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Abstract. In this paper we define a new type of the fractional derivative, which we
call tempered Ψ−Caputo fractional derivative. It is a generalization of the tempered
Caputo fractional derivative and of the Ψ−Caputo fractional derivative. The Cauchy
problem for fractional differential equations with this type of derivative is discussed
and some existence and uniqueness results are proved. We present a Henry-Gronwall
type inequality for an integral inequality with the tempered Ψ−fractional integral.
This inequality is applied in the proof of an existence theorem. A result on a repre-
sentation of solutions of linear systems of Ψ−Caputo fractional differential equations
is proved and in the last section an example is presented.
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1 Introduction

Fractional calculus, introduced by L. Liouville [24] and B. Riemann [36], is
a powerful tool for the study of systems describing various real memory pro-
cesses. The classical Riemann-Liouville fractional derivative is very often used
in applications in physics, chemistry, biology and also in other sciences such
as economics, geology, sociology. Several other types of fractional derivatives
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have also been defined in recent decades. They are more general and more suit-
able for applications than the Riemann-Liouville fractional derivative. Some
definitions of such fractional derivatives can be found in the remarkable mono-
graphs [13, 16, 19, 22, 33, 35, 45, 48] on fractional calculus and qualitative anal-
ysis of fractional-order differential equations. In the recently published pa-
pers [12, 23, 37] so-called tempered Riemann-Liouville and tempered Caputo
fractional derivatives are defined. Fractional differential equations with these
derivatives have very good properties from the point of view of stability of their
solutions. It is well-known that the classical fractional differential equations can
have asymptotically stable solutions, but not exponentially. Some sufficient
conditions for the exponential stability of solutions of fractionally perturbed
ODEs with tempered Riemann-Liouville fractional integrals and several con-
stant delays are proved in the papers [28, 29, 30, 31]. A new type of derivative,
called the Hilfer fractional derivative, was defined by R. Hilfer [16]. In the
paper [39] a new definition of fractional derivative, called Ψ−Hilfer fractional
derivative, is defined.

Recently, many papers are devoted to fractional differential equations with
Ψ−Hilfer fractional derivative. Some existence results are obtained in the pa-
pers [1, 5, 8, 10, 14, 21] and stability results in [2, 3, 4, 6, 7, 20, 25, 40, 43, 44, 46].
Properties of Ψ−Hilfer fractional derivative and Ψ−Hilfer integral are studied
in the papers [42] and [39]. In the papers [9, 41], the Gronwall inequality is
generalized to some classes of integral inequalities with Ψ−Hilfer integral.

Inspired by the papers [10,39,41], we define a modification of the Ψ−Caputo
derivative, which we call the tempered Ψ−Caputo derivative and we study the
Cauchy problem for fractional differential equations with this type of fractional
derivative. This derivative includes as special cases the tempered Caputo [23].

The main aim of this paper is to present some results on the existence and
uniqueness of solutions of fractional differential equations with the tempered
Ψ−Caputo derivative.

2 Preliminaries

In this section, we recall definitions of known fractional derivatives (see e.g.
[12, 23,32]).

Definition 1. Suppose that real function u(t) is piecewise continuous, inte-
grable on (a, b), α > 0, λ ≥ 0. The tempered Riemann-Liouville fractional inte-
gral of order α is defined to be

Iα,λa u(t) = e−λtIαa (eλtu(t)) =
1

Γ (α)

∫ t

a

(t− s)α−1e−λ(t−s)u(s)ds,

where Iαa u(t) denotes the Riemann-Liouville fractional integral

Iαa u(t) =
1

Γ (α)

∫ t

a

(t− s)α−1u(s)ds.
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Definition 2. For n − 1 < α < n, n ∈ N, λ ≥ 0 the tempered Riemann-
Liouville fractional derivative of order α is defined to be

Dα,λ
a u(t) = e−λtDα

a (eλtu(t)) =
e−λt

Γ (n− α)

dn

dtn

∫ t

a

(t− s)n−α−1eλsu(s)ds,

where Dα
a (eλtu(t)) denotes the Riemann-Liouville fractional derivative

Dα
a (eλtu(t)) =

dn

dtn
(
In−αa (eλtu(t))

)
=

1

Γ (n− α)

dn

dtn

∫ t

a

(t− s)n−α−1eλsu(s)ds

for u ∈ C[a, b].

Definition 3. For n − 1 < α < n, n ∈ N, λ ≥ 0 the tempered Caputo, or
λ−tempered fractional derivative of order α is defined to be

CDα,λ
a u(t) = e−λt CDα

a (eλtu(t)) =
e−λt

Γ (n− α)

∫ t

a

(t− s)n−α−1 d
n

dsn
(eλsu(s))ds,

where CDα
a (eλtu(t)) denotes the Caputo fractional derivative

CDα
a (eλtu(t)) =

1

Γ (n− α)

∫ t

a

(t− s)n−α−1 d
n

dsn
(eλsu(s))ds

for u ∈ Cn[a, b].

Obviously, CDα,0
a u(t) = CDα

au(t). This type of derivative was first defined in
the article [37] (see also [12,23,32]).

Definition 4. Let α > 0, the real function u(t) be continuous on [a, b] and
Ψ ∈ C1[a, b] is an increasing differentiable function such that Ψ ′(t) 6= 0 for
all t ∈ [a, b]. Then the Ψ−Riemann-Liouville fractional integral of order α is
defined by

Iα,Ψa u(t) =
1

Γ (α)

∫ t

a

[Ψ(t)− Ψ(s)]α−1Ψ ′(s)u(s)ds

(see [39,41]).

