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Abstract. An SEIR epidemic model with a nonconstant vaccination strategy is
studied. This SEIR model has two disease transmission rates β1 and β2 which imitate
the fact that, for some infectious diseases, a latent person can pass the disease into
a susceptible one. Here we study the spread of some childhood infectious diseases as
good examples of diseases with infectious latent. We found that our SEIR model has a
unique disease free solution (DFS). A lower bound Rinf

0 and an upper bound Rsup
0 of

the basic reproductive number, R0 are estimated. We show that, the DFS is globally
asymptotically stable when Rsup

0 < 1 and unstable if Rinf
0 > 1. Computer simulations

have been conducted to show that non trivial periodic solutions are possible. Moreover
the impact of the contact rate between the latent and the susceptibles is simulated.
Different periodic solutions with different periods including one, two and three years,
are obtained. These results give a clearer view for the decision makers to know how
and when they should take action against a possible new wave of these infectious
diseases. This action is mainly, applying a suitable dose of vaccination just before a
severe peak of infection occurs.

Keywords: modelling, simulation, disease free solution, two contact rates, global stability,

periodic vaccination, R0.
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1 Introduction

Some infectious diseases have a latent period, that is the time from being
exposed to develop diseases symptoms. Infectious diseases, such as mumps,
measles, AIDS, HBV and HCV are good examples of such diseases which have
a latent period. Considering a latent period in modeling infectious diseases

�
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leads the called SEIR epidemic models. Many researchers studied various kinds
of SEIR models. For example, Moneim [19] studied the global behavior of the
dynamics of the HBV disease. He considered an SEIR model with a constant
vaccination rate and infectivity during the incubation period. Greenhalgh [4]
and [6] considered SEIR and SEIRS models with density dependent contact
rate. He used Hopf bifurcations to analyse these models. SEIRS models are
studied in different ways by Zhang et al. [32] and Li and Muldowney [20] and
Li et al. [12] introduced and analyzed an SEIRS model with time delay. Avila
et al. [1] presented a work which focused in a family of SEIRS models with
seasonality in the infection rate.

On the other hand some infectious diseases have an infective latent period
such as mumps, measles, malaria and AIDS [11, 31]. It means an individual
from the latent class can transmit the disease into the susceptibles. So these
kind of infectious diseases have two forces of infection in both of the infectious
and latent periods. This fact has been modeled by some researchers and the
mathematical analysis and results of these models have been published for
examples, [11, 19, 31]. Models for HIV/AIDS with different infected stages
have been studied. In these models there are two different infected stages with
different ability of transmitting the diseases [24,25,28]. Also Samanta et al. [26]
studied a delayed epidemic model with different constant contact rates.

Nowadays it is believed to be a fact that, some infectious diseases have
periodicity in their dynamics amongst the population. These oscillations in the
number of incidences are due to some circumstances such as, climate changes
or opening and closing days in schools [5, 17]. Remarkable peaks for influenza
H1N1 are detected in many countries including Vietnam each year [2]. Shulgin
et al. (1998) studied an SIR model with a vaccination rate r(t) = pδ(t − nT )
where p is a constant and δ(t) is the Dirac delta function. With this vaccination
form, Dirac delta function, it has been found that, the disease free periodic
solution is locally stable [29, 30]. Jan and Xiao introduce a pulse vaccination
strategy to study a dynamic model of dengue disease with periodic contact
rates. They found that, the disease free periodic solution of the their impulsive
system is globally asymptotically stable if R0 < 1 and is unstable otherwise [7].

Two studies applied several simple and continuous time linear vaccinations
based control strategies for a SEIR model which takes account the total pop-
ulation amounts as a refrain for the illness transmission. They found that
under these vaccination strategies, the susceptibles, infected and infectious
population tend asymptotically to zeros [9, 10]. Moneim [16] considered an
SIRS model, with a periodic vaccination rate, to study the spread of the in-
fluenza H1N1. He showed that, there is a periodic behavior due to the force of
the periodic vaccination rate. Nonconstant periodic vaccination gives a good
matching and a more realistic simulation of the periodic nature of some infec-
tious diseases [14, 15, 16]. H1N1 has been investigated in many other studies
like [21,23,27] Here in this paper we assume that, the infection has a contagious
latent period and the disease shows a fluctuation behavior in its propagation.
Therefore, we consider an SEIR model with two disease transmission rates β1
and β2 and a time dependent periodic vaccination strategy ρ(t) with period
T . The periodic vaccination function ρ(t) is imitating the seasonal variation
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in the reported cases for some infectious diseases due to climatological changes
or opening and colsing dates of schools. We start off by formulating an SEIR
model. Then obtaining a formula for the disease free state. To proceed further
in analysing the model we need first to find out the key parameter, the so
called, basic reproduction number R0 which is the number of secondary cases
generated by a single infective person contacted with the population at the
disease free state. We prove that, the disease free solution (DFS) is globally
asymptotically stable when R0 < 1 and unstable if R0 > 1. Finally a simu-
lation results are conducted for our model with different types of vaccination
functions and for estimated parameter values from the literature.

