
Mathematical Modelling and Analysis

Volume 26, Issue 1, 147–169, 2021

https://doi.org/10.3846/mma.2021.12920

Solving Nonlinear PDEs Using the Higher
Order Haar Wavelet Method on Nonuniform
and Adaptive Grids

Mart Ratasa, Andrus Saluperea and Jüri Majakb
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Abstract. The higher order Haar wavelet method (HOHWM) is used with a nonuni-
form grid to solve nonlinear partial differential equations numerically. The Burgers’
equation, the Korteweg–de Vries equation, the modified Korteweg–de Vries equation
and the sine–Gordon equation are used as model equations. Adaptive as well as
nonadaptive nonuniform grids are developed and used to solve the model equations
numerically. The numerical results are compared to the known analytical solutions as
well as to the numerical solutions obtained by application of the HOHWM on a uni-
form grid. The proposed methods of using nonuniform grid are shown to significantly
increase the accuracy of the HOHWM at the same number of grid points.
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1 Introduction
Wavelet based numerical methods have seen wide use since the 1990s [11, 12].
Since then, numerous papers on wavelet based numerical methods have been
published with applications in various types of Partial Differential Equations
(PDEs) of mathematical physics [19,21,38,45,56,58,61]. Haar wavelets deserve
a special mention among other wavelets, however. They are made up of pairs
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of piecewise constant functions and are therefore mathematically the simplest
of all the wavelet families. They can be integrated analytically arbitrary times.

The Haar Wavelet Method (HWM) was originally proposed in [26] for solv-
ing differential equations. It was later extended for solving a wide class of
integro-differential and integral equations [4, 5, 6, 23, 53, 57, 83]. According to
this method, the highest order derivative included in the differential equations
is expanded into the Haar series. Lepik developed the integration techniques
for the HWM in [52, 53, 54, 57, 58]. A thorough overview of the HWM and its
applications can be found in [59]. The weak formulation based HWM was in-
troduced and complexity issues of the strong as well as weak formulation based
HWM were discussed in [61].

One of the most common areas of application for the HWM seems to be
engineering. The method has been used in solid mechanics [53,54,58], analysis
and modelling of composite structures [24,25,39,77], free vibration analysis [44,
60,88,89], solving fractional differential equations [16,73] as well as many other
areas, e.g [69, 70, 71, 72]. In addition to engineering, Haar wavelets have found
application in various research areas from informatics to medicine [20,22,87].

Recently, the higher order Haar wavelet method (HOHWM) has been devel-
oped [63] as an improvement of the HWM. The HOHWM has been found to in-
crease accuracy as well as convergence over the regular HWM [42,43,46,62,63].
In case of the HWM the highest derivative present within the differential equa-
tion is expanded into the Haar series. However, the HOHWM proposes that
a derivative of 2s higher order is expanded into the Haar series. This proce-
dure introduces 2s extra integration coefficients, although, in case of s = 1,
the equation can be evaluated at its boundary in order to solve for those extra
coefficients. Therefore, this paper focuses on the use of the HOHWM over the
conventional HWM.

The nonuniform Haar wavelets were first introduced in [30]. They were first
used to solve integral and differential equations by Lepik [55]. The nonuniform
Haar wavelets have since been used in multiresolution analysis [3], boundary
value problems [32], fractional order problems [64,78] as well as two dimensional
problems [68]. An overview of uniform and non-uniform wavelet based methods
can be found in [48].

In order to deal with PDEs with rapid solution variation, adaptive grids
have been developed [10,15,31,75]. They have seen use in many areas, including
astrophysics and turbulence problems in hydrodynamics [35,47,81,84], among
others. The general idea of adaptive grids is to be able to reshape the grid
in such a way that areas with large variations have more grid points. Such a
system uses error estimates as weight functions to determine where the grid
needs to be more concentrated. Adaptivity can be achieved by changing the
number of grid points or the movement of grid points. Since the HWM and
the HOHWM require a fixed number of grid points, movement of grid points
is considered within this paper. With a fixed number of grid points resolution
is raised locally at the expense of decreased resolution in other regions. The
effect of the decreased resolution can be minor if the other regions previously
have more grid points than are needed for the required accuracy. The basic
premise of an adaptive grid is that when moving from coordinate grid ξ to s
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with a weight function of w, wds = cdξ holds for a proportionality constant c.
In the current study, the HOHWM is used to solve nonlinear partial differen-