Now, we define a new type of Ψ−fractional integral, so-called tempered
Ψ−fractional integral.

Definition 5. Let the assumptions of the Definition 4 be satisfied and let
λ ≥ 0. Then the tempered Ψ−fractional integral of order α is defined by

Iα,λ,Ψa u(t) =e−λΨ(t)Iα,Ψ
(
eλΨ(t)u(t))

)
=

1

Γ (α)

∫ t

a

[Ψ(t)− Ψ(s)]α−1e−λ[Ψ(t)−Ψ(s)]Ψ ′(s)u(s)ds.

Math. Model. Anal., 26(4):631–650, 2021.
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3 Tempered Ψ−Caputo fractional derivative

In this section, we introduce a new type of fractional derivative, which includes
the above defined Ψ−Caputo fractional derivative, by the following definition.

Definition 6. Let Ψ ∈ Cn[a, b] is an increasing differentiable function such
that Ψ ′(t) 6= 0 for all t ∈ [a, b]. For n − 1 < α < n, n ∈ N, λ ≥ 0 the tempered
Ψ−Caputo fractional derivative of order α is defined to be

CDα,λ,Ψ
a x(t) =

e−λΨ(t)

Γ (n− α)

∫ t

a

Ψ ′(s)(Ψ(t)− Ψ(s))n−α−1x
[n]
λ,Ψ (s)ds,

where

x
[n]
λ,Ψ (t) =

[
1

Ψ ′(t)

d

dt

]n(
eλΨ(t)x(t)

)
.

The Ψ−Caputo fractional derivative, introduced in the paper [10], is defined
by the rule

CDα,Ψ
a x(t) =

1

Γ (n− α)

∫ t

a

Ψ ′(s)[Ψ(t)− Ψ(s)]n−α−1x
[n]
Ψ x(s)ds,

where

x
[n]
Ψ x(t) =

[
1

Ψ ′(t)

d

dt

]n(
x(t)

)
.

It is clear that CDα,0,Ψ
a x(t) = CDα,Ψ

a x(t) and x
[n]
0,α,Ψ (t) = x

[n]
Ψ x(t). Obviously,

CDα,λ,Ψ
a x(t) = e−λΨ(t) CDα,Ψ

a

(
eλΨ(t)x(t)

)
. (3.1)

The definition of the tempered Ψ−Caputo fractional derivative covers the well-
known fractional derivatives for λ = 0, like the Caputo fractional deriva-
tive (Ψ(t) = t), the Caputo-Hadamard fractional derivative (Ψ(t) = ln t),
the Caputo-Erdélyi-Kober fractional derivative (Ψ(t) = tσ). The tempered
Ψ−Caputo derivative with Ψ(t) = t, is defined and considered in the pa-
pers [12,23]. We need the following lemma, proved in [10, Theorem 1].

Lemma 1. Let n− 1 < α < n and h : [a, b]→ R. Then the following holds:

1. If h ∈ C[a, b],then CDα,Ψ
a Iα,Ψa h(t) = h(t).

2. If h ∈ Cn[a, b], then Iα,Ψa
CDα,Ψ

a h(t) = h(t)−
∑n−1
k=0 ck[Ψ(t)− Ψ(a)]k,

where ck = h
[k]
Ψ (a)/k!.

Theorem 1. (Composition properties). Let the assumptions of Definition 5
and Definition 6 be satisfied. Then the following holds:

1. CDα,λ,Ψ
a

[
Iα,λ,Ψa x(t)

]
= x(t),

2. Iα,λ,Ψa

[C
Dα,λ,Ψ
a x(t)

]
= x(t)− e−λΨ(t)

∑n−1
k=0 ck[Ψ(t)− Ψ(a)]k,
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where

ck =
x
[k]
λ,Ψ (a)

k!
=

1

k!

[
1

Ψ ′(t)

d

dt

]k(
eλΨ(t)x(t)

)∣∣∣∣
t=a

.

Proof. Let us prove the assertion 1.

CDα,λ,Ψ
a

[
Iα,λ,Ψa x(t)

]
= e−λΨ(t) CDα,Ψ

a

(
eλΨ(t)

(
Iα,Ψa x(t)

))
= e−λΨ(t) CDα,Ψ

a

(
e−λΨ(t)eλΨ(t)

(
Iα,Ψa

(
eλΨ(t)x(t)

)))
= e−λΨ(t) CDα,Ψ

a Iα,Ψa

(
eλΨ(t)x(t)

)
= x(t).

Next, we prove the assertion 2.

Iα,λ,Ψa

[C
Dα,λ,Ψ
a x(t)

]
= e−λΨ(t)Iα,Ψa

(
eλΨ(t)

[
e−λΨ(t) CDα,Ψ

a

(
eλΨ(t)x(t)

)])
= e−λΨ(t)Iα,Ψa

CDα,Ψ
a

(
eλΨ(t)x(t)

)
.

From the assertion 1 of Lemma 1, we have

Iα,λ,Ψa
CDα,λ,Ψ

a x(t) = e−λΨ(t)
[
eλΨ(t)x(t)

]
− e−λΨ(t)

n−1∑
k=0

ck[Ψ(t)− Ψ(a)],

where ck =
x
[k]
λ,Ψ (a)

k! = 1
k!

[
1

Ψ ′(t)
d
dt

]k(
eλΨ(t)x(t)

)∣∣
t=a

. ut

Proposition 1.

lim
α→(n−1)+

CDα,λ,Ψ
a x(t) = e−λΨ(t)

[
x
[n−1]
λ,Ψ (t)− x[n−1]λ,Ψ (a)

]
.