2 The model

We consider some assumptions to imitate the dynamics of an infectious disease
with infective latent in present of applying a periodic vaccination strategy.
These assumption are made as follows:

1. The population is mixed homogeneously and its total size is a constant
N, which is split into four groups: susceptibles S, exposed (or latent) E,
infected I and finally recovered R.

2. As we assume that births balance deaths so, ν denotes the birth rate
which is also the death rate.

3. The newborn individuals are vaccinated after birth at a constant rate p.
This scheme is important as current vaccination strategy in the UK and
many other countries, is to vaccinate as many children as near to birth as
possible after the period of protection by maternal antibodies has lapsed.
There is a nonconstant periodic vaccination strategy ρ(t) with period T ,
which is designed to vaccinate susceptible peoples seasonally just before
an expected outbreaks occur.

4. There are two infection rates β1 and β2. These rates are denoted as the
potential contacts between a susceptible individual and an infected or
latent one respectively. Potential contacts means that, contacts which
produce a transmission of the infection.

5. Exposed persons transfer from the latent stage to join the infected class
at a rate α, therefore the latent period is 1/α.

6. The infected population recovered by a constant rate γ, and 1/γ is the
infectious period.

Based on the previous assumptions, we consider the following SEIR model with
a nonconstant periodic vaccination strategy to investigate the spread of some
infectious diseases. Extending the works of [15,17,19] our model can be repre-
sented as a non-linear system of four coupled ordinary differential equations as
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follows:

dS

dt
= νN(1− p)− β1SI − β2SE − (ν + ρ(t))S, (2.1)

dE

dt
= β1SI + β2SE − (ν + α)E, (2.2)

dI

dt
= αE − (ν + γ)I, (2.3)

dR

dt
= νNp+ ρ(t)S + γI − νR, (2.4)

with S + E + I +R = N .
The vaccination rate ρ(t) are non-zero, positive, continuous, non-constant

periodic functions. The periodic vaccination function ρ(t) is imitating the sea-
sonal variation in the reported cases for some infectious diseases due to climato-
logical changes or opening and colsing dates of schools. The system (2.1)–(2.4)
does not have any equilibrium point but having a disease free solution (DFS)
is still possible in the case that E = I = 0.

3 The disease free solution

Here the vaccination rate ρ(t) is a periodic function, therefore the system (2.1)–
(2.4) has no equilibrium point. On the other hand we expect that, there is a
periodic disease free solution for Equations (2.1)–(2.4) when E(t) = 0 and
I(t) = 0. In the case that, there is neither an infective nor a latent individual
in the system, equation (2.1) is reduced to:

dS

dt
= νN(1− p)− (ν + ρ(t))S. (3.1)

The solution (E∗, I∗) = (0, 0) is an equilibrium for the exposed and infected
individuals. Now, we shall find a solution for the susceptibles when E(t) = 0
and I(t) = 0. Also the stability of this solution will be investigated.

By integrating equation (3.1) we have,

S(t) = S(t0) exp
(
− ν(t− t0)−

∫ t

t0

ρ(η)dη
)

+Nν(1− p)

× exp
(
− ν(t− t0)−

∫ t

t0

ρ(η)dη
)∫ t

t0

exp

(
ν(η − t0) +

∫ t

t0

ρ(η)dη

)
dη,

S(t0 + (n+ 1)T ) = S(t0 + nT ) exp
(
− νT −

∫ t0+T

t0

ρ(η)dη
)

+Nν(1− p)

× exp
(
− νT −

∫ t0+T

t0

ρ(η)dη
)∫ t0+T

t0

exp
(
ν(t− t0) +

∫ t0+T

t0

ρ(η)dη
)
dη. (3.2)

