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Abstract. A hybrid convergent method of tenth-order is presented in this work for
directly solving fifth-order boundary value problems in ordinary differential equations.
A unique direct block approach is obtained by combining multiple Finite Difference
Formulas which are derived via the collocation technique. The proposed method is
fully analyzed and the existence and uniqueness of the discrete solution is established.
Different numerical examples are considered and the results are compared with those
provided by existing works in the literature. The comparison shows the good perfor-
mance of the present method over some cited works in the literature, confirming the
competitiveness and superiority of the new numerical integrator.
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1 Introduction

This paper considers the direct numerical solution of fifth-order BVPs of the
form

y® = f(z,y, v,y ¥ y®), z€la, b]

y(a) = a0,  y(b) = Po,
Y (a) = 0?17 y'(b) = 061, (1.1)
y'(a) = az.
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where aqg, ay, as, Bp and [y are real constants, and f is assumed to be a
continuous function on a prescribed domain of interest. Problems of this na-
ture usually arise in the mathematical modelling of viscoelastic flows, induction
motor and different aspects of mathematical, physical and engineering sciences
(see, [5,16,18]). The theorems that provide the conditions for existence and
uniqueness of solutions of the boundary value problems of type (1.1) are ex-
tensively discussed in [1].

As it is usually difficult or impossible to obtain exact solutions for this type
of problem, the approximation is made by applying semi-analytical methods
such as Adomian decomposition, spline method, variational iterative method,
septic spline method, Legendre-homotopy method and others (see, [2,3,5,13,
14,15,16,18,19]). Caglar et al. [3] presented a method for solving fifth-order
boundary value problems where they adopted an approximation by a sixth-
degree B-spline function and exhibited a first order convergence. Wazwaz [18]
applied Adomian and modified Adomian decomposition methods to deal with
it, while Siddigi and Akram presented a sixtic spline method with second or-
der convergence. Zhang [19] proposed a variational iteration method as an
improvement over Adomian and six-degree B-spline methods in [3] and [18].

In this work, a tenth-order block method for directly solving a fifth-order
boundary value problem which is assumed to have a unique solution within
the integration interval is presented. To develop the method, the solution is
sought on an interval of the form [z, 2,,12], with inclusion of two intermediate
points. To further improve the order and the stability of the method, we
have considered sixth derivative terms. This resulted into a method that is
of uniform tenth theoretical order which is capable of handling directly the
solution of equations of the type in (1.1).

The rest of this paper is arranged as follows: in Section 2, the development
of the proposed method is presented. The characteristics of the method are
discussed in Section 3, while in Sections 4 and 5, the implementation details and
some numerical examples are reported. Finally, some conclusions are presented
in Section 6.

2 Development of the method

The usual practice in many numerical methods for obtaining an approximate
solution for the equation of type (1.1) is to assume that its solution y(z) can
be approximated by a polynomial p(z). The discrete numerical approximation
of the problem is considered on an interval [a, b] with a set of grid points
{a=29 <z <---<zy =0}, and a constant step size h = ;41 — x4, @ =
0,1,...,N — 1. To derive the method, let us consider a generic two-block
subinterval [2,, Z,2] and assume that the theoretical solution to (1.1) is ap-
proximated here by a polynomial of the form:

14
y(@) = p(x) =Y aa, (2.1)
r=0
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where a,., 7 =0,1,...,14, are parameters to be determined. These parameters
are uniquely obtained by imposing the following conditions:

PP (w,) =y, i=0,1,2,3,4, (2.2)
PO, 1) = for 1=0,1,2,3,4, (2.3)
p(ﬁ)(xn+%) :gn_t,_%v {:07172a3747 (24)

where f;,g; are respectively the approximations at the corresponding grid
1o r o, (4)
points of f (z,y, /sy, 4",y @) and g(w, g,/ ",y y ) = LV VWD)

