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Abstract. The present paper deals with positive linear operators which fix two
functions. The transfer of a given sequence (Ln) of positive linear operators to a new
sequence (Kn) is investigated. A general procedure to construct sequences of positive
linear operators fixing two functions which form an Extended Complete Chebyshev
system is described. The Voronovskaya type formula corresponding to the new se-
quence which is strongly influenced by the nature of the fixed functions is obtained.
In the last section our results are compared with other results existing in literature.
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1 Introduction

Let I ⊆ R be an interval and C(I) the space of all continuous, real-valued
functions defined on I. Let Ln : D → C(I), n ≥ 1, be a sequence of positive
linear operators, where D is a linear subspace of C(I). In many situations, the
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sequence (Ln)n≥1 satisfies a Voronovskaya type formula, i.e.,

lim
n→∞

n (Ln(f ;x)− f(x)) =

(
a(x)

d2

dx2
+ b(x)

d

dx
+ c(x)

)
f(x),

where f ∈ D ∩ C2(I), x ∈ I.
Such formulas are essential tools in approximation by positive linear oper-

ators. They are used to describe the rates of convergence and the saturation
class. The iterates of certain positive linear operators can be used in order
to approximate C0-semigroups of operators; in this case the Voronovskaya op-
erator and the infinitesimal generator of the semigroup are strongly related
(see [11,12]).

Usually one uses operators which preserve the constant functions; then
c(x) = 0, x ∈ I. If, in addition, Lnv = v, n ≥ 1, for a non-constant func-
tion v ∈ C2(I), then a(x) and b(x) are related by a(x)v′′(x) + b(x)v′(x) = 0,
x ∈ I.

In the last years, several papers were published, dealing with positive linear
operators which fix two functions. A starting point was the paper [27] writ-
ten by P.J. King who constructed positive linear operators on C[0, 1] fixing
the constant function 1 and the function x2. Many generalizations followed,
dealing with operators fixing 1 and a given function τ ; see Section 6. Recently,
operators fixing two exponential functions were constructed: see [2,3,4,7,14,23].

The aim of our paper is twofold. On one hand, we investigate the transfer
of a given sequence (Ln) of positive linear operators from an interval I to
another interval J , and describe the Voronovskaya type formula corresponding
to the new sequence (Kn). The properties of (Kn) inherited from (Ln), are
also considered, as well as the inverse transfer from (Kn) to (Ln).

On the other hand, we propose a general procedure to construct sequences of
positive linear operators fixing two functions which form an Extended Complete
Chebyshev system. As mentioned above, the structure of the Voronovskaya
operator is strongly influenced by the nature of the fixed functions. In a certain
sense, the quality of the approximation offered by (Ln) can be expressed in
terms of the corresponding Voronovskaya operator. We compare our results,
from this point of view, with other results existing in the literature.

The basic definitions (in particular, the transfer of operators) are presented
at the end of this section. Section 2 is devoted to the inverse transfer and
the inherited properties. The Voronovskaya formula for the new operators is
established in Section 3. Operators An fixing two functions are constructed in
Section 4. In Section 5, the convexity with respect to these two functions is
characterized in terms of the operators An and in terms of their Voronovskaya
operator. Section 6 is devoted to examples and applications illustrating our
general results and surveying some previous results existing in the literature.

We use notations usual in approximation theory by positive linear operators.
As far as the domains of operators are concerned, we consider the maximal ones,
i.e., we let the operators to act on the functions for which the involved series or
integrals are convergent. We end this section with some basic definitions and
notations.
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Let I and J be intervals and D ⊆ C(I) a linear subspace containing the
polynomial functions. By a slight abuse of notation we denote by ei, i =
0, 1, . . . , the function ei(t) = ti defined either on I or on J .

Let Ln : D → C(I), n ≥ 1, be positive linear operators such that

Lne0 = e0, n ≥ 1. (1.1)

Consider two continuous functions, u : I → J , v : J → I, such that

u(v(t)) = t, t ∈ J. (1.2)

Then v is injective, hence strictly monotone on J .
Let D1 := {g ∈ C(J) : g ◦ u ∈ D}. Consider the operators Kn : D1 →

C(J),

Kn(g; t) := Ln(g ◦ u; v(t)), g ∈ D1, t ∈ J. (1.3)

By using (1.1) and (1.2), we see that

i) Kne0 = e0, n ≥ 1,

ii) If lim
n→∞

Ln(f ;x) = f(x), f ∈ D, x ∈ I, then

lim
n→∞

Kn(g; t) = g(t), g ∈ D1, t ∈ J.