Equation (3.2) is a recurrence relation between the susceptibles at times t0+nT,
for n = 1, 2, 3, . . . . Define a mapping Γ such that Γ (Sn) = Sn+1 where Sn =
S(t0 + nT ). If Sn1 6= Sn2 we have that,

|Γ (Sn1)− Γ (Sn2)| ≤ |Sn1 − Sn2| exp(−νT ).
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Therefore, the mapping Γ is a contraction mapping which has a unique fixed
point S∗, [3, 16]. Moreover S∗, is depending on t0, such that,

S∗ = S∗ exp
(
− νT −

∫ t0+T

t0

ρ(η)dη
)

+Nν(1− p)

× exp
(
− νT −

∫ t0+T

t0

ρ(η)dη
)∫ t0+T

t0

exp
(
ν(t− t0) +

∫ t0+T

t0

ρ(η)dη
)
dη,

therefore,

S∗(t0) =
(
Nν(1− p) exp

(
− νT −

∫ t0+T

t0

ρ(η)dη
)

×
∫ t0+T

t0

exp
(
ν(t− t0) +

∫ t0+T

t0

ρ(η)dη
)
dη
)

× 1/exp
(

1− νT −
∫ t0+T

t0

ρ(η)dη
)
.

Hence S∗(t0 + T ) = S∗(0). Therefor S∗ is a time dependent periodic func-
tion. Using S∗ = Ŝ(t) and using an argument similar to [16, 17] we can easily
deduce that Ŝ(t) = S∗(t + nT ) for all t ∈ [nT, (n + 1)T ] and n ≥ 0, and Ŝ(t)
is a periodic solution of period T and it is the only disease free solution of
(2.1)–(2.4).

4 The basic reproduction number

It is well documented that, the basic reproduction number is the average ex-
pected number of the secondary cases produced by a single infected person
entering the population when the population is in disease free situation. For
our model there are two contact rates and in this case the average value of the
expected number of secondary cases is given by,

R0 =
β2(ν + γ) + αβ1
(ν + γ)(ν + α)T

∫ T

0

Ŝ(η)dη.

Definition 1. Define Rsup0 as an upper bound and Rinf0 a lower one for the
value R0 respectively where,

Rsup0 =
β2(ν + γ) + αβ1
(ν + γ)(ν + α)

sup
t∈[0,T ]

∫ T

0

(ν + α)(Ŝ(t− φ) exp[−(ν + α)φ]dφ

1− exp[−(ν + α)T ]

and

Rinf0 =
β2(ν + γ) + αβ1
(ν + γ)(ν + α)

inf
t∈[0,T ]

∫ T

0

(ν + α)(Ŝ(t− φ) exp[−(ν + α)φ]dφ

1− exp[−(ν + α)T ]
. (4.1)

Using a very similar proof to the corresponding one in [17] we can easily

show that, Rinf0 ≤ R0 ≤ Rsup0 .
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5 Stability of the DFS

We start off by investigating the stability of periodic DFS (Ŝ(t), 0, 0, R̂(t)). In
this section we extend the results obtained by [16,17] to our model in the case
that there are two different contact rates. Using a similar argument to [16,17]
we try first to show that if Rsup0 < 1 the DFS (Ŝ(t), 0, 0, R̂(t)) is globally

asymptotically stable and in the case that, Rinf0 > 1 the DFS is unstable.

5.1 Stability of the DFS when Rsup
0 < 1

The first target is to show that, the DFS is globally asymptotically stable when
Rsup0 < 1. In this case we use an argument similar to that used in the proof of
Theorem 1 [17].

Lemma 1.
lim sup
t→∞

(S − Ŝ)(t) ≤ 0.

Proof. From Equation (2.1)

dS

dt
= νN(1− p)− β1SI − β2SE − (ν + ρ(t))S ≤ νN(1− p)− (ν + ρ(t))S.

As (Ŝ(t), 0, 0, R̂(t)) is a solution of Equations (2.1)–(2.4) when I(t) = 0 and
E(t) = 0 then we have,

dŜ

dt
= νN(1− p)− β1ŜÎ − β2ŜÊ − (ν + ρ(t))Ŝ = νN(1− p)− (ν + ρ(t))Ŝ.

Therefore d(S−Ŝ)
dt ≤ −(ν+ ρ(t))(S− Ŝ). By integrating this inequality we have

that,

(S − Ŝ)(t) ≤ (S − Ŝ)(t0) exp
[
− ν(t− t0)−

∫ t

t0

ρ(η)dη
]
.