The successive derivatives of (2.1) are obtained to be

14 14
y'(z) ~p'(z) = Z Diyax™ b, o (z) =p(x) = Z Dy, a.2"2,  (2.5)
y”/( I// ZDBT’QT 37 y(4)( ZD4T‘G’T 7

y(S)( p(o ZD5’I"G’T‘ 7 (6)( ZDGTQT 7
j—1
where D, = [[(r—s), j = 1,2,...,6. We impose the conditions given in
=0

s=
(2.2)—(2.4) using the approximations in (2.1) and (2.5).This leads to a system
of linear equations that can be expressed in matrix form as

WA =F, (2.6)
where

1z, 22 2 xk x5 x5 xk

0 1 2z, 322 422 5z} 6> Dy gkt

0 0 2 6z, 1222 2023  30x% Dy pak—2

0 0 0 6 24x, 6022 12022 Ds pak=3

0 0 0 0 24 120z, 360z Dy pak=4

0 0 0 0 0 120 720z, Ds pak=5
W = . . ?

00 0 0 0 120 7202542 Ds k5

00 0 0 0 0 720 ... Dgrak6

00 0 0 0 0 720 ... Dgxatl$
A:(a07 ay, Gz, as, a4, Aas, "'7a’k)T7

T

F= (yru yn7 yna yg,ayn ) fnafn+ 7'"7fn+23.gnagn+§7"'agn+2) )

being k = 14. Now we proceed by solving (2.6) to get the parameters a,.’s using
Gaussian elimination with the aid of the CAS Mathematica. These values are
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then substituted into (2.1) and after some simplification yields a continuous
representation of the approximating polynomial in the form:

p(z) =Y ai(@)y >hl+h52@ n+t+hGZT Guyir (27

=0 i=0 =0

where a;(x), B;(x) and ~;(z), i = 0(1)4, are continuous coefficients and h
is the fixed step-size. We do not present here these coefficients as they are
cumbersome expressions, and can be easily obtained with a CAS.

2.1 Main formulas

We obtained the main members of the tenth-order block method by substituting
the values of a;(z), Bi(z), v (x), i = 0(1)4 in (2.7) and evaluating p(z,, + 2)
to get approximations for y(x, + %), i =1, 2, 3, 4. The resulting formulas
are as presented in Table 1 alongside the additional formulas.

2.2 Additional formulas

In order to obtain the necessary additional formulas to form the block method,
we consider the first, second, third and fourth derivatives of p( ) in (2.7) and
then evaluate p(t )(xn—i—’h) to get approximations for y(* )(xn—f— ),i=1,2, 3, 4.
A total of sixteen additional formulas are obtained which shall be combined as
a block for numerically solving BVPs of the type in (1.1). All the formulas are
schematically presented in Table 1 below.

3 Characteristics of the method

3.1 Local truncation error and order

Suppose y(x) is a sufficiently differentiable function which is the true solution
of (1.1). The linear difference operators associated with the formulas in Table 1
are given as

[y(x),h] (217 + h |: Z am x4+ h) (m)( )hm
4 . ) . '
+h° Z Bm($+%h)y(5)(1’+%h)+h6 Z o+ %h)y(ﬁ)(m %h) G
m= m=0

where ¢ = 1(1)4. The Taylor’s series expansion of (3.1) around x yields the
truncation errors of the form
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L: [y(x); h] = éoy(a)+erhy (x)+eah®y" () + ... +&hiyD () + O (B T),

wls

where ¢; are constants. If the first p + 5 constants are equal to zero, which
means that ¢ = ¢ = ¢y = ... = &p4a = 0, and Cp45 # 0, this implies that

L: [y(x); h] = & sh?HoyP 2 (z) + O (W),
where p and ¢,5 are respectively known as the order and local principal error
constant of the corresponding formula (see [4,6,9,10]). The local truncation

errors and the principal error constants of the main formulas are obtained to
be:

L, [y(2); h] =5e=o59m0ms =500 yI) () h* + O (r'%),
L1 [y(z); h] = m y" (2) ' + 0 (1),

Lg ly(x); h] = m y( 5) (z) W' +0 (hw) )

Lo [y(2); h] = g5u5mmssoas ¥ () B + O (h'°).

For the additional formulas, the local truncation errors can be obtained in a
similar manner. It results that the formulas are of theoretical order p = 10.