2 Inverse transfer, iterates, commutativity

With notation from the preceding section, let H := {h ∈ D : h ◦ v ◦ u = h}.

Theorem 1. Suppose that Ln(H) ⊂ H, n ≥ 1. Then

i) Lnh = (Kn(h ◦ v)) ◦ u, h ∈ H.

ii) Kk
ng =

(
Lkn(g ◦ u)

)
◦ v, g ∈ D1, k ∈ N.

iii) If LnLm = LmLn on H, then KnKm = KmKn on D1.

Proof. i) Let h ∈ H, x ∈ I. Then Lnh ∈ H, hence Lnh = (Lnh) ◦ v ◦ u. Now
we have

Lnh(x) = (Lnh) (v(u(x)) = (Ln(h ◦ v ◦ u)) (v(u(x))) = Kn (h ◦ v) (u(x)),

and this proves i).
ii) Let us prove that

g ◦ u ∈ H, for all g ∈ D1. (2.1)

Indeed, if g ∈ D1, then g ◦ u ∈ D. Moreover, u ◦ v is the identity function on
J , so that g ◦u = (g ◦u) ◦ v ◦u, which proves (2.1). Since Ln(H) ⊂ H, we have
also from (2.1):

Lkn(g ◦ u) ∈ H, for all g ∈ D1, k ∈ N. (2.2)

Math. Model. Anal., 26(3):395–410, 2021.
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For k = 1, ii) is obviously true. Suppose that ii) is true for a certain k. Then,
for g ∈ D1,

Kk+1
n g = Kn

(
Kk
ng
)

= Kn

(
Lkn(g ◦ u) ◦ v

)
=
(
Ln
((
Lkn(g ◦ u) ◦ v

)
◦ u
))
◦ v.

According to (2.2), Lkn(g ◦ u) ◦ v ◦ u = Lkn(g ◦ u), so that

Kk+1
n g = Ln

(
Lkn(g ◦ u)

)
◦ v =

(
Lk+1
n (g ◦ u)

)
◦ v.

This induction argument proves ii).
iii) Suppose that LnLm = LmLn on H. Let g ∈ D1. Then

KnKmg = (Ln ((Kmg) ◦ u)) ◦ v = (Ln (((Lm(g ◦ u)) ◦ v)) ◦ u) ◦ v.

Using again (2.2) we see that Lm(g ◦ u) = (Lm(g ◦ u)) ◦ v ◦ u, which leads to

KnKmg = (Ln(Lm(g ◦ u))) ◦ v = (LnLm(g ◦ u)) ◦ v. (2.3)

Similarly,
KmKng = (LmLn(g ◦ u)) ◦ v. (2.4)

From (2.3) and (2.4) we infer that KnKmg = KmKng, g ∈ D1. ut

3 Transfer of Voronovskaya formula

In addition to the preceding hypotheses, in this section we suppose that u ∈
C2(I), v ∈ C2(J), and the sequence (Ln) satisfies the following Voronovskaya
type formula:

lim
n→∞

n (Ln(f ;x)− f(x)) = α(x)f ′′(x) + β(x)f ′(x), (3.1)

for all x ∈ I and f ∈ D ∩ C2(I), where α, β ∈ C(I) are two given functions.

Theorem 2. If g ∈ C2(J) and t ∈ J , such that g ◦ u ∈ D and v′(t) 6= 0, then

lim
n→∞

n (Kn(g; t)− g(t)) =
α(v(t))

v′(t)

(
g′

v′

)′
(t) + β(v(t))

(
g′

v′

)
(t). (3.2)

Proof. Combining (1.3) and (3.1), we get

lim
n→∞

n (Kn(g; t)− g(t)) = lim
n→∞

n (Ln(g ◦ u; v(t))− (g ◦ u)(v(t)))

= α(v(t))(g ◦ u)′′(v(t)) + β(v(t))(g ◦ u)′(v(t)). (3.3)