Using the same argument as in Lemma 1 in [5] we deduce that, lim supt→∞(S−
Ŝ)(t) ≤ 0. ut

Global stability of the disease free solution when Rsup0 < 1, is the first main
result in this section. Theorem 1 proves that, DFS is globally asymptotically
stable (GAS) when Rsup0 < 1. We give a proof of Theorem 1 by using a similar
argument to Theorem 1 in [17].

Theorem 1. The DFS, (Ŝ, 0, 0, R̂) is GAS if Rsup0 < 1,

Proof. As dI
dt = αE − (ν + γ)I, arguing similar to [16, 19] we can easily find

that

I∞ ≤ αE∞/(ν + γ).

Here our idea of this proof is simple as that, Lemma 1 tells us that, given ε > 0
there exists t3 such that S(t) ≤ Ŝ(t) + ε and I ≤ I∞ + ε for all t ≥ t3. Using
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Equation (2.2), E(t) can be bounded above and by using this upper bound we
can show that E∞ = 0. Now similar to Theorem 1 [16, 17] again suppose that
E∞ > 0. By integrating Equation (2.2) we have that for t ≥ t0 > t3,

E(t) ≤ E(t0) exp[−(ν + α)(t− t0) + [β2E
∞ + β1I

∞ + ε)]

exp[−(ν + α)t]

∫ t

t0

(Ŝ(η) + ε) exp[(ν + α)η]dη. (5.1)

Now

exp[−(ν + α)t]

∫ t

t0

Ŝ(η) exp[(ν + α)η]dη =

∫ t

t0

Ŝ(η) exp[−(ν + α)(t− η)]dη,

=

∫ t−t0

0

Ŝ(t− φ) exp[−(ν + α)φ]dφ.

Suppose that (k + 1)T ≥ t− t0 ≥ kT, therefore, we have∫ t−t0

0

Ŝ(t− φ) exp[−(ν + α)φ]dφ =

∫ T

0

Ŝ(t− φ) exp[−(ν + α)φ]dφ

×
(

1+ exp[−(ν+α)T ] + exp[−(ν+α)2T ]+ . . .+ exp[−(ν+α)(k − 1)T ]
)

+

∫ t−t0

kT

Ŝ(t− φ) exp[−(ν + α)φ] dφ ≤
∫ T

0

Ŝ(t− φ) exp[−(ν + α)φ] dφ

×
(

1 + exp[−(ν + α)T ] + exp[−(ν + α)2T ] + . . .+ exp[−(ν + α)kT ]
)
,

<

∫ T

0

Ŝ(t− φ) exp[−(ν + α)φ]dφ

1− exp[−(ν + α)T ]
.

Therefore, for t ≥ t0 from Equation (5.1) we find that

E(t) < E(t0) exp[−(ν + α)(t− t0)]

+[β2E
∞ + β1I

∞ + ε)]

∫ T

0

Ŝ(t− φ) exp[−(ν + α)φ]dφ

1− exp[−(ν + α)T ]
,

≤ N exp[−(ν + α)(t− t0)] +
[
ε+ E∞

β2(ν + γ) + αβ1
(ν + γ)(ν + α)

]
(

sup
t∈[0,T ]

∫ T

0

(ν + α)Ŝ(t− φ) exp[−(ν + α)φ]dφ

1− exp[−(ν + α)T ]
+ ε

)
.

Choose t4 > t0 large enough so that, N exp[−(ν+α)(t− t0)] < ε, for t ≥ t4,
then for t ≥ t4,

E(t) ≤ Rsup0 E∞

+ ε

(
1 + sup

t∈[0,T ]

∫ T

0

(ν + α)Ŝ(t− φ) exp[−(ν + α)φ]dφ

1− exp[−(ν + α)T ]
+
β2(ν + γ) + αβ1
(ν + γ)(ν + α)

ε

)
.

Then choose ε small enough so that

ε

(
1 + sup

t∈[0,T ]

∫ T

0

Ŝ(t− φ) exp[−(ν + α)φ]dφ

1− exp[−(ν + α)T ]
+
β2(ν + γ) + αβ1
(ν + γ)(ν + α)

ε

)
< ψE∞,
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where Rsup0 + ψ < 1 and ψ > 0. Thus for t ≥ t4 we have that E(t) ≤ (Rsup0 +
ψ)E∞. Therefor 0 ≤ E∞ ≤ (Rsup0 + ψ)E∞. From this we have that E∞ = 0
and I∞ = 0. Hence E(t)→ 0 and I(t)→ 0 as t→∞.