3.2 Convergence analysis

In this section, the convergence analysis of the proposed method, which will be
named in short BDM35, is addressed.

DEFINITION 1. (see [11]) Let y(z) be the theoretical solution of (1.1) and
{yj}je ; be the approximate solution at the grid points obtained by adopt-

ing BDM5, that is y; ~ y(z;). BDMS5 is to be of p!"— theoretical order of
convergence if for h sufficiently small, there exists a constant k independent of
h such that

max [|y(z;) — y;|| < kh?.

jeJ

This implies that

Jmax [[y(a) ~ vyl 0 as b~ 0,
The convergence of the proposed method will be established by expressing the
main and additional formulas in matrix form adopting the following notations.
Let M be a 10N x 10N matrix defined as

mi1 Mi2 M1z Mia Mis
B M21 M2 MM23 M24 Mzs
M = |m31 m32 m33 m3s mss |,

My My M43 My4q  MN45

ms1  Ms2  Ms53 M54 M55

where
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-11.0 0 0 0 0 0 O 0 0 0 0 O
-1 0 1 0 0 0 0 0 O 0 0 0 0 O
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where m11 = ma2, M4 = Mas, M24 = M35, M34 = M5, Maq = Ms5. This
reduces the matrix M to an upper triangular matrix with m;; = 0, i > j. We
note that the above matrices are related with the coefficients of the formulas
given in Table 1. Similarly, let N be defined as a 10N x (4N + 2) matrix of the
form

T
N, i1 N21 N31 N41 N5l
& ( 3 5 )

T2 N2 N3z T2 Ti52

where the entries are obtained from Table 1 similarly as was done for M. It
should be noted that n;; and n;, i =1,2,...,5 are 2N x (2N + 1) non-zero
matrices. The entries of the submatrices m;; and n;; are the coefficients of
the formulas in Table 1. Let define the following vectors corresponding to the
exact values y(x) and its derivatives

V =(y@y)y@)sylano )y @)y @y ),y @)y (@),
///(mo)7 y/"(x%), ,y’”(xN),y”(xo), yz’v(x%)’ ’yw(l‘N)>T’
F Z(f(xmy(xo 73/ xo),y"(x )vy///(xO)ayiv(mO))af(:révy(‘%%)vy/(x%)vy//(xl)a

V() (@)oo ylan). o (an). o ) " an), )

1
2

where YV is a 10N —vector and F is a (4N + 2)—vector. Putting the above
notation into account, it is possible to write

Mion 108 Y1ion + h°Nignxan+2) Fan+2 + Cron = L(h) 10w, (3.2)

which represents the exact form of the system that approximates (1.1). Cion
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is a vector which contains the known values, defined as

h h? h? 3h 9h?
Cion :( — Yo — 5@/6 - gyé’, —yo — hyj — 73/6’, —yo — 7@/6 - ?y()’,
h 3h
—yo — 2hyy — 2hy,0,...,0, —yh — 5@/6’, —yo — hyo, —yo — 7.%’7

" 1 3h "

h
- y(/) - 2h3/6/,07 L] 707 —i‘/g - §y0 7_y6/ - hy(/)/,v _yO - 7y0 )

T
—yg’—zhyg’,o,...,o) ,

while L(h)1on represents the local truncation errors of the formulas in Table 1
which are given as

_ 107831 (15) 15 16 11 15
L(h)ion = (257099242143744000y (20) B + O (h"°) , 73376038000

> y(15) (xo) +0 (h16) ’m y(15) (330) B15 +0 (hlﬁ) ,

m y19 (20) h'5 + O (hlﬁ) 7 % y19 (21) b + O (hlﬁ) ’
W&%%ooo ¥ (21) A% + O (h16) ’ m ¥ (21) A% + O (n26),
% y19 (1) K510 (h16) N m Y19 (zx_o) h151+O (hlﬁ) ’
Tossroani0ds s v (o) WP + O (R ..., meaos ¥ (N _2) BY®
+0 (hlﬁ) , % y19) (z0) WY + O (h16) ye s %y(m) (xn—2)