Recall that u(v(t)) = t, t ∈ J ; this implies u′(v(t)) = 1
v′(t) , and from

(g ◦ u)′(v(t)) = g′(u(v(t)))u′(v(t)), (3.4)

we obtain
(g ◦ u)′(v(t)) = g′(t)/v′(t). (3.5)
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Furthermore, (3.4) leads to

(g ◦ u)′′(v(t)) = g′′(u(v(t))) (u′(v(t)))
2

+ g′(u(v(t)))u′′(v(t))

= g′′(t)
1

(v′(t))2
+ g′(t)u′′(v(t)). (3.6)

Using again u′(v(t))v′(t) = 1 we get u′′(v(t))(v′(t))2 + u′(v(t))v′′(t) = 0, i.e.,

u′′(v(t)) = −v′′(t)/(v′(t))3. (3.7)

Now (3.6) and (3.7) yield

(g ◦ u)′′(v(t)) =
g′′(t)

(v′(t))2
− g′(t)

(v′(t))3
v′′(t) =

1

v′(t)

(
g′

v′

)′
(t). (3.8)

From (3.3), (3.5) and (3.8) we get (3.2), and this concludes the proof. ut

4 Operators fixing two functions

Let {u0, u1} be an ECT-system on [a, b] (see [26, Chapter 11]). Then, according
to [26, Theorem 11.1.2],

u0(t) = w0(t), u1(t) = w0(t)

∫ t

a

w1(s)ds, t ∈ [a, b],

for some strictly positive functions w0 ∈ C1[a, b], w1 ∈ C[a, b].
In this section we are concerned with positive linear operators fixing the

two-dimensional linear subspace generated by an ECT-system. More precisely,
consider the following setting. Let I be an interval, τ, γ ∈ C(I), γ : I → I
bijective, τ(x) > 0, x ∈ I. Let Ln : D → C(I), n ≥ 1, be positive linear
operators, where D is a linear subspace of C(I) containing the polynomial
functions. Suppose that

Lne0 = e0, Lne1 = e1, n ≥ 1. (4.1)

Let D2 :=
{
f ∈ C(I) : f

τ ◦ γ
−1 ∈ D

}
. Consider the positive linear operators

An : D2 → C(I),

An(f ;x) = τ(x)Ln

(
f

τ
◦ γ−1; γ(x)

)
, f ∈ D2, x ∈ I. (4.2)

Then we have
Anτ = τ, An(γτ) = γτ, n ≥ 1. (4.3)

Remark 1. Suppose that I = [a, b], γ ∈ C1(I), γ′(x) > 0, x ∈ I. Take w0 = τ ,
w1 = γ′. Then u0 = τ , u1 = τ(γ − γ(a)), and therefore {τ, τ(γ − γ(a))} is
an ECT-system. The linear subspace generated by it is the same as the linear
subspace generated by {τ, γτ}.

Math. Model. Anal., 26(3):395–410, 2021.
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In order to present the Voronovskaya formula for the sequence (An) we need
some additional hypotheses. In fact, we suppose that

τ, γ ∈ C2(I), γ−1 ∈ C2(I), (4.4)

τ(x) > 0, γ′(x) > 0, x ∈ I. (4.5)

Moreover, assume that

lim
n→∞

n(Ln(h;x)− h(x)) = α(x)h′′(x), x ∈ I, for all h ∈ D ∩ C2(I). (4.6)

Remark 2. Due to (4.1), we have Lnf ≥ f for all convex functions f ∈ D. In
particular, Lne2 ≥ e2, and (4.6) leads to

α(x) ≥ 0, x ∈ I. (4.7)

Theorem 3. Under the above assumptions, if f ∈ D2 ∩C2(I) and x ∈ I, then

lim
n→∞

n (An(f ;x)− f(x)) = τ(x)
α(γ(x))

γ′(x)

(
(f/τ)′

γ′

)′
(x). (4.8)

Proof. Choosing g =
f

τ
, u = γ−1, v = γ, and using (1.3), (4.2), we get

An(f ;x) = τ(x)Ln

(
f

τ
◦ γ−1; γ(x)

)
= τ(x)Kn(g;x).