Proof. From the definition of tempered Ψ−Caputo derivative we obtain

lim
α→(n−1)+

CDα,λ,Ψ
a x(t) = e−λΨ(t)

∫ t

a

Ψ ′(s)x
[n]
λ,Ψ (s)ds

= e−λΨ(t)

∫ t

a

Ψ ′(s)

(
1

Ψ ′(s)

d

ds
x
[n−1]
λ,Ψ (s)

)
ds = e−λΨ(t)

∫ t

a

d

ds
x
[n−1]
λ,Ψ (s)ds

= e−λΨ(t)
[
x
[n−1]
λ,Ψ (t)− x[n−1]λ,Ψ (a)

]
.

ut

4 Henry-Gronwall type integral inequality with tempered
Ψ−fractional integral

The first fractional version of the well-known Gronwall inequality can be found
in the book by D. Henry [15, Lemma 7.1.1], devoted to the study of qualitative
properties of semilinear parabolic equations. In the paper [47], a generalization
of the Henry-Gronwall inequality is proved. This result is recently frequently
applied in the study of the existence and uniqueness of solutions of Cauchy

Math. Model. Anal., 26(4):631–650, 2021.
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initial value problems for fractional differential equations. In the paper [9],
a generalization of the Gronwall inequality for integral inequality with the
Katugampola fractional integral (see [18]) is presented. The first nonlinear
versions of the Henry-Gronwall inequality were proved in the papers [26, 27],
where a desingularization method was developed. A Henry-Gronwall type of
integral inequality with the Ψ−fractional integral is presented in the paper [41]
and it is used there in the proof of a result on the continuous dependence
of solutions of the Cauchy initial value fractional problem with the Ψ−Hilfer
fractional derivative.

Next, we present a Henry-Gronwall type inequality for an integral inequality
with the tempered Ψ−fractional integral. We will apply this inequality in the
next section to prove a uniqueness result. The key role in the proof plays
the following lemma that is a consequence of a nonlinear version of the Bihari
inequality, published in [11, Theorem].

Lemma 2. Let 0 < T < ∞, c < T , a(t), b(t), k(t), v(t) be nonnegative,
continuous functions on the interval [c, T ] and let

v(t) ≤ a(t) + b(t)

∫ t

c

k(s)v(s)ds, ∀ c ≤ t ≤ T.

Then

v(t) ≤ A(t)eB(t)
∫ t
c
k(s)ds, ∀ c ≤ t ≤ T,

where A(t) = supc≤s≤t a(s), B(t) = supc≤s≤t b(s).

Theorem 2. Let λ ≥ 0, α ∈ (0, 1), p > 1, p(α − 1) + 1 > 0, q = p
p−1 ,

a(t), b(t), F (t) be nonnegative, integrable functions on the interval [0, T ), where
0 < T < ∞, Ψ is a continuously differentiable, increasing function on the
interval [0,∞) with Ψ(0) = 0, Ψ ′(t) > 0 for all t ∈ (0,∞), limt→∞ Ψ(t) = ∞
and u(t) be a nonnegative integrable function on [0, T ), satisfying the inequality

u(t) ≤ a(t) + b(t)

∫ t

0

[Ψ(t)−Ψ(s)]α−1e−λ[Ψ(t)−Ψ(s)]Ψ ′(s)F (s)u(s)ds, 0 ≤ t ≤ T.

(4.1)
Then

u(t) ≤ C(t)eD(t)
∫ t
0
Ψ ′(s)F (s)qds, 0 ≤ t ≤ T,

where

C(t)=2
q−1
q sup

0≤s≤t
a(s), D(t)=

2q−1

q
Mq
p sup

0≤s≤t
b(s)q,Mp=

(Γ (p(α−1)+1

(pλ)p(α−1)+1

) 1
p

.

Proof. Let us estimate the integral from the right-hand side of the Inequal-
ity (4.1). Since 1/p + 1/q = 1, we can write Ψ ′(t) = Ψ ′(t)1/pΨ ′(t)1/q and by
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using the Hölder inequality we obtain∫ t

0

[Ψ(t)− Ψ(s)]α−1e−λ[Ψ(t)−Ψ(s)]Ψ ′(s)F (s)u(s)ds

=

∫ t

0

(
[Ψ(t)− Ψ(s)]α−1e−λ[Ψ(t)−Ψ(s)]

[
Ψ ′(s)

]1/p)([
Ψ ′(s)

]1/q
F (s)u(s)

)
ds

≤
(∫ t

0

[Ψ(t)−Ψ(s)]p(α−1)e−pλ[Ψ(t)−Ψ(s)]Ψ ′(s)ds

) 1
p
(∫ t

0

Ψ ′(s)F (s)qu(s)qds

) 1
q

=

(∫ Ψ(t)

0

σp(α−1)e−pλσdσ

)1/p(∫ t

0

Ψ ′(s)F (s)qu(s)qds

)1/q

. (4.2)

One can show that(∫ Ψ(t)

0

σp(α−1)e−pλσdσ

)1/p

≤
(∫ ∞

0

σp(α−1)e−pλσdσ

)1/p

= Mp,

where Mp =
(
Γ (p(α− 1) + 1)/(pλ)p(α−1)+1

)1/p
. Hence, from the Inequalities

(4.1) and (4.2) we obtain the inequality

u(t) ≤ a(t) +Mpb(t)

(∫ t

0

Ψ ′(s)F (s)qu(s)qds

)1/q

.