X h'* +0 (hw) ) 8240326008362951200 y(ls) (x0) ' + O (hw) EEER)

1 15 15 16 551 15 15 16
502951650 y" (@n—2) B + O (h"°) . cmrrsisoaoo y" (zo) B + O (h'%)
T
AR 5029%1680’ y(ls) (zN-2) h'® +0 (hlﬁ) ) ) (3.3)
Let defined the system that approximates (1.1) as

MionxionYion + B2 Nign xant2)Fant2 + Ciony =0 (3.4)

where Yion is approximated by vector 12/10 N,

" a

/ / /1 /!
Y = (y%ay17"'?yN—%7y%7"'7yN7%7y%7"'7yN7y0 7y%7

"’y%’y(z)’l)7yz%v7"'7y}\1;)
= . . = T
and Fyno is given as Fynyo = (fo,f%w--7fN790,9%7~-~,9N)
Subtracting equation (3.4) from (3.2) yields
MionxionHion + h°*Nignxan2) (F — F) yni2 = L(h)10n, (3.5)
where
Hion =Y -V = (e%,el,...,eN_%,e’%,...,egv_l,e’%’,...,63(,,
ey’ e’%”, co e el e’g’, et

Math. Model. Anal., 26(2):267-286, 2021.
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is a vector containing the errors associated with the solution and the derivatives
at the mesh points. By the Mean Value Theorem, for i = 0, 551, §,2 , N
the following identities are valid

f(Ii,y(fEi),y/(iEi), y/,(xi)7ym(xi)vyiv(xi)) f(-Tz, yuywyz ’yvl,//’yz )

= (y(2:) — i) ag(;i) + (v (@) — 9}) 825/) + (" () — v)) 85;?)
+ (4" (@) = wi") aafy(,c,f) + (y" (@) = ) 85;3 )

9(wiyy (), (@), y" (xa), v (), y™ (20) — 9 (@i yis v w1 w1 wi")
= (y(z:) — ui) 8‘(]8(;) + (v () — v) aga(;-) + (v (i) — y) 8;;?)
") o) ) () — ) 2

6y/// 8yw ’
where ¢;, ¢; are intermediate points on the line segment joining
($i7 y(ajz)a y/(zi)v y//(xi)a y”,(xi)a yw (‘rl)) (xzv Yiy yw yz ) y;”a yz ) Therefore7

F_F= Jant2)x1onHion .

J(4N+2) x10N =
0 ... 0 0 .. 0 0 ... 0 YU R CO 0
af(c1) af(e1) af(cy) . . 9f(ey) 9f(ey)
a_f . 0 ‘7'!? o 0 0_.,”7 . : : Bw” . 0 0 ay,
i ey f(en_y) i
0 ... — 0 0 0 0 0 ... 0 0 0 ... 0
dy ay'
[UN 0 0o .. 0 0 aex) 0 2GR 0 2ften)
Dy’ Dy By
0 . 0 0 .. 0 o .. 0 %) 0 %) 0
A . B
(‘iq(ﬁ%) ﬁg({?%] (‘iq(r’%) . . (iq(r’%) (iq((’%)
T 0 T 0 e : - 0 0 5 0
' o0y y) Gy y) ) ) i ) ) i )
0 t 0 — = 0 0 0 0 ... 0 0 0 ... 0
0o ... 0 0 ... 0 0 B | 0 den) g 0 dg(en)

oyv

It should be noted that in view of the boundary condltlons we have ep =
y(@o)— o =0, en = y(a?N) yn =0, ¢4 =y'(z0)—yo = 0, ey = y(zn)—yn =0
and eg = y"(zo) — yg = 0. With these results, Equation (3.5) can further be
written as Mionxion Hion + B2 Nionx(an+2)Jan+2)x10n Hion = L(h)ion-

Let Mionxion = (Mionxion + h°Nignxan+2)J(an+2)x1on ). Assuming
that M is invertible for a sufficiently small value of h, therefore we can write

— -1
Hion = (M) tonxion L) 10N (3.6)
Consider the maximum norm ||H|| = max; |e;| in RN which of course will