Due to (4.6), we can apply Theorem 2 with β = 0. It follows that

lim
n→∞

n(An(f ;x)− f(x)) = lim
n→∞

n

(
τ(x)Kn

(
f

τ
;x

)
− f(x)

)
= τ(x) lim

n→∞
n

(
Kn

(
f

τ
;x

)
− f

τ
(x)

)
= τ(x)

α(γ(x))

γ′(x)

(
(f/τ)

′

γ′

)′
(x),

and the proof is finished. ut

5 Convex functions with respect to {τ, γτ}

Suppose that τ and γ satisfy (4.4) and (4.5). A function f ∈ C2(I) is called
convex with respect to {τ, γτ} if

∆f :=

∣∣∣∣∣∣
f f ′ f ′′

τ τ ′ τ ′′

γτ (γτ)′ (γτ)′′

∣∣∣∣∣∣ ≥ 0 on I.

On the other hand, consider the differential operator

Af(x) :=
d

dx

(
1

γ′(x)

d

dx

f(x)

τ(x)

)
.



Voronovskaya Type Result 401

It is easy to verify that

Af =
1

τ3γ′2
∆f

=
1

τ3γ′2

(
τ2γ′f ′′ − (τ2γ′′ + 2ττ ′γ′)f ′ +

(
ττ ′γ′′ + 2τ ′

2
γ′ − τγ′τ ′′

)
f
)
.

Consequently, we have

Proposition 1. f ∈ C2(I) is convex with respect to {τ, γτ} if and only if
Af ≥ 0 on I.

Moreover, Theorem 2 shows that if f ∈ D2 ∩ C2(I) and x ∈ I, then

lim
n→∞

n (An(f ;x)− f(x)) = τ(x)
α(γ(x))

γ′(x)
Af(x). (5.1)

According to (4.7), α(x) ≥ 0, x ∈ I. Suppose that this inequality is strict at
each interior point of I. Now we can prove

Theorem 4. f ∈ C2(I) ∩ D2 is convex with respect to {τ, γτ} iff Anf ≥ f ,
n ≥ 1.

Proof. (5.1) shows that if Anf ≥ f on I, then Af ≥ 0, and so f is convex
with respect to {τ, γτ}. Conversely, suppose that Af(x) ≥ 0, x ∈ I. Let

ϕ(t, x) := τ(t)(γ(t)− γ(x)), t, x ∈ I.

Since γ is strictly increasing on I, we have ϕ(t, x) > 0 if t > x, and ϕ(t, x) < 0
if t < x.

Let a ∈ I. The above inequalities show that∫ t

a

ϕ(t, x)Af(x)dx ≥ 0, t ∈ I. (5.2)

On the other hand,∫ t

a

ϕ(t, x)Af(x)dx = τ(t)

∫ t

a

(γ(t)− γ(x))
d

dx

(
1

γ′(x)

d

dx

f(x)

τ(x)

)
dx

= τ(t)

(
(γ(t)− γ(x))

1

γ′(x)

d

dx

f(x)

τ(x)

)∣∣∣∣x=t
x=a

+ τ(t)

∫ t

a

(
d

dx

f(x)

τ(x)

)
dx

= −τ(t)

(
(γ(t)− γ(a))

1

γ′(a)

(
f

τ

)′
(a)

)
+ τ(t)

(
f(t)

τ(t)
− f(a)

τ(a)

)
= f(t)− f(a)

τ(a)
τ(t)− 1

γ′(a)

(
f

τ

)′
(a)τ(t)(γ(t)− γ(a)).

Combined with (5.2), this yields

f ≥ f(a)

τ(a)
τ +

1

γ′(a)

(
f

τ

)′
(a)(γτ − γ(a)τ).

Math. Model. Anal., 26(3):395–410, 2021.
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Now using (4.3), we get

Anf ≥
f(a)

τ(a)
τ +

1

γ′(a)

(
f

τ

)′
(a)(γτ − γ(a)τ), n ≥ 1.