Using the inequality (c+d)q ≤ 2q−1(cq+dq), valid for any nonnegative numbers
c, d, we obtain

u(t)q ≤ ã(t) + b̃(t)

∫ t

0

Ψ ′(s)F (s)qu(s)qds, (4.3)

where ã(t) = 2q−1a(t)q, b̃(t) = 2q−1Mq
p b(t)

q. From the Inequality (4.3) and
Lemma 2 it follows

u(t)q ≤ A(t)eB(t)
∫ t
0
Ψ ′(s)F (s)qds t ∈ [0, T ), (4.4)

where

A(t) = 2q−1 sup
0≤s≤t

a(s)q, B(t) = 2q−1Mq
p sup

0≤s≤t
b(s)q,

and the Inequality (4.4) yields

u(t) ≤ C(t)eD(t)
∫ t
0
Ψ ′(s)F (s)qds,

where

C(t) = 2
q−1
q sup

0≤s≤t
a(s), D(t) =

2q−1

q
Mq
p sup

0≤s≤t
b(s)q.

ut

Obviously, the following consequence of this theorem is valid.

Math. Model. Anal., 26(4):631–650, 2021.
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Corollary 1. Let a(t) ≡ a, b(t) ≡ b be nonnegative constants, F (t), Ψ(t) be as
in the Theorem 2 and let u(t) be a nonnegative integrable function satisfying
the integral inequality

u(t) ≤ a+ b

∫ t

0

[Ψ(t)− Ψ(s)]α−1e−λ[Ψ(t)−Ψ(s)]Ψ ′(s)F (s)u(s)ds, ∀ t ∈ [0,∞).

(4.5)
Then

u(t) ≤ ced
∫ t
0
Ψ ′(s)F (s)qds ∀ t ∈ [0,∞), (4.6)

where c = 2
q−1
q a, d = 2

q−1
q Mq

p b
q.

Remark 1. The numbers a, b, Mp in the Inequality (4.5) are independent of T
and therefore the Corollary 1 can be formulated for T =∞.

Example 1. If ψ(t) ≡ t, then the Inequality (4.6) has the form

u(t) ≤ ced
∫ t
0
F (s)qds ∀ t ∈ [0, T ).

Example 2. If ψ(t) ≡ ln(1 + t), F (t) ≡ 1, then the Inequality (4.6) has the form

u(t) ≤ c(1 + t)d ∀ t ∈ [0, T ).

Proof.

u(t) ≤ cedΨ(t) = ced ln(1+t) = celn(1+t)
d

= c(1 + t)d ∀ 0 ≤ t < T.

ut

Example 3. If α = 1, λ = 0 and ψ(t) ≡ ln(1 + t), F (t) ≡ 1, then the Inequal-
ity (4.5) has the form

u(t) ≤ a+ b

∫ t

0

1

1 + s
u(s)ds ∀ t ∈ [0, T )

and the classical Gronwall lemma yields the inequality

u(t) ≤ a(1 + t)b ∀ t ∈ [0, T ).

This means that the result from the Example 2 is a fractional version of the
this result.

5 Fractional differential equations with tempered
Ψ−Caputo derivative

In this section, we consider the following initial value problem

CDα,λ,Ψ
0 x(t) =f(t, x(t)), t ∈ [0, a], α ∈ (0, 1), (5.1)

x(0) =x0 ∈ Rn, (5.2)

where f ∈ C([0, a]×Rn,Rn), Ψ is a continuously differentiable, increasing func-
tion on the interval [0,∞) with Ψ(0)=0, Ψ ′(t)>0 for all t∈(0,∞), limt→∞ Ψ(t)
=∞. For simplicity in notation, we write Ca instead of C([0, a],Rn). We shall
denote by | · | the norm on Rn and ‖g‖Ca = supt∈[0,a] g(t) for g ∈ C0

a .
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Definition 7. A mapping x : [0, a] → Rn is a solution of the initial value

problem (5.1)– (5.2), if it is continuous, CDα,λ,Ψ
0 x(t) exists for all t ∈ (0, a] and

is continuous on (0, a], x(t) fulfills the Equality (5.1) for all t ∈ (0, a] and the
initial condition (5.2).

Lemma 3. Let the mapping f ∈ C([0, a] × Rn, Rn) be bounded. Then the
mapping x(t) is a solution of the initial value problem (5.1)–(5.2) defined on
the interval [0, a] if and only if it is a solution of the equation

x(t) =e−λΨ(t)x0

+
1

Γ (α)

∫ t

0

[Ψ(t)− Ψ(s)]α−1e−λ[Ψ(t)−Ψ(s)]Ψ ′(s)f(s, x(s))ds,
(5.3)

for all t ∈ [0, a].

Proof. Necessity. Performing the integral Iλ,α,Ψ0 to both sides of the Equation
(5.1) and applying the assertion 2 of Theorem 1, we obtain the Equation (5.3).