tial equations which have abrupt changes in their solutions. The benefits of the
nonuniform grid can best be observed in solutions with such abrupt changes.
To the best knowledge of the authors, this is the first time the HOHWM is
used on a nonuniform grid. The Burgers’ equation [17, 18] and the Korteweg–
de Vries (KdV) equation were chosen as model equations because they have
previously been studied using the HOHWM on the uniform grid [76] and have
analytical solutions [2, 7, 49, 67] which make comparisons easy to draw. The
Burgers’ equation finds applications in modelling of turbulence [17] and traffic
flow [66] as well as in nonlinear acoustics [37] and non-stationary shock waves
in fluids [50]. The KdV equation was first used as a description of the propa-
gation of long unidirectional shallow water waves in a rectangular channel, but
it has been used to model different nonlinear phenomena since then [29]. The
modified Koretweg–de Vries equation (mKdV) was chosen as a model equation
because of its close relation to the KdV equation as well as the existence of
an analytical solution [1, 41]. The mKdV equation finds use in modelling of
behaviour of anharmonic lattices [41]. The sine–Gordon equation was chosen
as the last model equation because of the existance of an analytical traveling
wave solution [51] and the fact that its analytical solution is not asymptotically
homogeneous like those of the KdV and mKdV. The sine–Gordon equation was
originally developed to describe surfaces with constant mean curvature [13] and
has also seen use in one-dimensional crystal dislocation theory [33,34] as well as
in many other fields [14,65,79,80]. In the current study, the adaptive grid with
a constant number of grid points according to the constrained least-squares
statement defined in [31] is used.

This paper is structured as follows. Firstly, the spatial discretization and
nonuniform grids are described in Section 2. Section 3 focuses on the Haar
wavelet family and describes how it is used in the HOHWM. Model equations
and their corresponding exact solutions are introduced in Section 4, and the
nonuniform HOHWM is applied to them in Section 5. The numerical results
are discussed in Section 6 and conclusions are drawn in the final section.

2 Discretization

The Haar wavelet method is used along the spatial axis only within this paper.
The ODEPACK [40] provided by SciPy [85] is used for integration with respect
to time. It automatically switches between Adams and BDF [8, 28, 36] solvers
according to [74]. Since this involves calculating the value of the function at
each moment in time, this allows for adaptive changes to the grid.

The collocation method is used alongside the HOHWM. As such, the col-
location points lie in the middle of an adjacent pair of grid points. Given the
domain x ∈ [A,B], the 2M + 1 grid points can be described as

xg(l), l = 0, 1, . . . , 2M, xg(l + 1) > xg(l)∀l, xg(0) = A, xg(2M) = B.

The 2M collocation points can be obtained as

x(l) = 0.5(xg(l) + xg(l + 1)), l = 0, 1, . . . , 2M − 1. (2.1)

Math. Model. Anal., 26(1):147–169, 2021.



150 M. Ratas, A. Salupere and J. Majak

Within this paper, three different approaches are used for numerical differ-
entiation with respect to the space coordinate. Two of those approaches are
static (the space grid does not change during usage) and the third is adaptive
(the space grid changes during operation).

2.1 Nonuniform grids

The first type of nonuniform grid for domain x ∈ [0, 1] follows the formula

xg(l) = (ql − 1)/(q2M − 1), l = 0, 1, . . . , 2M, (2.2)

where q is an arbitrary constant. It is clear that for q < 1 the above leads to a
grid which concentrates grid points around 1 and that in case of q > 1 the grid
points are concentrated around 0. It is also clear that given q → 1 the grid
(2.2) becomes uniform. This type of grid is most applicable for cases where the
characteristic behaviour of a solution tends to concentrate near a boundary.
The same type of nonuniform grid was used in [68].

The second type of nonuniform grid for domain x ∈ [0, 1] is perhaps a little
simpler. It follows the formula

xg(l) =


0, l = 0,

(l − 1)(1− 2γ)

2M − 2
+ γ, 0 < l < 2M,

1, l = 2M,

(2.3)

where γ is the gap parameter. It describes how far from either boundary the
coarse part of the grid ends and the finer part begins. Such a grid is most
applicable for cases where the characteristic behaviour of a solution stays in
the middle of the domain, yet its exact position cannot be determined.