In particular, Anf(a) ≥ f(a), n ≥ 1, for each a ∈ I. This means that Anf ≥ f ,
and the proof is complete. ut

Remark 3. i) Let p be a polynomial function. Then

An ((p ◦ γ)τ ;x) = τ(x)Ln (p; γ(x)) ,

and in many cases we can compute Ln(p; ·).
ii) Denote ϕn := Lne2 − e2. Then |Ln(f ;x) − f(x)| ≤ Ψn(x)ω(f ;

√
ϕn(x)) for

a suitable function Ψn(x). Consequently,

|An(f ;x)− f(x)| ≤ τ(x)Ψn(x)ω

(
f

τ
◦ γ−1;

√
ϕn(x)

)
.

iii) If f ∈ D2 and
f

τ
◦ γ−1 is convex, then

Ln

(
f

τ
◦ γ−1; γ(x)

)
≥
(
f

τ
◦ γ−1

)
(γ(x)) ,

and consequently An(f ;x) ≥ f(x), x ∈ I.

6 Examples and applications

In this section we present some examples illustrating the preceding general
results.

Example 1. Consider the intervals I = [0, 1), J = [0,∞), and the functions
u : [0, 1) → [0,∞), u(x) = x

1−x ; v : [0,∞) → [0, 1), v(t) = t
1+t . They satisfy

the condition (1.2).

Let Ln : C[0, 1]→ C[0, 1],

Ln(f ;x) =

 (1− x)n+1

∞∑
k=0

(
n+ k

k

)
xkf

(
k

n+ k

)
, x ∈ [0, 1),

f(1), x = 1,

be the Meyer-König and Zeller operators (see [11, 28]). It is well known that
Lne0 = e0 and Lne1 = e1.

In this context the operators Kn introduced by (1.3) are described as

Kn(g; t) =
1

(1 + t)n+1

∞∑
k=0

(
n+ k

k

)
tk

(1 + t)k
g

(
k

n

)
, g ∈ D1, t ∈ [0,+∞),

(6.1)
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where D1 :=
{
g ∈ C[0,∞)| ∃ g(∞) := lim

t→∞
g(t) ∈ R

}
. The Voronovskaya

operator for the sequence (Ln) is x(1−x)2
2

d2

dx2 (see [33]). According to Theorem

3.1, the Voronovskaya operator for (Kn) is t(1+t)
2

d2

dt2 + t ddt .
As mentioned above, condition (4.1) is satisfied. Choosing in Section 4

τ = e0 and γ = v, we have γ−1 = u. Consequently, the operators Kn can be
described as in (4.2), and we see that they fix the functions e0 and v (see (4.3)).

Concerning the asymptotic behavior of the iterates of Ln, it is known (see
[34]) that

lim
k→∞

Lkn(f ;x) = (1− x)f(0) + xf(1), f ∈ C[0, 1] (6.2)

uniformly for x ∈ [0, 1]. According to Theorem 1 (ii),

lim
k→∞

Kk
n(g; t) = lim

k→∞
Lkn(g ◦ u; v(t))

= (1− v(t))g(u(0)) + v(t)g(u(1)) =
1

1 + t
(g(0) + tg(∞)) (6.3)

uniformly for t ∈ [0,∞).

Remark 4. The operators Kn given by (6.1) should be compared with the clas-
sical Baskakov operators

Hn(g; t) :=
1

(1 + t)n

∞∑
k=0

(
n+ k − 1

k

)
tk

(1 + t)k
g

(
k

n

)
, t ≥ 0.

These operators fix the functions e0 and e1. A way to represent the MKZ oper-
ators in terms of Baskakov operators can be found in [9]. The MKZ operators
Ln can be represented in terms of the operators Kn defined by (6.1) if we use
Theorem 1 (i).

Starting with the Baskakov operators Hn, let us construct the operators
K̃n(f ;x) := Hn(f ◦ v;u(x)). Then

K̃n(f ;x) = (1− x)n
∞∑
k=0

(
n+ k − 1

k

)
xkf

(
k

n+ k

)
, x ∈ [0, 1)

with Voronovskaya operator x(1−x)2
2

d2

dx2 −x(1−x) d
dx . They fix the functions e0

and u.

Example 2. Let Ln be the classical Bernstein operators on C[0, 1], i.e.,

Ln(f ;x) =

n∑
k=0

(
n

k

)
xk(1− x)n−kf

(
k

n

)
, f ∈ C[0, 1], x ∈ [0, 1]. (6.4)

With I, J, u, v,D1 as in Example 1, the corresponding operators Kn will be

Kn(f ; t) =

n∑
k=0

(
n

k

)
tk

(1 + t)n
g

(
k

n− k

)
, g ∈ D1, t ≥ 0. (6.5)

In the above sum, the last value of g is g(∞).