To complete the proof it remains to prove that S(t) → Ŝ(t) and R(t)→ R̂
as t→ 0. As R̂(t) is a solution of Equation (2.4), when I(t) = 0 we find that,

d(R− R̂)

dt
= ρ(t)(S − Ŝ) + γI − ν(R− R̂).

As E(t)→ 0 and I(t)→ 0 as t→∞ there exists t5 so that E(t) ≤ ε1 and
I(t) ≤ ε1 for t ≥ t5 and using Lemma 1 we know that given ε1 > 0 there exists
t6 such that S(t) ≤ Ŝ + ε1 for all t ≥ t6. So for t ≥ t7 = max(t5, t6) we have
that,

d(R− R̂)

dt
≤ ρ(t)ε1 + γε1 − ν(R− R̂) ≤ (ρmax + γ)ε1 − ν(R− R̂).

Integrating this last inequality we have,

(R− R̂)(t) ≤ (R− R̂)(t7) exp[−ν(t− t7)] + ε1

(ρmax + γ

ν

)
× (1− exp[−ν(t− t7)]) ≤ N exp[−ν(t− t7)] + ε1

(ρmax + γ

ν

)
.

Now given ε2 > 0 choose ε1 > 0 such that ε1 ((ρmax + γ)/ν) < (ε2/2). Choose
t8 > t7 so that N exp[−ν(t−t7)] ≤ (ε2/2) for t ≥ t8. Hence given ε2 > 0 there is
a time t8 so that (R−R̂)(t) ≤ ε2 for all t ≥ t8. As S(t) = N−I(t)−R(t)−E(t)
then S(t) ≥ N − R̂(t) − ε2 − 2ε1 for t ≥ t8. Hence given ε ≥ 0, choose ε ≥
(ε2 + 2ε1) then there exists t9 so that S(t) ≥ Ŝ(t) − ε for all t ≥ t9 ≥ t8.
But we have S(t) ≤ Ŝ(t) + ε for all t ≥ t6. therefore given ε ≥ 0 there exists
t9 such that |S(t) − Ŝ(t)| ≤ ε for all t ≥ t9. So S(t) → Ŝ as t → ∞. As
R(t) = N −S(t)− I(t)−E(t) thus we must have R(t) → R̂(t) as t→∞, thus
the proof of Theorem is completed. ut

Now recall that Rinf0 is a lower bound for our conjectured R0. The next

step is to study the stability of the DFS in the case that, Rinf0 > 1. Here we
use an argument consisting of a mixture of those used in [13, 16, 19]. We can

show that if Rinf0 > 1 the (DFS) is not stable and the disease will take off.

5.2 Instability of the DFS when Rinf
0 > 1

In this subsection we shall study the stability of (DFS) when Rinf0 > 1. We
start off by considering that, if the infection is not present initially so that,
I(0) = E(0) = 0 and S +R = N . Applying the same argument as the proof of
Theorem 1 we can easily find that, (S(t), R(t)) → (Ŝ, R̂) as t → ∞. Thus,
the system (2.1)–(2.4) tends to the DFS as t→∞ if E(0) = I(0) = 0 whatever
the value of R0. Therefore, without loss of generality we assume that, both
E(0) > 0 and I(0) > 0 [16,17].

Recalling Definition 1 so, from equation (4.1) we have that:

Rinf0 =
β2(ν + γ) + αβ1
(ν + γ)(ν + α)

inf
t∈[0,T ]

∫ T

0

(ν + α)Ŝ(t− φ) exp[−(ν + α)φ]

1− exp[−(ν + α)T ]
dφ.

Math. Model. Anal., 26(2):236–252, 2021.
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Theorem 2. If Rinf0 > 1, then the DFS is unstable.