Sufficiency. Since CDα,Ψ
0 (x0) = 0, we have

CDα,λ,Ψ
0 (e−λΨ(t)x0) = e−λΨ(t) CDα,Ψ

0

(
eλΨ(t)e−λΨ(t)(x0)

)
= 0. (5.4)

Applying the operator CDλ,α,Ψ
0 to both sides of the Equation (5.3), using equal-

ity (5.4) and the assertion 1 of Theorem 1, we obtain that x(t) is a solution of
the Equation (5.1). Putting t = 0 in the formula (5.3) we obtain that x(0) = x0
and the proof is finished. ut

Theorem 3. Let Ψ ∈ C1[0,∞) be a nonnegative and increasing function such
that Ψ ′(t) 6= 0 for all t ∈ [0,∞), limt→∞ Ψ(t) = ∞ and D = [0,∞) × Rn.
Assume that the mapping f : D → Rn is continuous bounded and satisfying the
Lipschitz condition

|f(t, x)− f(t, y)| ≤ L|x− y| for all (t, x), (t, y) ∈ D,

where L > 0 is a constant, L
λα < 1 and | . | is a norm on Rn. Then there

is a unique solution x(t) of the initial value problem (5.1)–(5.2) on the whole
interval [0,∞).

Proof. Let a be an arbitrary positive number. Define the set Gγ = {y ∈
C([0, a],Rn) : maxt∈[0,a] |y(t)− x0e−λΨ(t)| ≤ γ}, where

γ =
M

λα
, M = sup

(t,x)∈D
|f(t, x)|.

The set Gγ is a closed subset of the Banach space (C[0, a], ‖ . ‖), where ‖g‖ =
maxt∈[0,a] |g(t)| and | . | is a norm in Rn.

Let us define the operator T : Gγ → C([0, a],Rn) by

(Tx)(t) =e−λΨ(t)x0

+
1

Γ (α)

∫ t

0

[Ψ(t)− Ψ(s)]α−1e−λ[Ψ(t)−Ψ(s)]Ψ ′(s)f(s, x(s))ds.

Math. Model. Anal., 26(4):631–650, 2021.
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First, we prove that T (Gγ) ⊂ Gγ . Let x ∈ Gγ , t ∈ [0, a]. Since |f(t, u)| ≤ M
for all (t, u) ∈ D, we have

|(Tx)(t)−x0e−λΨ(t)|≤ 1

Γ (α)

∫ t

0

[Ψ(t)−Ψ(s)]α−1e−λ[Ψ(t)−Ψ(s)]Ψ ′(s)|f(s, x(s))|ds

≤ M

Γ (α)

∫ t

0

[Ψ(t)− Ψ(s)]α−1e−λ[Ψ(t)−Ψ(s)]Ψ ′(s)ds =
M

Γ (α)

∫ Ψ(t)

0

σα−1e−λσdσ

≤ M

Γ (α)

∫ ∞
0

σα−1e−λσdσ =
M

λα
= γ.

Hence, T (Dγ) ⊂ Dγ . Now, we prove that T : Dγ → Dγ is a contraction. For
y, z ∈ Dγ , t ∈ [0, a], we have

‖T (y)− T (z)‖Ca = max
t∈[0,a]

|T (y)(t)− T (z)(t)|

≤ L

Γ (α)
max
t∈[0,a]

(∫ t

0

[Ψ(t)− Ψ(s)]α−1e−λ[Ψ(t)−Ψ(s)]Ψ ′(s)ds

)
‖y − z‖Ca

≤ L

Γ (α)

Γ (α)

λα
‖y − z‖Ca ≤

L

λα
‖y − z‖Ca .

Since by the assumption L
λα < 1, the operator T : Dγ → Dγ is a contraction.

Hence by the Banach fixed point theorem the mapping T has a unique fixed
point. This means there is a unique solution x(t) of the initial value problem
(5.1)–(5.2) on any compact interval [0, a]. Since the contraction constant L

λα

for the operator T is independent of a, we have proven that there is a unique
solution of this problem on the whole interval [0,∞). ut

In the proof of the next existence theorem, we will apply the following
Schaefer’s Fixed Point Theorem [38].

Theorem 4. Let X be a Banach space and T : X → X be a completely con-
tinuous operator. If the set

X(T ) = {y ∈ X : y = µTy for some µ ∈ (0, 1)}

is bounded, then T has at least one fixed point.

Theorem 5. Let Ψ ∈ C1[0, a] be a nonnegative, increasing function with
Ψ ′(t) > 0 for all t ∈ [0, a], limt→∞ Ψ(t) =∞ and D = [0, a]× Rn, f : D → Rn
is a continuous mapping satisfying the condition

|f(t, x)| ≤ k0 + k1|x|, for all (t, x) ∈ D, (5.5)

where | . | is the norm in Rn, k0, k1 are positive constants. Then there is at least
one solution x(t) of the initial value problem (5.1)–(5.2) on the whole interval
[0, a].

Proof. Let U := {x ∈ C1([0, a],Rn) : CDλ,α,Ψ
0 x ∈ C([0, a],Rn)} and let

T : U → U be the operator defined by the rule

(Tx)(t)=e−λΨ(t)x0+
1

Γ (α)

∫ t

0

[Ψ(t)−Ψ(s)]α−1e−λ[Ψ(t)−Ψ(s)]Ψ ′(s)f(s, x(s))ds.
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The mapping t→ (Tx)(t) is continuous for any x ∈ C1([0, a],Rn) and
CDλ,α,Ψ

a (Tx)(t) = f(t, x(t)) is also continuous on [0, a]. This means that the
operator T is well-defined, i.e. T (U) ⊂ U. Now, we shall prove that the mapping
T satisfies the assumptions of the Schaefer’s fixed point theorem.