2.2 Adaptive grid

In the current paper the adaptive grid based on the constrained least-squares
statement [31] is used. According to it, when changing the grid, the new grid
x? will have grid points such that

x?k+1 − x?k =
1/wk+1/2∑N−1
i=1 1/wi+1/2

(x?max − x?min) , k = 1, . . . , N − 1, (2.4)

where x?min and x?max denote the minimal and maximal grid point, respectively
and w is the weight function. It must be noted, that wi+1/2 is used. In the
current paper, the weight function is calculated at collocation points, which lie
in the middle of two subsequent grid points according to (2.1) and thus the
values at the collocation points can directly be used. For the weight function,
either the function itself or its first derivative is scaled and a constant e is added
(to ensure the weights never reach 0). The weight function from the function
u is thus obtained as

w = |u|d + e,



Solving Nonlinear PDEs Using the Higher Order Haar Wavelet Method 151

where d is the scaling factor and e is the offset. Similarly, when using the
derivative one obtains

w = |ux|d + e.

The algorithm (2.4) is carried out iteratively as many times as necessary for
conversion of the grid points. During each iteration, the weights are estimated
at the new collocation points by interpolation.

In case of the adaptive grid, a new grid is only calculated if the characteristic
point in the numerical result (i.e the maximal point of the function or its
derivative) has moved by δ. This helps to save on CPU time.

3 Haar wavelet family

In the following, the Haar wavelet family is defined utilizing the notation in-
troduced by Lepik in [55] and Oruç in [68]. The integration domain [A,B] can
be divided into 2M subintervals. The maximal level of resolution J is defined
as M = 2J . The base Haar wavelet family can be described as

hi(x) =


1 for x ∈ [ξ1(i), ξ2(i)),

−ci for x ∈ [ξ2(i), ξ3(i)),

0 elsewhere,

(3.1)

where

ξ1(i) = xg(2kµ), ξ2(i) = xg ((2k + 1)µ) ,

ξ3(i) = xg (2(k + 1)µ) , µ = M/m.
(3.2)

The coefficient ci is calculated from∫ B

A

hi(x)dx = 0, (3.3)

which gives
ci = (ξ2(i)− ξ1(i))/(ξ3(i)− ξ2(i)). (3.4)

In (3.1)–(3.3), k = 0, 1, ...,m− 1 is the translation parameter. The parame-
ter m = 2j corresponds to the maximum number of rectangular waves that can
be sequentially deployed in the interval [A,B] for the given dilation parameter
j = 0, 1, . . . , J . The index i is calculated from i = m+k+ 1. While the scaling
function h1(x) = 1 is constant, the other Haar functions contain a single rect-
angular wave. Since the scaling function h1(x) does not include a wave, in its
case m = 0, ξ1 = A, ξ2 = B, ξ3 = B. A general example of the Haar wavelets
for J = 2 on a nonunfiorm grid is shown in Figure 1. In this figure locations
where the vertical lines cross the x axis along with the two boundary points
form the grid points.

The Haar functions are orthogonal to each other and therefore form a good
transform basis ∫ B

A

hi(x)hl(x)dx =

{
2−j , i = l,

0, i 6= l.

Math. Model. Anal., 26(1):147–169, 2021.
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Figure 1. Haar wavelets on a nonuniform grid for J = 2 as described by (3.2)–(3.4).

Thus, any square integrable function f(x) can be expanded into Haar wavelets
as

f(x) =

∞∑
i=1

aihi(x), (3.5)

where ai are the Haar coefficients.
The integrals of order n of the Haar functions (3.1) can be calculated ana-

lytically as [58]

pn,i(x) =



0 for x ∈ [A, ξ1(i)),

[x− ξ1(i)]n/n! for x ∈ [ξ1(i), ξ2(i)),
[x−ξ1(i)]n−(1+ci)[x−ξ2(i)]n

n! for x ∈ [ξ2(i), ξ3(i)),
[x−ξ1(i)]n−(1+ci)[x−ξ2(i)]n

n!

+ci[x− ξ3(i)]n/n! for x ∈ [ξ3(i), B).