Proof. Suppose that the DFS is stable when Rinf0 > 1. So if (S,E, I,R) starts
sufficiently close to (S∗, 0, 0, R∗) we must have that (S,E, I,R)→ (S∗, 0, 0, R∗)

as t → ∞. Then given ε = (1/2)(1 − (1/Rinf0 )) > 0 there exists t1 > 0 such
that |S(t)− S∗| ≤ εS∗, |E(t)− 0| ≤ ε, |I(t)− 0| ≤ ε and |R(t)−R∗| ≤ ε for all

t ≥ t1. Pick ε1 > 0 so that
(
Rinf0 + 1

)
(1− ε1) > 2. Therefore, by Definition 1

Equation (4.1), there exists an integer k such that

β2(ν + γ) + αβ1
(ν + γ)(ν + α)

inf
t∈[0,T ]

∫ T

0

(ν + α)Ŝ(t− φ) exp[−(ν + α)φ]dφ(
1 + exp[−(ν + α)T ] + exp[−(ν + α)2T ] + . . .+ exp[−(ν + α)(k − 1)T ]

)
> Rinf0 (1− ε1). (5.2)

Choose t0 ≥ t1: E(t0) ≥ E(0) exp[−(ν + α)t0] > 0 and I(t0) ≥ I(0) exp[−(ν +
γ)t0] > 0 as E(0) > 0 and I(0) > 0, then choose ε2 such that:

0 < ε2 < min
{1

2
I(t0) exp[−(ν + γ)kT ],

α

2(ν + γ)
E(t0) exp[−(ν + α)kT ]

}
.

Also define

η=inf
{
φ ≥ 0 : I(t0+ξ) ≥ε2 and E(t0+ ξ) ≥ ν + γ

α
ε2, for ξ∈ [0, φ)

}
.

By continuity η > 0 and if η < ∞ either I(t0 + η) = ε2 or E(t0 + η) =
((ν + γ)/α)ε2. This leads to a contradiction. From Equation (2.3) and by the
definition of ε2 we find that,

I(t0 + η) =I(t0) exp[−(ν + γ)η]

+ exp[−(ν + γ)(t0+ η)]

∫ t0+η

t0

αE(χ) exp[(ν + γ)χ]dχ

≥I(t0) exp[−(ν + γ)η] + ε2 (1− exp[−(ν + γ)η]) > ε2,

but on the other hand from Equation (2.2) we find that

E(t0 +η) ≥ E(t0) exp[−(ν + α)η] + exp[−(ν + α)(t0 + η)]

×
∫ t0+η

t0

β1S(χ)I(χ) exp[(ν + α)χ]dχ ≥ E(t0) exp[−(ν + α)η]

+ exp[−(ν + α)(t0 + η)]β1ε2(1−ε)
∫ t0+η

t0

Ŝ(χ) exp[(ν + α)χ] dχ. (5.3)

Now

exp[−(ν + α)(t0 + η)]

∫ t0+η

t0

Ŝ(χ) exp[(ν + α)χ] dχ

=

∫ t0+η

t0

Ŝ(χ) exp[−(ν+α)(t0+η − χ)]dχ =

∫ η

0

Ŝ(t0+η − φ) exp[−(ν+α)φ]dφ.
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Now if η ≤ kT then

E(t0 + η) ≥ E(t0) exp[−(ν + α)kT ] >
(ν + γ)

α
ε2.

If η ≥ kT then∫ η

0

Ŝ(t0+η−φ) exp[−(ν+alpha)φ]dφ=

∫ T

0

Ŝ(t0+η−φ) exp[−(ν+α)φ]dφ

×
(
1+ exp[−(ν+α)T ]+ exp[−(ν+α)2T ] + . . .+ exp[−(ν + α)(k−1)T ]

)
+

∫ η

kT

exp[−(ν + α)φ]dφ ≥ inf
t∈[0,T ]

∫ T

0

Ŝ(t− φ) exp[−(ν + α)φ]dφ

×
(
1+ exp[−(ν+α)T ]+ exp[−(ν+α)2T ] + . . .+ exp[−(ν + α)(k−1)T ]

)
>

ν + γ

β2(ν + γ) + αβ1
Rinf0 (1− ε1), using (5.2).

As Rinf0 > 1 and ε = ((Rinf0 − 1)/2Rinf0 ) > 0 then using Eq. (5.3)

E(t0 + η) ≥ E(t0) exp[−(ν + α)η] + β1ε2
1

2

(
1

Rinf0

+ 1

)
ν + γ

β2(ν + γ) + αβ1

×Rinf0 (1− ε1) = E(t0) exp[−(ν + α)η] +
β1(ν + γ)

2(β2(ν + γ) + αβ1)

× ε2(Rinf0 + 1)(1− ε1) >
β1(ν + γ)

β2(ν + γ) + αβ1
ε2, as (Rinf0 +1)(1−ε1) > 2.

