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Abstract. In this paper, a new method combining the simplified reproducing kernel
method (SRKM) and the homotopy perturbation method (HPM) to solve the non-
linear Volterra-Fredholm integro-differential equations (V-FIDE) is proposed. Firstly
the HPM can convert nonlinear problems into linear problems. After that we use the
SRKM to solve the linear problems. Secondly, we prove the uniform convergence of
the approximate solution. Finally, some numerical calculations are proposed to verify
the effectiveness of the approach.
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1 Introduction

This article mainly discusses the nonlinear V-FIDE:

Y u(x) +H(u(x)) = y(x), u(a) = α, (1.1)
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where

Y u(x) = u′(x) + q(x)u(x),

H(u(x)) = λ1

∫ x

0

K1(x, t)F (u(t)) dt+ λ2

∫ 1

0

K2(x, t)G(u(t)) dt.

The parameters λ1, λ2 are constants. F (u(x)) and G(u(x)) are constant co-
efficient polynomials of u(x). The V-FIDE has been widely used in physics,
biological and engineering [1, 2, 3, 10, 16]. In order to obtain accurate numeri-
cal solutions more quickly, many methods for solving such problems have been
proposed in recent years. Maleknejad [10] introduced the hybrid functions
method. Babolian [2, 3] proposed the triangular functions method and the
operational matrix with block-pulse functions. Hybrid Legendre polynomi-
als and block-pulse functions approach were used by Maleknejad [9]. Bako-
dah [4] discussed the Laplace discrete Adomian decomposition method over
the integro-differential equation. Biazar and Ghanbari [5] presented He’s homo-
topy perturbation method. Bildik [6] used the modified decomposition method
to obtain the approximate solution of nonlinear V-FIDE. Ghasemi [8] formu-
lated homotopy perturbation method for solving nonlinear equations. In re-
cent years, with the development of reproducing kernel space theory, many
scholars have successfully applied reproducing kernel method to solve problems
[12,13,14,15,17,18]. But the traditional reproducing kernel method [11] is diffi-
cult to deal with the integral term, while the HPM can be effectively dealt with
the integral term. Because the traditional reproducing kernel method needs or-
thogonalization, the calculation method is complex and time-consuming. Our
method avoids the Smith orthogonalization process in order to save the calcu-
lation time and running memory. This article discusses the nonlinear V-FIDE
by using SRKM and HPM in the reproducing kernel space, so that the equation
can achieve higher accuracy.

In this paper, we describe the homotopy perturbation theory in Section 2.
The reproducing kernel theory will be shown in Sections 3 and 4. The last part
presents some numerical examples. In the end, we have the conclusions.

2 Homotopy perturbation method

For Equation (1.1), we first have to solve the nonlinear part. The homotopy
perturbation method provides a good theoretical basis, we embed a small pa-
rameter p (p ∈ [0, 1]) by constructing a homotopy map

Y u(x) + pH(u(x)) = y(x), u(a) = α, (2.1)

when p = 0, the Equation (2.1) is an initial value problem:

Y u(x) = y(x), u(a) = α, (2.2)

when p = 1, Equation (2.1) is the original problem (1.1). The parameter p
changes from 0 to 1, then the solution u(x) follows the homotopy path from
Equation (2.2) to the original problem Equation (2.1). And the solutions that
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satisfy the homotopy path can be expanded into a power series of p:

u(x, p) =

∞∑
n=0

pnun(x).

In this way, when p → 1, the approximate solution of the nonlinear operator
equation is obtained

u(x) = lim
p→1

u(x, p) =

∞∑
n=0

un(x).

Take the k derivatives of F,G and set p = 0, then substitute the type into
Equation (2.1):

∞∑
n=0

pnY un(x)+pλ1

∫ x

0

K1(x, t)

∞∑
k=0

Akp
kdt+pλ2

∫ 1

0

K2(x, t)

∞∑
k=0

Bkp
kdt=y(x),

where
∞∑
k=0

Akp
k = F (

∞∑
n=0

pnun(x)) =

∞∑
k=0

1

k!

dk

dpk
F (

∞∑
n=0

pnun(x)) |p=0,

∞∑
k=0

Bkp
k = G(

∞∑
n=0

pnun(x)) =

∞∑
k=0

1

k!

dk

dpk
G(

∞∑
n=0

pnun(x)) |p=0 .