(3.6)

Within this article the matrix form of the above formulation is used. There-
fore, the elements of (2M) × (2M) matrix H, are given as values of the Haar
functions

Hil = hi(xl) (3.7)

in collocation points xl = (l − 1/2)∆x. The (2M) × (2M) matrix Pn with
elements

(Pn)il = pn,i(xl), (3.8)

denotes the nth integral of the Haar wavelet matrix for a given resolution J .
Using (3.7) and (3.8) and considering the vector a = (a1, a2, . . . , a2M ) one
obtains f(x) = a ·H instead of (3.5) and∫

· · ·
∫ x

A︸ ︷︷ ︸
n

H dξ . . . dξ︸ ︷︷ ︸
n

= Pn.

It must be noted, that the matrices H and Pn depend on space coordinate x
and that the vector a is finite in a discrete setting.

It implies from (3.6) that in boundary points A and B hold

[Pn(A)]i = 0 ∀n > 0, ∀i (3.9)
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and

[Pn(B)]i = pn,i(B) =
[B − ξ1(i)]

n − (1− ci) [B − ξ2(i)]
n

+ ci [B − ξ3(i)]
n

n!
.

Due to equation (3.9) the boundary conditions for particular problems are often
simplified.

4 Model equations

The four model equations along with their corresponding exact solutions are
described here. The Burgers’ equation

ut + uux − νuxx = 0, (4.1)

where ν is the viscosity parameter, was used as the first model equation. Its
analytical solution has been shown to be

ue(x, t) =
2νπ

L

∑∞
n=1 exp(−Ent)nIn

(
R′
)

sin(nπx/L)

I0
(
R′
)

+ 2
∑∞
n=1 exp(−Ent)In

(
R′
)

cos(nπx/L)
, (4.2)

where R′ = R0/(2π) and R0 = u0L/ν is the Reynolds number, En = νn2π2/L2,
In represents the modified Bessel functions of first kind and L = B − A is the
x domain range [2, 7, 9, 27,49]. The KdV equation

ut + αuux + βuxxx = 0, (4.3)

where α is the nonlinear parameter and β is the dispersion parameter, was used
as the second model equation. The analytical solution for the KdV equation
has been found in the form

ue(x, t) =
3c

α
sech2

[
1

2

√
c

β
(x− ct− x0)

]
, (4.4)

where c is the phase speed of the travelling soliton and x0 denotes the initial
phase [67]. The sine–Gordon equation, the third model equation,

utt − uxx + sinu = 0 (4.5)

has been shown to have an analytical solution in the form

ue(x, t) = 4arctan

[
exp

(
x− ct− x0√

1− c2

)]
, (4.6)

where c is the speed at which the phase of the travelling wave propagates and
x0 denotes the initial phase [51]. Finally, the mKdV equation

ut + 6αu2ux + βuxxx = 0, (4.7)

where α is the nonlinear coefficient and β is the dispersion coefficient, was used
as the fourth model equation. The analytical solution for the mKdV equation
has been found in the form

ue(x, t) =

√
c

αβ
sech

[√
c

β
(x− ct− x0)

]
, (4.8)

where x0 denotes the initial phase and c is the phase speed of the travelling
wave [1, 41,82,86].

Math. Model. Anal., 26(1):147–169, 2021.
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5 The higher order Haar wavelet method

This section will give an overview of how the HOHWM is applied for spatial
integration in case of each specific model equation within this paper. Firstly,
the general steps are described and then the results specific to each model
equation are provided.

With the HOHWM, according to [63], the derivative of n+ 2s order, where
n is the maximal spatial derivative present within the equation, is expanded
into the Haar series for a fixed time moment tj . Thus,

u(n+2s)x(x, tj) = a ·H (5.1)

is obtained. In order to obtain the function u, equation (5.1) is integrated
n+ 2s times to obtain

u(x, tj) = a ·Pn+2s +

n+2s−1∑
i=0

ci
xi

i!
, (5.2)

where ci are unknown coefficients. In equation (5.2), xi denotes an element
wise power of the vector x. Since the equation has n spatial derivatives, these
provide n conditions that can be evaluated in order to solve for the unknown co-
efficients ci. However, 2s additional coefficients are introduced by the HOHWM
(in comparison to the HWM) which must be obtained using some supplemen-
tary information.