Claim I: The operator T is continuous.
Let {xn}∞n=1, xn ∈ X be a sequence converging to x ∈ U. Then

‖T (xn)− T (x)‖Ca =
1

Γ (α)
max
t∈[0,a]

∫ t

0

[Ψ(t)− Ψ(s)]α−1e−λ[Ψ(t)−Ψ(s)]Ψ ′(s)

× |f(s, xn(s))− f(s, x(s))|ds ≤ 1

Γ (α)

∫ t

0

[Ψ(t)− Ψ(s)]α−1e−λ[Ψ(t)−Ψ(s)]

× Ψ ′(s)ds
(

max
0≤τ≤a

|f(τ, xn(τ))−f(τ, x(τ))|
)

≤ 1

λαΓ (α)
‖f(., xn(.))− f(., x(.))‖Ca −→ 0 as n→∞,

because f is continuous.
Claim (II): The operator T maps bounded sets into bounded sets in U.
Let x ∈ Br = {y ∈ U : ‖y‖ ≤ r}. Then using the condition (5.5) we obtain

‖T (x)‖Ca ≤ r̃ :=
1

λα
[k0 + k1r] + |x0|.

Since the number r̃ is independent of t and x, that inequality means the map-
ping T is uniformly bounded.

Claim (III): T maps bounded sets into equicontinuous sets in U.
Let Br as in (II), x ∈ Br, t1, t2 ∈ [0, a], t1 < t2 and

KΨ = λ max
s∈[0,a]

(Ψ ′(s)e−λΨ(s)).

Then the mean value theorem implies that |e−λΨ(t2) − e−λΨ(t1)| ≤ KΨ |t2 − t1|
and we have

|T (x)(t2)− T (x)(t1)| ≤ |e−λΨ(t2) − e−λΨ(t1)||x0|

+
1

Γ (α)

∣∣∣ ∫ t2

0

[Ψ(t2)− Ψ(s)]α−1e−λ[Ψ(t2)−Ψ(s)]Ψ ′(s)f(s, x(s))ds

−
∫ t1

0

[Ψ(t1)− Ψ(s)]α−1e−λ[Ψ(t1)−Ψ(s)]Ψ ′(s)f(s, x(s))ds
∣∣∣

≤ KΨ |t2 − t1|+M/Γ (α)

×
∣∣∣∣ ∫ Ψ(t2)

0

σα−1e−λ[Ψ(t2)−Ψ(s)]Ψ ′(s)ds−
∫ Ψ(t1)

0

σα−1e−λ[Ψ(t1)−Ψ(s)]Ψ ′(s)ds

∣∣∣∣
= KΨ |t2 − t1|+

M

Γ (α)

∣∣∣∣ ∫ Ψ(t2)

0

σα−1e−λσdσ −
∫ Ψ(t1)

0

σα−1e−λσdσ

∣∣∣∣
= KΨ |t2 − t1|+

M

Γ (α)

∣∣∣∣ ∫ Ψ(t2)

Ψ(t1)

σα−1e−λσdσ

∣∣∣∣
= KΨ |t2 − t1|+

M

λαΓ (α)

∣∣∣∣ ∫ λΨ(t2)

λΨ(t1)

τα−1e−τdτ

∣∣∣∣.
Math. Model. Anal., 26(4):631–650, 2021.
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The right hand side of this inequality is independent of F and obviously it
converges to 0 as t2 → t1. Therefore, the set T (Br) is equicontinuous. As a
consequence of Claims (I)–(III) with the Arzela-Ascoli theorem, we can con-
clude that the operator T is completely continuous.

Claim IV: To conclude the proof, we shall show that the set

H := {y ∈ U : y = µT (y) for some µ ∈ (0, 1)}

is bounded. Let x ∈ H. Then using the condition (5.5), we have for t ∈ [0, a],

|x(t)| = µ|(Tx)(t)| ≤ |x0|

+
1

Γ (α)

(∫ t

0

[Ψ(t)− Ψ(s)]α−1e−λ[Ψ(t)−Ψ(s)]Ψ ′(s)ds

)(
k0 + k1|x(s)|

)
ds

≤ |x0|+
k0
Γ (α)

(∫ t

0

[Ψ(t)− Ψ(s)]α−1e−λ[Ψ(t)−Ψ(s)]Ψ ′(s)ds

)
ds

+
k1
Γ (α)

(∫ t

0

[Ψ(t)− Ψ(s)]α−1e−λ[Ψ(t)−Ψ(s)]Ψ ′(s)|x(s)|ds
)
ds

≤ A+
k1
Γ (α)

∫ t

0

[Ψ(t)− Ψ(s)]α−1e−λ[Ψ(t)−Ψ(s)]Ψ ′(s)|x(s)|ds,

where A = |x0|+ k0/λ
α. Hence, we have obtained the integral inequality

|x(t)| ≤ A+
k1
Γ (α)

∫ t

0

[Ψ(t)− Ψ(s)]α−1e−λ[Ψ(t)−Ψ(s)]Ψ ′(s)|x(s)|ds, t ∈ [0, a].

(5.6)
Choose a number p with the property 1 < p < 1

1−α . Since α ∈ (0, 1), 1
1−α > 1,

such a number p exists and it is clear that p(α− 1) + 1 > 0. Therefore we can
use the Corollary 1. Therefrom and from the Inequality (5.6) it follows that

|x(t)| ≤ K = CeD
k1Ψ(a)

Γ (α) <∞ ∀t ∈ [0, a],

where

C = 2
q−1
q A, D =

2q−1

q
Mq
p

(
k1
Γ (α)

)q
Ψ(a), q =

p

p− 1
,

Mp is the number from Theorem 2. Hence, we have that

‖x‖Ca = max
t∈[0,a]

|x(t)| ≤ K

and this proves that H is bounded. By the Schaefer’s fixed point theorem, the
operator T has at least one fixed point. ut

6 Application of the Picard’s method to tempered
Ψ−Caputo fractional differential equations

The method of successive approximations dates to the work of Picard’s [34]
and it has recently been applied also in the theory of fractional differential
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equations (see e.g. [22, 29, 31]). We apply this method in the following second
proof of Theorem 3.