Hence η < ∞ leads to a contradiction so η = ∞ and I(t0 + ξ) ≥ ε2 and
E(t0 + ξ) ≥ ((ν + γ)ε2/α) for all ξ ≥ 0. This contradicts the fact that the

trajectory tends to the DFE. Hence the DFE cannot be stable for Rinf0 > 1,
and the proof is completed. ut

We can summarise the results obtained in this stability analysis as follows: The
disease free solution for our SEIR model represented by Equations (2.1)–(2.4)
with a nonconstant periodic and continuous vaccination rate ρ(t) in [0, T ], is

globally asymptotically stable if Rsup0 < 1 and not stable if Rinf0 > 1. These
results prove that, the periodic vaccination strategy ρ(t) with forces the system
(2.1)–(2.4) to have a periodic (DFS)equals to period nT years including n =
1, 2, 3, where T is the period of ρ(t). We deduce that,

sup
t∈[0,T ]

∫ T

0

Ŝ(t− φ) exp[−(ν + α)φ]dφ

1− exp[−(ν + α)T ]
<

ν + γ

β2(ν + γ) + αβ1
(5.4)

is the sufficient condition to keep the (DFS) globally asymptotically stable.
The obtained results, for our model with periodic vaccination and two dif-

ferent contact rates, extend the corresponding results obtained by [5,16,17,19].
These results are original for an SEIR model considering a combination of an
infective latent period and a periodic vaccination strategy.
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6 Simulation results

Now we look numerically at the behaviour of the system different infectious
diseases with infective latent period. The software package XPPAUTO is used
to solve our system of nonlinear ordinary differential Equations (2.1)–(2.4). We
used parameter values for Mumps, Measles, Rubella and Chickenpox. These
parameter sets are estimated from the literature [8, 13, 14, 15, 18, 22]. These
parameters are taken as, the population N is given a fixed value 1,000,000 and
the other parameters are given the values as the following:

1. The infectious period γ−1 = : 9.13, 3.65, 11.17 and 11.67 days for chick-
enpox, measles, mumps and rubella respectively.

2. The latent period α−1 =: 15.22, 9.49, 18.26 and 10.65 days for the same
four infectious diseases respectively.

On the other hand β2 is given a half of the value of β1, and 0.00113, β1 =
0.0018, 0.00081 and 0.0007/year for chickenpox, measles, mumps and rubella
respectively to ensure that R0 > 1 [15,19].

Our main target in this simulation, is to clarify the effect of latent infectivity
in the dynamics of the infectious diseases. We solve our model for different
values of the infection rate of the latent population β2. For parameter values
of all the diseases under study, we found that, infected population is increasing
monotonically when β2 increases. We plot these solutions against a range of
the parameter values of β2.
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Figure 1. Plots the output results of (a) the susceptibles S(t) and (b).

Also our simulations have been conducted for two different states first when
R0 < 1 and the second when R0 > 1 and we found that, the vaccination of
the disease has a threshold level pc depending on the values of the vaccination
parameters ρ(t) and the constant convectional vaccination one p. To keep
the reproductive number R0 under one in value the vaccination parameters
should be large enough. When using the convectional constant strategy only
the threshold vaccination level is pc = 95%. On the other hand if we use a
periodic vaccination this level is reduced to be less than 60% [14, 15]. If the
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vaccination value is not sufficient to exceed the threshold value pc, then R0

stays above one in value and the disease becomes endemic. In the case that,
R0 > 1 periodic solutions of period one, two and three years are obtained and
all of them appears to be stable by the end of the time range.

Figure 1 (a) and (b) shows that when the basic reproduction number is
smaller than one in value, the susceptible population S(t) is fluctuating and
the infected I(t) tends to zero. Now if R0 < 1, both of S(t) and I(t) approach
the disease free solution and the disease dies out. Here, Figure 1 shows that,
the disease free solution is a periodic solution with period one year.
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Figure 2. One year periodic solution of our model and plots approximate results of (a)
the susceptibles S(t) and (b) the infected I(t) against time in years, when ( R0 > 1 ).
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Figure 3. Two years periodic solution of our model and plots approximate results of (a)
the susceptibles S(t) and (b) the infected I(t) against time in years, when R0 > 1.