. . . . -1 . .
induced matrix norm in R!OVX10N = By expanding (M) loNx10n 1D series in
-1

onxion!| = O(h™®), which happens
as a result of the growth in the uniform norm of inverse of M like h~>. With
this in mind and assuming that y(z) has bounded derivatives in [a, b] up to the
necessary order, it is obvious from Equations (3.3) and (3.6) that

| Hion |l = || (M )wNXmNL(h)wNH
< (M) oy 1o | LB 10 ] = O(A2)O(h'®) = O(h10).

powers of h, it is easy to see that H( )
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Thus, the new method BDMS5 is tenth-order convergent.

3.3 Existence and uniqueness of the discrete solution

The existence and uniqueness of the discrete solutions made available by the
system in (3.2) is confirmed by the following result. Remember that the con-
vergence analysis deals with the manner in which the errors grow when the
step-size h is relatively small. We can see that ||H|| — 0 as h — 0. Hence, the
following result will be achieved by assuming that h < 1.

Theorem 1 [ see [7]]. If f(x,V) verifies a Lipschitz condition on the variable
V= (y, v,y vy, y(4)) with Lipschitz constants L; > 0 for each component,
it holds that the system (3.2) has a unique solution whenever

h < 1/(10L2a2(b — a)) ¥,

where
— . 1] — .. y —_ YAk ay
L= _max (L}, a= max {[Uyl} with U= (M)~ Nlp.
j=1,...,.AN+2

Proof. Consider function R'%Y — RN which is defined as
—\ 15, WT

W(p) = ((=M)~'C = h*(=M)"'F(n)) ",
where p = (g1, ..., p1on) € RN and F (i) denotes the vector upon substitut-
ing Y — p in the terms f;, 5 ff f and fj(4). By setting p = Y, the system
in (3.2) takes the form p = W(u). Hence, the existence and uniqueness of so-
lution of the systems in (3.2) is the same as 4 = W(u). Consider the maximum
norm

_ . 10N
lull = | maxe {lpil} € R
We have
(W())i — (W(p* )il = |h° [M~'N (F(p) — F(u"))], |
10N
< hPuy Ll — ), (3.7)
§=0
where
L=Z.:(gg§2>§3’4{ﬂdi}, g= max o {1Ui;1}
j=1,..., AN+2

and U;; the entries of matrix U = (M)~ N|,—;. Applying the Cauchy-Schwartz
inequality to (3.7) yields

(W(p) = W) = max {|(W(w)i — (W(u"))il}

1<i<10N
* — b—a * 7. *
< WAL/ 0N [t — ' = P L (10( - ))Ilu—u|=k|u—ull

with & = h® @ IL\/(10 (b — a) /h). Aslongas k < 1, W will become a contraction
map, which end the proof according to the Banach’s Fixed-Point Theorem. O
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4 Implementation

The systems in (3.2) is solved by adopting the Newton’s iteration method
enhanced by the FindRoot[] command in Wolfram Mathematica. For the
method to show good convergence, the initial guess has to be chosen close
enough to the root. To achieved this, averaged values of the given variables are
considered as the initial guesses. These are obtained as

y% = ’
j=1,...,(4N —1),
! / ! !
r_Y@+y®) Y0 —y(a) _ B
v, = s e N R DR CL S VS
1
" Y (a) (4) :
= =1 =0,...,4N. 4.1
i Nh ) J ) ] ) s ( )

The following algorithm explains the computational procedure for the imple-
mentation of the proposed method.
ALGORITHM
Input: Integration interval — [a, b]
Number of steps — N
Boundary values, = va, Yi, Y. Y, Y,
Output: sol — Discrete approximate solution of
the BVP (1.1).
1. Define the following TLet n=20,2,...,(N —2), 29 =a, zy = b,
h="25% Y0 = Yar Yo = Yar Y6 = Y4,
YN =Y, Yn = Yp-

2. Solve solve for ¥ with the method whose formulas
are reported in Table 1.

3. Discrete solution Obtain sol= {(2i,¥i)};—01. . N

4. End

5 Numerical examples

In this section five numerical examples are presented to demonstrate the per-
formance of the derived method, BDM5. In each of the examples considered,
the absolute errors are obtained as err(n) = |y(z,) — yn|. The computational
time in seconds used by BDM5 denoted as CPU are measured, NA denotes
“data Not Available”. The computational work has been done on a personal
computer with configuration i7-7500U, 2.70 GHz using double precision arith-
metic.