In the present paper s = 1 is used. This gives u(n+2)x(x, tj) = a · H.
Integrating n+ 2 times yields

u(x, tj) = a ·Pn+2 +

n+1∑
i=0

ci
xi

i!
. (5.3)

Using the n boundary conditions as well as evaluating the differential equation
at its boundaries (A and B) one obtains the n+2 equations needed to solve for
the n+ 2 unknown coefficients ci. Some of these coefficients can depend on the
Haar wavelet coefficients vector a. After solving for the unknown coefficients
and inserting the results into expression (5.3) one obtains the result in the form
of

u(x, tj) = a ·Rn+2 + Sn+2,

where Rn+2 and Sn+2 are matrices which only depend on the boundary condi-
tions and the grid. Thus the values for these can be calculated right after the
grid has been specified.

5.1 The Burgers’ equation

For the given homogeneous boundary conditions

u(0, t) = 0, u(1, t) = 0, (5.4)
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the equation (4.1) is evaluated at the boundary points as

ut(0, t) + u(0, t)ux(0, t)− νuxx(0, t) = 0,

ut(1, t) + u(1, t)ux(1, t)− νuxx(1, t) = 0.
(5.5)

Since the boundary conditions (5.4) are homogeneous ut(0, t) = ut(1, t) = 0
and (5.5) simplifies to

uxx(0, t) = 0 uxx(1, t) = 0. (5.6)

The addition of (5.6) gives

R4 = P4 −P4(1) · x + P2(1) · x− x3

6
, S4 = 0.

The initial condition was taken from the exact solution (4.2). It can be shown
that at t = 0 the solution simplifies to

u(x, 0) = u0 sin
(πx
L

)
,

which is used as the initial condition. Within the context of this paper u0 = 1
is used.

5.2 The KdV equation

For the given homogeneous boundary conditions

u(0, t) = u(1, t) = ux(1, t) = 0, (5.7)

the equation (4.3) is evaluated at the boundary points as

ut(0, t) + αu(0, t)ux(0, t) + uxxx(0, t) = 0,

ut(1, t) + αu(1, t)ux(1, t) + uxxx(1, t) = 0.

Since the boundary conditions (5.7) are homogeneous ut(0, t) = ut(1, t) = 0
and the above simplifies to

uxxx(0, t) = 0, uxxx(1, t) = 0. (5.8)

The addition of (5.8) gives

R5 = P5 +
1

2
P3(1) ·

(
−x4 + 2x3 − x2

)
+

1

2
P4(1) ·

(
4x4 − 10x3 + 6x2

)
+

1

2
Px(1) ·

(
−6x4 + 16x3 − 12x2

)
, S5 = 0.

The initial condition was taken from the exact solution (4.4) at t = 0. This
gives

u(x, 0) =
3c

α
sech2

[
1

2

√
c

β
(x− x0)

]
,

which is used as the initial condition with specified values for c, x0 as well as
for α and β.

Math. Model. Anal., 26(1):147–169, 2021.
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5.3 The sine–Gordon equation

For given constant boundary conditions

u(0, t) = 0, u(1, t) = π (5.9)

the equation (4.5) is evaluated at the boundary points as

ut(0, t)− uxx(0, t) + sinu(0, t) = 0, ut(1, t)− uxx(1, t) + sinu(1, t) = 0.

Since the boundary conditions (5.9) are constant ut(0, t) = ut(1, t) = 0 and the
above simplifies to

uxx(0, t) = 0, uxx(1, t) = 0. (5.10)

The addition of (5.10) gives

R4 = P4 −P4(1) + P2(1)
x− x3

6
, S4 = 2πx.

The initial condition was taken from the exact solution (4.6). It is evaluated
at t = 0 to give

u(x, 0) = 4arctan

[
exp

(
x− x0√
1− c2

)]
,

which is used as the initial condition with specified value of phase speed c.

5.4 The mKdV equation

Given homogeneous boundary conditions

u(0, t) = u(1, t) = ux(1, t) = 0, (5.11)

the equation (4.7) is evaluated at the boundary points as

ut(0, t) + 6α [u(0, t)]
2
ux(0, t) + uxxx(0, t) = 0,

ut(1, t) + 6α [u(1, t)]
2
ux(1, t) + uxxx(1, t) = 0.