Figure 2 (a) and (b) shows that, there is a periodic solution with period
one year of our model when R0 > 1. Moreover, this solution is stable. Also
Figures 3–4 give approximate solutions of our model when the reproduction
number satisfies R0 > 1. These figures show that, two and three years periodic
stable solutions are obtained from our simulations and the disease persists in
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the population. Existence of periodic solutions with different periods means
that epidemics can be occur repeatedly when R0 > 1.
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Figure 4. Three years periodic solution of our model and plots approximate results of (a)
the susceptibles S(t) and (b) the infected I(t) against time in years, when R0 > 1.
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Figure 5. Plots the infected population I(t) against the contact rate between latent and
susceptibles β2 and corresponding to parameter values of (a) measles, (b) mumps, (c)

chickenpox and (d) rubella respectively.

Figures 5 (a), (b), (c) and (d) show that, there is a remarkable increase
in the number of infected cases corresponding to the increase of the value of
the contact rate between latent and susceptibles (β2). Figure 5 shows that the
highest effect of the contact rate between latent and susceptibles β2 is found
in the chickenpox and mumps diagrams, while the lowest effect is observed in
the measles diagram. As expected for all parameter sets of measles, mumps,
chickenpox and rubella, there is a significant effect of the infectivity in the latent
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period and it is clearly confirmed from by the results plotted in Figure 5. This
effect should be further considered in the future investigations.

7 Conclusions

In this paper we have studied an SEIR model with periodic nonconstant vacci-
nation and two types of contact rate, one between infected and susceptibles and
the other between latent and susceptibles. The main target of this paper is to
study the effect of adding a realistic factor, which is the contact rate between
the latent and the susceptibles. This idea will be studied using an SEIR model
with nonconstant vaccination. We applied this idea for investigating the trans-
mission of childhood infectious diseases. Some previous researches studied the
study of the dynamics of infectious diseases with two contact rates in. However
almost all of these studies didn’t combine this idea with any kind of periodic
vaccination.

This paper considered two transmission rates β1 between infected and sus-
ceptibles and β2 between latent and susceptibles. Also we use a vaccination
rate, which is a nonconstant, positive, bounded and continuous periodic func-
tion of time, to vaccinate the susceptibles from all ages. R0, the basic repro-
ductive number, is the key parameter for our investigations in this study. We
have conjectured a lower bound Rinf0 and an upper bound Rsup0 for our key
parameter R0. We have shown that with a non-constant vaccination rate ρ(t),
there is a unique DFS for the system (2.1)–(2.4). Moreover this solution is
periodic with the same period of the vaccination function. Formula for R0,
when the vaccination function is ρ(t) was also derived.

The stability of the DFS of our SEIR model with a general periodic vac-
cination rate was studied in the case that, there are two ways of passing the
infection. We found that, when Rsup0 < 1, the DFS is globally asymptotically
stable. In this case the disease becomes extinct from the population. On the
other hand if Rinf0 > 1, the DFS becomes unstable and the disease will fire
up and becomes endemic. The results of the stability analysis of the DFS lead
to derive a condition under which the vaccination strategy could prevent out-
breaks or severe epidemics. This sufficient condition is to keep Ŝ small enough
so that Equation (5.4) holds. Our results for the SEIR model given by equations
(2.1)–(2.4) were obtained when the vaccination strategy is a periodic function
and our model has two disease transmission rates β1 and β2. Our results are
original for this kind of SEIR model with two disease transmission rates and
periodic vaccination.

The simulations conducted in this work for a model with an infectious la-
tent and a periodic vaccination rate and for a set of four different childhood
infectious diseases. The stability analysis of the (DFS) of our model has been
confirmed . The results show that the DFS is stable when R0 ≤ 1 and in this
case the disease dies out. On the other hand if R0 > 1 then the (DFS) is
unstable and the diagrams show that there are stable periodic solutions with
different periods including one, two and three years periodic solutions. As ex-
pected the periodic vaccination rate force the solutions to be periodic and there
is no equilibrium point.

Math. Model. Anal., 26(2):236–252, 2021.
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The simulation results, also have indicated that introducing a new contact
rate between latent and susceptibles generates significant changes in the number
of infected persons. This result is obtained for each disease parameter set as
shown in Figures 5 (a)–(d). Moreover these diagrams show that, these changes
in the levels the infected individuals, are increasing monotonically with the
increase of β2, the contact rate between the latent and the susceptibles. Finally
the simulation results obtained and represented in Figures 1–5, give a clearer
insight into the dynamics of these diseases in the case that, there is a chance
of transmitting the disease during the latent period.
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