Comparing the coefficients of pi on both sides of equation and setting them
equal, we can get for k = 0,

Y u0(x) = y(x), u0(a) = α, (2.3)

for pk+1,Y uk(x) = −λ1
∫ x

0
K1(x, t)

∞∑
k=0

Akdt− λ2
∫ 1

0
K2(x, t)

∞∑
k=0

Bkdt,

uk(a) = α.
(2.4)

Adding the solution uk of Equations (2.3)–(2.4), we obtain the true solution to
nonlinear equations

un(x) = u0(x) + u1(x) + u2(x) + . . . .

3 Reproducing kernel Hilbert space

We will discuss the Equation (1.1) with support of the reproducing kernel space
theory.

Definition 1. ( [7]) Let H be the Hilbert space, and the elements in H are
complex-valued functions on X. If there is a unique function Ks(t) for ∀s ∈ X
that satisfies

〈f,Ks〉 = f(s), f ∈ H.
Then H is defined as reproducing kernel space, K(s, t) = Ks(t) is defined as
reproducing kernel function.

Math. Model. Anal., 26(3):469–478, 2021.
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To solve Equation (1.1), we need to introduce two reproducing kernel spaces
next. The inner product and the norm of reproducing kernel Hilbert space
W 2

2 [a, b] and W 1
2 [a, b] are defined as

Definition 2. ( [7])

W 2
2 [a, b] = {u(x) | u′(x) is an absolutely continuous real value function,

u′′(x) ∈ L2[a, b]}, 〈u, v〉W 2
2

= u(a)v(a) + u′(a)v′(a) +

∫ b

a

u′′v′′dx,

u, v ∈W 2
2 [a, b], ‖u‖W 2

2
=

√
〈u(x), u(x)〉W 2

2
.

Definition 3. ( [7])

W 1
2 [a, b] = {u(x) | u(x) is an absolutely continuous real value function,

u′(x) ∈ L2[a, b]}, 〈u, v〉W 1
2

= u(a)v(a) +

∫ b

a

u′v′dx, u, v ∈W 1
2 [a, b],

‖u‖W 1
2

=
√
〈u(x), u(x)〉W 1

2
.

Theorem 1. ( [7]) The reproducing kernel function Rs(t) of W 2
2 [a, b] is defined

as

Rs(t) =

{
st+ st2

2 −
t3

6 , t ≤ s,
st+ ts2

2 −
s3

6 , s ≤ t.

Theorem 2. ( [7]) The reproducing kernel function rs(t) of W 1
2 [a, b] is defined

as

rs(t) =

{
1− a+ s, t ≤ s,
1− a+ t, s ≤ t.

4 The combination of HPM and SRKM

We described the HPM for nonlinear equation in Section 2. Equations (2.3)
and (2.4) can be considered as follows{

Y un(x) = f(x),

un(a) = α, n = 0, 1, 2, . . . .
(4.1)

Now we introduce reproducing kernel method. Firstly, we define a linear oper-
ator L : W 2

2 [a, b]→W 1
2 [a, b],

Lu(x) = Y un(x), u(x) ∈W 2
2 [a, b].

Therefore, Equation (4.1) can be expressed as{
Lu(x) = f(x),

un(a) = α, n = 0, 1, 2, . . . .
(4.2)
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It’s easy to prove that L is a bounded linear operator. L∗ is the adjoint
operator of L. Let φi(x) = L∗rs(t)(xi), i = 1, 2, . . ., where L∗rs(t)(xi) =
〈L∗rs, Rt〉W 2

2
= 〈rs, LRt〉W 1

2
= (LRt)(s) = (LRs)(t), and {xi} is subset on

[a, b].

Theorem 3. {xi}∞i=1 in [a, b] is a set of mutually distinct dense points, then
{ψi(x)}∞i=1 is a complete system on W 2

2 [a, b].

Proof. Assume
∑n

i=1 ciψi(x) = 0, because L is invertible, and

n∑
i=1

ciψi(x) =

n∑
i=1

ciLRxi
(x) = L(

n∑
i=1

ciRxi
(x)) = 0.