Ezxample 1. The boundary-value problem
L

€,

vy (z) — y(z) = — (15 + 10z) €7, 0<z<
y(0) =y(1) =y"(0) =0, y'(0) =1, y/(1) = —

whose theoretical solution is y(z) = z(x — 1)e® is considered as our first test
problem. This particular problem has appeared in virtually all literature that
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Table 2. Comparison of observed maximum absolute errors on Example 1 with h = 1/10.

T y-computed y-exact MAE in [12] MAE in BDM5
0 0 0 0

0.1 0.09946538262680828  0.0994653826268083  2.17 x 1011 1.978 x 1022
0.2 0.19542444130562717  0.1954244413056272 6.87 x 10~ 1.285 x 10—21
0.3 0.28347034959096065  0.2834703495909607 1.19 x 10~10  3.389 x 10—21
0.4 0.35803792743390487  0.3580379274339049  1.56 x 10~10  6.017 x 10—21
0.5 0.41218031767503204  0.4121803176750321  1.71 x 10~10  8.322 x 10—21
0.6 0.43730851209372215  0.4373085120937221 1.59 x 10710 9.386 x 102!
0.7 0.42288806856880007  0.4228880685688001  1.22 x 10~10 8553 x 102!
0.8 0.35608654855879481  0.3560865485587949  7.15 x 10~ 5.791 x 10—21
0.9. 0.22136428000412547  0.2213642800041255 2.25 x 10~ 2.106 x 10~21
1.0 0 0 0 0

CUP NA 0.234375

are available on fifth-order BVPs (see, [3,5,12,15,16,17,18,19]). The exact,
computed solution and absolute errors given by the proposed method are shown
in Table 2 with the absolute error obtained with the spline-based method in [12].
Table 3 shows the maximum absolute error (MAE) for different mesh points
provided by BDM5 and the best method in [12], while the absolute errors of
the derived method presented in 2 are further compared with some methods
in [8] in Table 5.

Table 3. Comparison of maximum absolute errors (MAE) on Example 1.

1 1 1
Method used/h — — —
10 20 40
[12] 1.71 x 10710 1.86 x 10713 1.61 x 10713
BDM5 9.39 x 1021 9.14 x 1024 8.92 x 1027
Table 4. Maximum absolute errors (MAE) and rate of convergence (ROC) obtained for
Example 1.
N 4 8 16 32 64
MAE 8.050 x 10717 8.746 x 10720 8.504 x 10723 8.297 x 10726 8.121 x 10~2°
ROC - 9.85 10.01 10.00 9.996
N 128

MAE 8.00 x 10—32
ROC  9.987

In order to determined whether the performance of the proposed method
corresponds to the theoretical order of convergence of the method, the approx-
imate rate of convergence (ROC) of the proposed method was calculated on

Math. Model. Anal., 26(2):267-286, 2021.
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Table 5. Comparison of errors obtained with BDM5 and some methods in [8] on Example 1
with h = 1/10.