Math. Model. Anal., 26(3):395–410, 2021.
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The Voronovskaya operator for the Bernstein operators is x(1−x)
2

d2

dx2 . The-
orem 2 shows that the corresponding Voronovskaya operator for the sequence

(Kn)n≥1 is t(1+t)2

2
d2

dt2 + t(1 + t) ddt .
The operators Kn fix the functions e0 and v. The asymptotic behavior of

the iterates of Ln from (6.4), respectively Kn from (6.5) is the same as in (6.2),
(6.3).

Remark 5. The operators Kn from (6.5) should be compared with the classical
Bleimann-Butzer-Hahn operators

Gn(g; t) =

n∑
k=0

(
n

k

)
tk

(1 + t)n
g

(
k

n− k + 1

)
, g ∈ C[0,∞), t ≥ 0.

A representation of the BBH operators in terms of the Bernstein operators can
be found in [9]. Starting with the BBH operators Gn, let us construct the
operators K̃n(f ;x) := Gn(f ◦ v;u(x)). Then

K̃n(f ;x) =

n∑
k=0

(
n

k

)
xk(1− x)n−kf

(
k

n+ 1

)
, f ∈ C[0, 1], x ∈ [0, 1]

with Voronovskaya operator x(1−x)
2

d2

dx2 − x d
dx . They fix e0 and u.

Example 3. Consider the Baskakov-Durrmeyer operators

Ln(f ;x) = n

∞∑
k=0

(
n+ k

k

)2
xk

(1 + x)n+k+1

∫ ∞
0

tkf(t)

(1 + t)n+k+1
dt, x ≥ 0.

For details, see [24, p.13, (2.15)] with c = 1. With u : [0,∞) → [0, 1), u(x) =
x

1+x , and v : [0, 1)→ [0,+∞), v(t) = t
1−t , we get

Kn(g; t) = n(1− t)n+1
∞∑
k=0

(
n+ k

k

)2

tk
∫ 1

0

sk(1− s)n−1g(s)ds.

It is known that LnLm = LmLn, m,n ≥ 1 (see [24, p.14]). Since (v◦u)(x) = x,
we can apply Theorem 1 (iii) to conclude that KnKm = KmKn, m,n ≥ 1.

Example 4. Let Ln : C2π[−π, π] → C2π[−π, π] be the De la Vallée Poussin
operators, i.e.,

Ln(f ;x) =
1

2π

(n!)2

(2n)!
4n
∫ π

−π
f(s)

(
cos

x− s
2

)2n

ds, f ∈ C2π[−π, π].

With u : [−π, π] → [0, 1], u(x) = sin2 x

2
, and v : [0, 1] → [−π, π], v(t) =

arccos(1− 2t), the operators Kn defined by (1.3) are the Durrmeyer operators

with Chebyshev weight w(t) = t−
1
2 (1 − t)−

1
2 , i.e., Kn : C[0, 1] → C[0, 1],

(see [20])

Kn(g; t) =

n∑
j=0

(
n

j

)
tj(1− t)n−j

∫ 1

0
sj−

1
2 (1− s)n−j− 1

2 g(s)ds∫ 1

0
sj−

1
2 (1− s)n−j− 1

2 ds
.
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It is elementary to prove that

H := {h ∈ C2π[−π, π]|h ◦ v ◦ u = h} = {h ∈ C2π[−π, π]|h is even} ,

and Ln(H) ⊂ H. Moreover, LnLm = LmLn on H. Therefore, all the conclu-
sions i), ii), iii) of Theorem 1 are valid in this context. For details and several
applications, see [8, Section 5].

Example 5. Let Ln : D → C(R), Ln = W 1
4n
f , f ∈ D, where

Wt(f ;x) :=
1√
4πt

∫
R
f(s+ x)e−

s2

4t ds, t > 0, x ∈ R

are the Weierstrass operators (see [11]). The domain D of Ln contains, in
particular, the bounded continuous functions and the polynomial functions
defined on R.

