµnx. Since {um(x, t)} is a Cauchy sequence, for every ε > 0

there is an N such that for all m, r > N

‖um(x, t)− ur(x, t)‖2B5
T

=

∞∑
n=0

(
µ5
n max
0≤t≤T

∣∣∣u(m)
n (t)− u(r)n (t)

∣∣∣)2

< ε2.

It follows that for every n = 0, 1, 2, ... we have

max
0≤t≤T

∣∣∣u(m)
n (t)− u(r)n (t)

∣∣∣ < ε.

Since C[0, T ] is complete, u
(m)
n (t) → un(t) as m → ∞. Using these limits, we

define u(x, t) =
∑∞
n=0 un(t) cosµnx and show that u(x, t) ∈ B5

T and um(x, t)→
u(x, t).

We have for all m, r > N

k∑
n=0

(
µ5
n max
0≤t≤T

∣∣∣u(m)
n (t)− u(r)n (t)

∣∣∣)2

< ε2, (k = 0, 1, 2, ...).

Letting r →∞, we obtain for all m > N

k∑
n=0

(
µ5
n max
0≤t≤T

∣∣∣u(m)
n (t)− un(t)

∣∣∣)2

< ε2, (k = 0, 1, 2, ...).

We may let k →∞, then for all m > N

∞∑
n=0

(
µ5
n max
0≤t≤T

∣∣∣u(m)
n (t)− un(t)

∣∣∣)2

< ε2.

This implies that um(x, t) → u(x, t) and um(x, t) − u(x, t) ∈ B5
T . Since

um(x, t) ∈ B5
T , u(x, t) = um(x, t) + (u(x, t) − um(x, t)) ∈ B5

T . Thus B5
T is a

complete normed space.
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