In addition, for u(x) ∈ W 2
2 [a, b], if 〈u(x), ψi〉W 2

2
= u(xi) = 0, i = 1, 2, . . ., then

u(x) ≡ 0. ut

Let ψ1(x) = R(x, a) and Sn+1 = span{φ1(x), φ2(x), . . . , φn(x), ψ1(x)}. We
can obtain the following conclusions:

Theorem 4. Define Pn : W 2
2 [a, b]→ Sn+1[a, b], then un = Pnu satisfies:

〈un, φk〉 = f(xk, u(xk)), k = 1, 2, . . . , n, 〈un, ψ1〉 = α. (4.3)

Proof.

〈Pnu, φk〉W 2
2

= 〈u, φk〉W 2
2

= 〈u, L∗rxk
〉W 2

2
= 〈Lu, rxk

〉W 1
2

= Lu(xk)

= f(xk, u(xk)), k = 1, 2, . . . , n.

〈Pnu, ψ1〉W 2
2

= 〈u, Pnψ1〉W 2
2

= 〈u, ψ1〉W 2
2

= 〈u,Ra〉W 2
2

= u(a) = α.

ut

Theorem 5. The approximate solution un(x) uniformly converges to u(x) on
[a, b].

Proof. ‖un − u‖ → 0 holds as n → ∞ in W 2
2 [a, b]. According to the repro-

ducibility of the reproducing kernel function, we have

un(x)− u(x) = 〈un − u,Rx(y)〉 ,

thus

| un(x)− u(x) |=| 〈un − u,Rx(y)〉W 2
2
|≤ ‖un − u‖W 2

2
‖Rx(y)‖W 2

2
,

because of the boundedness of the reproducing kernel function, ‖Rx(y)‖ ≤M0,
then

| un(x)− u(x) |≤M0 ‖un − u‖W 2
2
→ 0.

ut

Math. Model. Anal., 26(3):469–478, 2021.
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Consequently, the exact solution un ∈ Sn+1 of Equation (4.2) can be developed
as follows

un(x) =

n∑
k=1

qkφk(x) + p1ψ1. (4.4)

Then applying the form Equation (4.4) to Equation (4.3), we can obtain

p1 〈ψ1, ψ1〉+

n∑
k=1

qj 〈φk(x), ψ1〉 = α,

p1 〈ψ1, φj〉+

n∑
k=1

qj 〈φk(x), φj〉 = f(xj , u(xj)), j = 1, 2, . . . , n.

Note that

A =


〈ψ1, ψ1〉 〈φ1, ψ1〉 〈φ2, ψ1〉 . . . 〈φn, ψ1〉
〈ψ1, φ1〉 〈φ1, φ1〉 〈φ1, φ1〉 . . . 〈φn, φ1〉
〈ψ1, φ2〉 〈φ1, φ2〉 〈φ2, φ2〉 . . . 〈φn, φ2〉

...
...

...
...

...
〈ψ1, φn〉 〈φ1, φn〉 〈φ2, φn〉 . . . 〈φn, φn〉

 ,

f =


α

f(x1, u(x1))
f(x2, u(x2))

...
f(xn, u(xn))

 .

Thus, we just have to compute (p1, q1, q2, . . . , qn)T = A−1f .

5 Numerical examples

The main methods used in this work have been described in the previous sec-
tions, some numerical examples are given to illustrate its effectiveness. Mean-
while, the red lines in the figure represent the approximate solutions and the
blue dots represent the exact solutions. The absolute errors of the exact, the
approximate solutions and CPU time (seconds) are listed in the tables. We
also used the following formula to calculate the convergence rate r:

r = log 2
‖en‖
‖e2n‖

.

Example 1. For the following nonlinear V-FIDE:{
u′(x) + u(x) + 1

2

∫ x

0
xu2(t)dt− 1

4

∫ 1

0
tu3(t)dt = y(x),

u(0) = 0,

where y(x) = 2x + x2 + 1
10x

6 − 1
32 , the exact solution is u(x) = x2 (see Fig-

ure 1(a)). The comparison of the numerical results and the absolute error are
listed in Table 1, we get an exact solution with higher precision than the method
of hybrid Legendre polynomials and Block-Pulse functions [9] for n = 12.
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Figure 1. Approximate solutions: a) Example 1, b) Example 2.