Let u : R→ [0, 1], u(x) = sin2 x, and v : [0, 1]→ R, v(t) = arcsin
√
t. Then

the operators Kn : C[0, 1]→ C[0, 1] defined by (1.3) are described as follows:

Kn(g; t) =

√
n

π

∫
R
g
(

sin2(s+ arcsin
√
t)
)
e−ns

2

ds, g ∈ C[0, 1], t ∈ [0, 1].

These operators Kn were studied in [13, p.23].
Using [11, Section 5.2.9] we find that

lim
t→0

1

t
(Wt(f ;x)− f(x)) = f ′′(x), x ∈ R, f ∈ D ∩ C2(R).

Therefore,

lim
n→∞

n (Ln(f ;x)− f(x)) =
1

4
f ′′(x), x ∈ R, f ∈ D ∩ C2(R).

Now Theorem 2 can be applied with α(x) = 1
4 , β(x) = 0, yielding

lim
n→∞

n (Kn(g; t)− g(t)) = t(1− t)g′′(t) +

(
1

2
− t
)
g′(t), g ∈ C2[0, 1], t ∈ [0, 1].

This result was obtained with different methods in [13, p.23].
It is elementary to prove that

H := {h ∈ C(R)|h ◦ v ◦ u = h} = {h ∈ Cπ(R)|h is even} ,

and Ln(H) ⊂ H. Moreover, LnLm = LmLn on H, m,n ≥ 1. Consequently, all
the conclusions i), ii), iii) of Theorem 1 are valid in this setting.

Remark 6. Consider two sequences of positive linear operators (Un,j)n≥1 , j =
1, 2, on the same interval I. Suppose that they fix the same two functions
w1, w2:

Un,jwi = wi, n ≥ 1, i, j = 1, 2. (6.6)

Math. Model. Anal., 26(3):395–410, 2021.
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Moreover, suppose that each sequence satisfies a Voronovskaya type formula.
Due to (6.6), these formulas are of the form

lim
n→∞

n (Un,jf(x)− f(x)) = ωj(x)

(
d2

dx2
+ p(x)

d

dx
+ q(x)

)
f(x),

where the functions p(x) and q(x) satisfy the system

w′′i (x) + p(x)w′i(x) + q(x)wi(x) = 0, i = 1, 2.

Thus we have

lim
n→∞

n |Un,jf(x)− f(x)| = |ωj(x)|
∣∣∣∣( d2

dx2
+ p(x)

d

dx
+ q(x)

)
f(x)

∣∣∣∣ .
So, in this sense, if on a certain subinterval I0 we have |ω1(x)| ≤ |ω2(x)|, x ∈ I0,
then the quality of the approximation on I0 offered by (Un,1)n≥1 is better than
offered by (Un,2)n≥1.

Example 6. Consider the operators (Pn) on [0,∞) constructed in [23]. They
preserve the functions eax and ebx; the corresponding Voronovskaya operator
is (see [23, (11), p.5080]):

x

(
d2

dx2
− (a+ b)

d

dx
+ ab

)
.

Let a < b, τ(x) := eax, γ(x) := e(b−a)x, x ≥ 0. Taking the Szász-Mirakyan
operators in the role of Ln, let us construct the operators An as in (4.2). They
fix the same functions eax = τ(x), ebx = γ(x)τ(x); see (4.3). The Voronovskaya
operator (see (4.8)) is

e(a−b)x

2(b− a)2

(
d2

dx2
− (a+ b)

d

dx
+ ab

)
.

So, we have to compare the functions ω1(x) = x and ω2(x) = 1
2(b−a)2 e

(a−b)x,

x ∈ [0,∞). It is easy to see that there exists x0 ∈ (0,∞) such that ω2(x) >
ω1(x) for x < x0, and ω2(x) < ω1(x) for x > x0. Moreover, lim

x→∞
ω1(x) =

∞ and lim
x→∞

ω2(x) = 0. We conclude that, in the sense of Remark 6, the

approximation offered by (An)n≥1 on (x0,∞) is better than that offered by
(Pn)n≥1.

Example 7. P.J. King (see [27]) constructed a sequence of positive linear oper-
ators on C[0,1] fixing e0 and e2. The coresponding Voronovskaya operator was
described in [22]; it is

x(1− x)

2

d2

dx2
− 1− x

2

d

dx
.