x BDM5 HPM B-spline  VIM ADM ITM VIMHP

0 0 0 0 0 0 0 0

0.1 1.98e—22 3.0e—11 8.0 x 1073 3.0 x 10711 3.0 x 10~ 3.0 x 10~ 3.0 x 10~11
0.2 1.29e—21 2.0e—10 1.2 x 1073 2.0 x 10~1% 2.0 x 10~19 2.0 x 10719 2.0 x 10~1°
0.3  3.39e—21 4.0e—10 5.0 x 1073 4.0 x 1010 4.0 x 10719 4.0 x 10719 4.0 x 10~1°
0.4 6.02e—21 8.0e—10 3.0 x 103 8.0 x 10710 8.0 x 10~19 8.0 x 10~10 8.0 x 10~10
0.5 8.32—21 1.2e—9 80x1073 1.2x107? 1.2x1079 1.2x107° 1.2x107°?
0.6 9.39e—21 2.0e—9 6.0x 1073 2.0x 1072 20x1072 20x1079 2.0x10~?
0.7 8.55e—21 2.2e—9 0.0x 1073 22x1079 22x1079 22x1079 22x10°°
0.8 5.79e—21 1.9e—9 9.0x1073 1.9x107° 1.9x1079 1.9x107°2 1.9x10~?
09 211e—21 1.4e—9 9.0x1073 1.4x 1079 1.4x1079 14x107° 1.4x10°
1.0 0 0 0 0 0 0 0

CUP 0.234375 NA NA NA NA NA NA

Example 1 using the relation
ROC = log, (MAEgh/MAEh),

where M AF5;, and M AE), denote maximum absolute error on the grid with
mesh sizes 2h and h respectively. See Table 4 for the results.

FEzample 2. Another test problem considered in this paper is the BVP

y®)(z) 4 sinzy(z) = cosz(1 + sinz) + sinz(sinz — 1), 0<z <1,
y(0) =1, y(1) = cos(1) +sin(1),
y'(0)=1, (1) =cos(1) —sin(1), y"(0)=—1,

for which the analytical solution is y(x) = cos(x) +sin(z), ( [16]). The solution
curve and the discrete approximations obtained with the proposed method,
together with the absolute errors for h = 1/20 are shown in Figure 1. The
comparison of the maximum absolute errors obtained with BDM5 and those
obtained with the non-polynomial spline method in [16] are presented in Ta-
ble 6.

—— y-computed

—— y-exact

Figure 1. (a) and (b) show the solution curve and absolute errors for Example 5 taking
h = 1/20 using BDM5.
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Table 6. Comparison of maximum absolute errors (MAE) on Example 2.

Method used/h 1/10 1/20
[16] 3.1495 x 10712 2.17160 x 10713
BDM5 1.3697 x 10723 1.34293 x 10~26

FEzample 3. The next test problem considered in this paper is the BVP
YO (z) 4+ y(z) = 4e® cosz + 2¢”(1 — sinz) + 5e®sinz, 0<xz <1,

y(0) =1, y(1) = e(l —sin(1)),
y'(0) =0, ¥'(1) = e(cos(1) +sin(1) — 1), y"(0) = —1,

for which the exact solution is y(x) = €*(1 — sin(z)). The problem was also
solved by the method in [16]. Table 7 shows the observed absolute errors with
BDMS5 and that of the non-polynomial spline method in [16]. Table 8 shows
the maximum absolute errors of the methods at different mesh points.

Table 7. Comparison of observed absolute errors on Example 3 with h = 1/10.

T y-computed y-exact MAE in BDM5 MAE in [16]

0 1 1. 0 0

0.1 0.994837929345443913  0.9948379293454439¢ 6.6416 x 1023  3.5971 x 10— 11
0.2 0.978747489565246898 0.9787474895652469¢ 4.1769 x 10~22  1.1782 x 1010
0.3 0.950948253797513255 0.9509482537975132¢ 1.0580 x 10~21  2.0565 x 1010
0.4  0.910880796870703093 0.910880796870703° 1.7971 x 10~21 2.7051 x 1010
0.5  0.858282187486513235 0.8582821874865133¢ 2.3684 x 10~21  2.9465 x 1010
0.6  0.793273134118417270 0.7932731341184172° 2.5345 x 10~21  2.7173 x 10~10
0.7  0.716457595595207513 0.7164575955952076¢ 2.1813 x 10~21  2.0715 x 1010
0.8  0.629035587892216727 0.6290355878922167¢ 1.3870 x 10~21  1.1832 x 1010
0.9.  0.532920807184232775 0.5329208071842328¢ 4.7062 x 10~22 3.5059 x 101!
1.0 e(1 —sin(1)) 0.4309265412802028° 0 0

CUP NA 0.25

Table 8. Comparison of maximum absolute errors (MAE) on Example 3.