Proof. Let a > 0, B > 0 and

G = {(t, y) ∈ R× Rn : 0 ≤ t ≤ a, |y − e−λΨ(t)x0| ≤ B ∀t ∈ [0, a]}.

Let
M = max

(t,x)∈G
|f(t, x)| and b = min{B, γ}, where γ = M/λα.

Define the sequence {xm}∞m=0, xm ∈ C0 := C([0, a],Rn), where

x0(t) = e−λΨ(t)x0 ∀t ∈ [0, a], xm+1(t) = e−λΨ(t)x0

+
1

Γ (α)

∫ t

0

[Ψ(t)− Ψ(s)]α−1e−λ[Ψ(t)−Ψ(s)]Ψ ′(s)f(s, xm(s))ds (6.1)

for m ≥ 0, t ∈ [0, a].
First, we need to prove that (t, xm(t)) ∈ G for all m ≥ 0 and for all t ∈ [0, a].

Obviously, (t, x0(t)) ∈ G∀t ∈ [0, a]. Let us estimate

|x1(t)−e−λΨ(t)x0| ≤
1

Γ (α)

∫ t

0

[Ψ(t)−Ψ(s)]α−1e−λ[Ψ(t)−Ψ(s)]Ψ ′(s)|f(s, x0(s))|ds

≤ M

Γ (α)

(∫ t

0

[Ψ(t)− Ψ(s)]α−1e−λ[Ψ(t)−Ψ(s)]Ψ ′(s)ds

)
ds

+
M

Γ (α)

(∫ Ψ(t)

0

σα−1e−λσ
)
dσ ≤ M

Γ (α)

∫ ∞
0

σα−1e−λσdσ

=
M

Γ (α)

(
γ(α)

λα

)
= γ =

M

λα
∀ t ∈ [0, a].

This means that (t, x1(t)) ∈ G∀ t ∈ [0, a]. By an easy induction, we have that
(t, xm(t)) ∈ G∀m ≥ 1, t ∈ [0, a].

Using the above inequality and the Lipschitz condition we obtain

|x2(t)− x1(t)| ≤ L

Γ (α)

∫ t

0

[Ψ(t)− Ψ(s)]α−1e−λ[Ψ(t)−Ψ(s)]Ψ ′(s)|x1(s)− x0(s)|ds

≤ ML

λαΓ (α)

∫ t

0

[Ψ(t)− Ψ(s)]α−1e−λ[Ψ(t)−Ψ(s)]Ψ ′(s)ds

=
ML

λαΓ (α)

∫ ψ(t)

0

σα−1e−λσdσ ≤ ML

λαΓ (α)

∫ ∞
0

σα−1e−λσdσ =
ML

(λα)2
∀t ∈ [0, a].

This yields the estimate

‖x2 − x1‖Ca ≤ML/(λα)2.

Using this inequality and the Lipschitz condition one can prove the inequality

‖x3 − x2‖Ca ≤ML2/(λα)3.

Math. Model. Anal., 26(4):631–650, 2021.
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Hence by the induction, the estimate

‖xm+1 − xm‖Ca ≤MLm/(λα)m+1

holds for all m ≥ 0. We assume that L
λα < 1. Therefore, if m > k then

‖xm − xk‖Ca ≤ ‖xm − xk‖Ca ≤ ‖xm − xm−1‖Ca + ‖xm−1 − xm−2‖Ca

+ · · ·+ ‖xk+1 − xk‖Ca ≤
M

L

( L
λα

)m
+
M

L

( L
λα

)m−1
+ · · ·+ M

L

( L
λα

)k+1

≤ M

L

(
L

λα

)k+1 ∞∑
i=0

(
L

λα

)i
=
M

L

(
L

λα

)k+1
1

1− L/λα
.

This yields that

lim
k→∞

‖xm − xk‖Ca = 0

and that means that {xm}∞m=0 is the Cauchy sequence. Since the space Ca is
complete, we obtain that there is a mapping x ∈ Ca such that limm→∞ xm = x.
The set G is closed and therefore (t, x(t)) ∈ G ∀ t ∈ [0, a]. Therefore we obtain
from (6.1) that x is a solution of the initial value problem (5.1)–(5.2). Now we
prove that this solution is unique.

Let u(t), v(t) for t ∈ [0, a] be two different solutions of the initial value
problem. Then

|u(t)− v(t)| ≤ 1

Γ (α)

∫ t

0

[Ψ(t)− Ψ(s)]α−1e−λ[Ψ(t)−Ψ(s)]Ψ ′(s)|u(s)− v(s)|ds

≤ L

Γ (α)

∫ t

0

[Ψ(t)− Ψ(s)]α−1e−λ[Ψ(t)−Ψ(s)]Ψ ′(s)ds‖u− v‖C0

≤ L

Γ (α)

∫ ∞
0

σα−1e−λσdσ‖u− v‖C0 =
L

λα
‖u− v‖Ca .

This yields the inequality

‖u− v‖Ca ≤
L

λα
‖u− v‖Ca .

Since γ = L
λα < 1, the inequality is valid if and only if u(t) = v(t)∀t ∈ [0, a].