Table 1. Numerical result and absolute error for Example 1.

x Exact solution Presented method In [9] Absolute error in [9] Absolute error

0.0 0.000000 0.000000 0.000000 0.00000 0.00000
0.1 0.010000 0.010044 0.010917 9.100E-4 4.4259E-5
0.2 0.040000 0.040094 0.041703 1.703E-3 9.3974E-5
0.3 0.090000 0.090146 0.092364 2.364E-3 1.4657E-4
0.4 0.160000 0.160198 0.162911 2.911E-3 1.9813E-4
0.5 0.250000 0.250243 0.253371 3.371E-3 2.4307E-4
0.6 0.360000 0.360289 0.364244 4.244E-3 2.8891E-4
0.7 0.490000 0.490346 0.493830 3.830E-3 3.4553E-4
0.8 0.640000 0.640408 0.642375 2.375E-3 4.0786E-4
0.9 0.810000 0.810468 0.810337 3.370E-4 4.6836E-4
1.0 1.000000 1.000520 0.998506 1.494E-3 5.1647E-4

r r6 = 1.99 r12 = 1.99

CPU 1.75s

Example 2. For the following V-FIDE:{
u′(x)+u(x)−2

∫ x

0
sin(x)u2(t)dt= cos(x) + (1− x) sin(x) + cos(x) sin2(x),

u(0) = 0.

The exact solution is u(x) = sin(x) (see Fig. 1 (b))
Table 2 illustrates the numerical results and the absolute error. From the

Table 2 results, we can see that our method approximates the exact solution
more closely than the hybrid Legendre polynomials and Block-Pulse functions
[9] for n = 12.

Example 3. Consider the nonlinear V-FIDE:{
u′(x) +

∫ x

0
(u2(t)− 2)dt = 1

5x
5,

u(0) = 0.

with the exact solution given by u(x) = x2. The comparison of the numerical
results and the absolute error are listed in Table 3, our method is more accurate
than the method of Laplace discrete adomian decomposition in [4] for n = 4.

Math. Model. Anal., 26(3):469–478, 2021.
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Table 2. Numerical result and absolute error for Example 2.

x Exact solution Presented method In [9] Absolute error in [9] Absolute error

0.0 0.000000 0.000000 0.000032 3.2E-5 1.82077E-14
0.1 0.099833 0.099793 0.099435 3.98417E-4 3.99348E-5
0.2 0.198669 0.198584 0.198304 3.65331E-4 8.53956E-5
0.3 0.295520 0.295387 0.295493 2.72067E-4 1.33170E-4
0.4 0.389418 0.389239 0.389688 2.69658E-4 1.79180E-4
0.5 0.479425 0.479207 0.479311 1.14539E-4 2.18684E-4
0.6 0.564642 0.564383 0.562965 1.67747E-3 2.59684E-4
0.7 0.644217 0.643906 0.640005 4.21269E-3 3.11780E-4
0.8 0.717356 0.716984 0.708103 9.25309E-3 3.71839E-4
0.9 0.783326 0.782891 0.764843 1.84839E-2 4.36266E-4
1.0 0.841470 0.840970 0.807845 3.36260E-2 5.01073E-4

r r6 = 2.00 r12 = 1.99

CPU 0.923s

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 2. Approximate solution of Example 3.

Table 3. Numerical result and absolute error for Example 3.

x Exact sol. Presented method In [4] Abs. error in [4] Abs. error

0.0 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
0.2 0.04000000 0.040000000 0.03999986 1.41640E-7 4.68375E-17
0.4 0.16000000 0.160000000 0.15999094 9.05930E-6 2.77556E-17
0.6 0.36000000 0.360000000 0.35989712 1.02879E-4 1.11022E-16
0.8 0.64000000 0.64000000 0.63942742 5.72582E-4 2.22045E-16
1.0 1.00000000 1.00000000 0.99787295 2.12705E-3 1.11022E-15

CPU 0.579s

6 Conclusions

In this article, the SRKM and the HPM were successfully applied to figure out
the nonlinear V-FIDE by getting the uniform approximate solution. Besides,
compared with the method of Hybrid Legendre polynomials [9], Laplace dis-
crete adomian decomposition method [4], the convergence speed and accuracy
of solution were better.
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