Method used/h 1/10 1/20
[16] 1.02830 x 10710 1.10520 x 1012
BDM5 2.53445 x 10721 2.50707 x 1024

Ezample 4. The boundary value problem
y(S) (z) = eizy2('x)’ 0<z<1,
y(0) =1, y(1) =e, y'(0)=1, y'(Q)=e, y"(0)=1,
for which the exact solution is y(z) = e® is also considered. This problem has

also been considered in the works by [8,15,18,19]. Table 9 displays the observed
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absolute errors obtained with BDM5 and those of the methods appeared in [8].
In particular, the errors in the last column in Table 9 are those generated
by the variational iterative method using He’s polynomial (VIMHP) of degree
fourteen.

Table 9. Comparison of observed absolute errors on Example 4 using BDM5 and the
methods in [8] with h = 1/10.

x BDM5 HPM B-spline VIM ADM IT™M VIMHP

0 0 0 0 0 0 0 0

0.1 96x1072° 1.0x1072 —7.0x10"% 1.0x 1072 1.0x 1079 1.0x 1079 1.0x 10~?
02 62x1072* 20x1072 —72x107% 20x 1072 2.0x 1079 2.0x 1079 2.0x 10~°
0.3 16x1072% 1.0x1078 41x107% 1.0x10"% 1.0x 1078 1.0x 1078 1.0x 10~
0.4 29x1072% 20x1078 46x107% 20x10"8 2.0x 1078 2.0x10~% 2.0x 10~8
0.5 4.0x1072% 3.1x1078 47x107%* 3.1x1078% 3.1x10"% 3.1x10°8 3.1x10"%
0.6 45x10723 3.7x1078 48x107% 37x1078% 3.7x 1078 3.7x 1078 3.7x 108
0.7 41x1072% 41x1078 3.9x10% 41x10"8% 4.1x10"8 41x10"% 4.1x10~%
0.8 28x10723 31x1078 3.1x10% 31x10"% 3.1x1078 3.1x107% 3.1x10°%
09 1.0x1072% 14x1078 1.6x107% 14x107% 14x1078 1.4x 1078 1.4x 108
1.0 0 0 0 0 0 0 0

CUP 0.203125 NA NA NA NA NA NA

Table 10. Observed MAE of BDM5 and [15] and ROC of BDM5 for Example 5.

h MAE in [15] MAE in BDM5 ROC (BDMS5)
3 5.06 x 10~* 5.684 x 10716 -
% 3.04 x 1075 5.741 x 10719 9.9514
3 2.42 x 10~6 5.635 x 10722 9.9927
Gi% 6.75 x 10~7 5.508 x 10~2° 9.9986
% 1.71 x 10~ 7 5.380 x 1028 9.9997
55 4.32 x 10~8 5.000 x 1031 10.0725
—— y-computed -=— y-exact

05 0 "

Figure 2. (a) and (b) show the solution curve and absolute errors for Example 5 taking
h = 5 using BDMS5.
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Ezample 5. We also considered the BVP

y®)(x) = 19z cos z + 22° cosx + 41 sinx — 2z sinz — ay(z), 0<z <1,
y(=1) = 1,y(1) = cos(1),

y' (=1) = =1/ (1) = —4 cos(1) + sin(1),

y"(—1) = 3cos(1) — 8sin(1),

for which the exact solution is y(z) = (222 — 1)cos(x). This problem also
appeared in [15]. The solution curve and the approximate solution provided
by the proposed method taking h = 1/20 and the absolute errors presented in
Figure 2. Table 10 displays the maximum absolute error generated by BDM5
and the sextic spline solution in [15].

6 Conclusions

A method of tenth order has been derived and analysed in this work for the
direct approximation of fifth-order boundary value problems in ordinary differ-
ential equations. The derivation of the method is simple and flexible in appli-
cation to solve a variety of boundary value problems with different boundary
conditions. The theoretical analysis of the method confirmed the tenth-order
convergence while its application to some numerical examples established the
efficiency and high accuracy of the proposed method which make it competitive
with other methods in the literature.
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