The constant γ is independent of a and therefore the solution x(t) is global.
ut

7 Representation of solutions of linear systems of
Ψ−Caputo fractional differential equations

Consider the initial value problem

CDα,λ,Ψ
0 x(t) =Ax(t), x ∈ Rn, α ∈ (0, 1), (7.1)

x(0) =x0 ∈ Rn, (7.2)
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where A is a constant matrix, λ > 0. Consider also the initial value

CDα,Ψ
0 y(t) =Ax(t), y ∈ Rn, α ∈ (0, 1), (7.3)

y(0) =x0 ∈ Rn. (7.4)

We apply the Picard’s successive approximations to prove the following theo-
rem.

Theorem 6. The following assertions hold:

1. The solution of the initial-value problem (7.3)–(7.4) is given by the for-
mula

y(t) = Eα(A[Ψ(t)− Ψ(0)]α)x0, (7.5)

where Eα(A) = Eα,1(A),

Eα,β(A) =

∞∑
i=0

Ai

Γ (iα+ β)
, α > 0, β > 0

is the Mittag-Leffler matrix-valued function with two parameters.

2. The solution x(t) of the initial-value problem (7.1)–(7.2) is given by the
formula

x(t) = e−λΨ(t)Eα(A[Ψ(t)− Ψ(0)]α)x0. (7.6)

Proof. Let us prove the first assertion. From Definition 4 and the second
assertion of Lemma 1 it follows that the initial-value problem (7.3)–(7.4) is
equivalent to the integral equation

y(t) = x0 +
1

Γ (α)

∫ t

0

[Ψ(t)− Ψ(s)]α−1Ψ ′(s)Ay(s)ds. (7.7)

We apply the Picard’s successive approximations to find a solution of the Equa-
tion (7.7). One can show by the method of induction (see also the proof of [1,
Theorem 2]) that these approximations are defined as follows:

y0(t) = x0, ym(t) =

m∑
i=0

Ai[Ψ(t)− Ψ(0)]iα

Γ (iα+ 1)
x0, m ≥ 1.

From the second proof of Theorem 3 it follows that the sequence {ym(t)}∞m=0

is uniformly convergent on an arbitrary compact interval [0, a], a > 0 to a
continuous function y(t), which is the unique solution of the Equation (7.7).
Hence, the formula for the solution of the initial-value problem (7.3)– (7.4) has
the form

y(t) =

∞∑
i=0

Ai[Ψ(t)− Ψ(0)]iα

Γ (iα+ 1)
x0 = Eα(A[Ψ(t)− Ψ(0)]α)x0.

Now, let us prove the second assertion. Let x(t) be a solution of the problem
(7.1)–(7.2). From the equality (3.1) it follows that

CDα,λ,Ψ
0 x(t) = e−λΨ(t) CDα,Ψ

0

(
eλΨ(t)x(t)

)
= Ax(t)

Math. Model. Anal., 26(4):631–650, 2021.
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and hence
CDα,Ψ

0

(
eλΨ(t)x(t)

)
= A

(
eλΨ(t)x(t)

)
.

This means that y(t) = eλΨ(t)x(t) is a solution of the problem (7.3)–(7.4). From
the first assertion it follows that y(t) has the form (7.5) and hence x(t) is given
by the formula (7.6). ut

8 Example

Consider the following initial-valued problem for the tempered Ψ−Caputo frac-
tional differential equation with Ψ(t) = ωt, ω > 0:

CDα,λ,ωt
0 x(t) =Ax(t), t > 0, α ∈ (0, 1), (8.1)

x(0) =x0 ∈ Rn, (8.2)

where A is a constant matrix, λ > 0. By the Theorem 6 the solution x(t) of
the problem (8.1)–(8.2) has the form

x(t) = e−(λω)tEα
(
A[ωαtα]

)
x0 = e−λωtEα

(
(ωαA)[tα]

)
x0.

We have obtained that x(t) is a solution of the (λω)−tempered Caputo frac-
tional initial value problem

CDα,λω
0 x(t) =(ωαA)x(t), t > 0, α ∈ (0, 1),

x(0) =x0 ∈ Rn,

defined in the paper [23] (see also [12] and [32]).

9 Conclusions and a future work

In the present paper, we proposed a new type of fractional derivative, which
we call the tempered Ψ−Caputo fractional derivative. We obtained some exis-
tence and uniqueness results for differential equations involving this fractional
derivative. The proof of the existence theorem is based on an application of the
Schaefer’s fixed point theorem. In the proof of the existence and uniqueness the-
orem Picard’s successive approximation method was used. The uniqueness of
solutions is proved by applying a new integral inequality of the Henry-Gronwall
type for integral inequality with tempered Ψ−fractional integral. Its proof is
based on a desingularization method, introduced by the first author in the pa-
pers [26] and [27]. Applying this method we obtained an exponential estimate,
very useful for applications, mainly in the stability theory for this new type
of fractional differential equations. In our opinion, there are many possibili-
ties for applications of the new fractional derivative. The estimates derived in
the proofs show that this derivative has very good properties, suitable for the
study of asymptotic properties of solutions of the new fractional differential
equations, including their stability.

Problems concerning fractional differential equations with Ψ−Caputo and
Ψ−Hilfer derivatives, studied in the papers mentioned in introduction, can
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be studied also with tempered Ψ−Caputo and Ψ−Hilfer derivatives, respec-
tively. The aim of our future work is to study stability properties of tem-
pered Ψ−fractional differential equations with delays. In this context, the
Katugampola-type fractional differential equations could be interesting (see [18]
and [17]).
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