Example 8. In order to generalize the preceding example, let τ ∈ C[0, 1] be
strictly increasing, τ(0) = 0, τ(1) = 1, and let Bn be the classical Bernstein
operators on C[0, 1]. Then the operators Vn : C[0, 1]→ C[0, 1],

Vnf := (Bnf) ◦ (Bnτ)−1 ◦ τ, f ∈ C[0, 1]
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fix the functions e0 and τ . Moreover, if τ ∈ C2[0, 1] and τ ′(x) > 0, x ∈ [0, 1],
then the Voronovskaya operator is

x(1− x)

2

(
d2

dx2
− τ ′′(x)

τ ′(x)

d

dx

)
.

For details and other applications, see [22].

Example 9. Another generalization of Example 7 can be found in [10]. The
authors of that article constructed a sequence of positive linear operators on
C[0, 1] fixing e0 and ej , for a fixed integer j ≥ 1. It was conjectured in [18]
that the corresponding Voronovskaya operator is

x(1− x)

2

d2

dx2
− (j − 1)

1− x
2

d

dx
.

This conjecture was validated by M. Birou [15].

Example 10. Another sequence of positive linear operators fixing e0 and ej was
introduced in [16]. It has the Voronovskaya operator

x(1− x)
d2

dx2
− (j − 1)(1− x)

d

dx
.

Example 11. Let again τ ∈ C2[0, 1], τ(0) = 0, τ(1) = 1, τ ′(x) > 0, x ∈ [0, 1],
and let Bn be the Bernstein operators on C[0, 1]. The operators Bτn : C[0, 1]→
C[0, 1],

Bτnf :=
(
Bn(f ◦ τ−1)

)
◦ τ, f ∈ C[0, 1] (6.7)

were considered in [17].

They fix e0 and τ . It was proved there that the associated Voronovskaya
operator is

τ(1− τ)

2

(
1

τ ′2
d2

dx2
− 1

τ ′3
d

dx

)
.

Clearly, the sequence (Bτn)n≥1 is a particular case of the sequence (Kn)n≥1
from (1.3). If we take τ = ej on (0, 1], we get the operator

x1−j(1− xj)
2j2

(
x
d2

dx2
− (j − 1)

d

dx

)
,

which should be compared in the sense of Remark 6 with the operator from
Example 9, i.e.,

1− x
2

(
x
d2

dx2
− (j − 1)

d

dx

)
.

More precisely, we have to solve the inequation

x1−j(1− xj)
2j2

≤ 1− x
2

, with x ∈ (0, 1]. (6.8)

It is easy to see that there exists xj ∈ (0, 1) such that (6.8) is satisfied if and
only if x ∈ [xj , 1].

Math. Model. Anal., 26(3):395–410, 2021.
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Example 12. Consider the operators defined in (6.7) with τ(x) =
√
x, i.e.,

Bn(f(t2);
√
x). They were investigated in [19]. As in Example 11, we find

that the Voronovskaya operator is

2x
√
x(1−

√
x)

d2

dx2
+
√
x(1−

√
x)

d

dx
.

Clearly, these operators fix e0 and τ(x) =
√
x.

Example 13. The operators Bn
(
f(
√
t);x2

)
were used in [17] in order to solve a

problem raised in [21]. They fix e0 and e2, and have the Voronovskaya operator

1− x2

8

(
d2

dx2
− 1

x

d

dx

)
.

Example 14. If in Section 4 we take γ = τ , we get operators fixing τ and τ2.
Such operators were constructed also in [4].

Example 15. Operators fixing eax and e2ax, a > 0, on [0,∞), with Voronovskaya
operator

x

2

(
d2

dx2
− 3a

d

dx
+ 2a2

)
can be found in [2], see also Example 6.

Operators fixing the same functions, but on [0, 1], were constructed in [14].
They have the Voronovskaya operator

x(1− x)

2

(
d2

dx2
− 3a

d

dx
+ 2a2

)
.

Remark 7. Other general Voronovskaya type formulas, related to operators fix-
ing some functions, can be found in [1, 5, 6, 18,25,29,30,31,32].
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