Since the boundary conditions (5.11) are homogeneous ut(0, t) = ut(1, t) = 0
and the above simplifies to

uxxx(0, t) = 0, uxxx(1, t) = 0. (5.12)

The addition of (5.12) gives

R5 = P5 + P5(1)
(
x2 − 2x

)
+ P4(1)

(
x− x2

)
+ P2(1)

3x2 − 2x− x4

24
,

S5 = 0.

The initial condition was taken from the exact solution (4.8) at t = 0. This
gives

u(x, 0) =

√
c

αβ
sech

[√
c

β
(x− x0)

]
,

which is used as the initial condition with specified values for coefficients c, x0
as well as parameters α and β.
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6 Analysis of numerical results

6.1 Optimal values for parameters d and δ

Given the adaptive grid described by (2.4) it becomes evident that the accuracy
of the method depends the values of parameters d, e and δ. In order to find
out which values for the parameters to use for each model equation, a series of
calculations were conducted using numerous different combinations of values
for the parameters d, e and δ. Within this subsection, only results in the case of
the sine–Gordon equation at J = 4 are described in detail. Only the parameter
intervals for which the best results are obtained are shown for the other model
equations. The maximal deviation from the exact solution

∆u = max
x,t
|u(x, t)− ue(x, t)|

was used as a measure of success for a given set of parameters. The sine-
Gordon equation at different resolutions as well as the other model equations
were handled in a similar manner and the detailed results are omitted for
conciseness sake.
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Figure 2. Maximum deviation from exact solution of the sine-Gordon equation with
c = 1 − 5 · 10−5 at J = 4 using the adaptive grid (2.4) for various grid parameters.

The sine-Gordon equation (4.5) was numerically solved at J=4 with pa-
rameter values varying from d=0.1, 0.11, . . . , 0.85, e=0.05, 0.1, 0.2, 0.3, 0.4, 0.5
and 0.001 < δ < 0.05. The maximum deviation from the exact solution (4.6)
was calculated and compared between the various numerical experiments. Such
numerical results are shown in Figure 2.

Figure 2 demonstrates that the optimal values are located in the region
where δ < 0.02 and 0.15 < d < 0.4 for all considered values of parameter e.
According to the detailed analysis the best results were obtained for d = 0.33,
e = 0.3 and δ = 0.008. With those parameter values the maximum deviation
from the exact solution was ∆u = 0.033198. This makes the relative deviation
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0.53%. The highest deviation from the exact solution was found on the wave-
front of the solution (near x − ct − x0 = 0). The parameter values between
which the best results were obtained for the KdV, the sine-Gordon and the
mKdV equations are shown in Table 1.

Table 1. Adaptive grid (2.4) parameter values that resulted in the best results for the
various model equations at different resolutions.

J = 4 J = 5 J = 6
d range δ range d range δ range d range δ range

Equation min max max min max max min max max

KdV 0.3 0.5 0.01 0.3 0.4 0.01 0.3 0.5 0.005
sine-Gordon 0.15 0.4 0.02 0.3 0.4 0.02 0.3 0.4 0.025
mKdV 0.3 0.4 0.01 0.45 0.55 0.005 0.3 0.4 0.02

6.2 Discussion of numerical results

The Burgers’ equation (4.1) was numerically solved for various values of pa-
rameter ν at various resolutions J . The numerical solutions were compared
to the exact solution (4.2). The nonuniform grid (2.2) was used for this prob-
lem since the solution is known for creating a steep decline near its boundary
x = 1. The time moment tf = max(0.5, tc) was determined by obtaining
the value of critical time moment tc which is the maximal time t for which
maxx,t<tc |u(x, t)− ue(x, t)| < 10−3. These numerical results were compared
with the uniform grid results previously published in [76]. Such numerical
results are shown in Table 2.

Table 2. Values of tf against the resolution J in the case of the Burgers’ equation with

ν = 1
100π

, ν = 1
110π

, 1
120π

; parameter q characterises the nonuniformity of the grid.

ν 1
100π

1
110π

1
120π

Uniform Nonuniform Uniform Nonuniform Uniform Nonuniform
J q tf tf tf tf tf tf

3 0.71 0.2375 0.39 0.1625 0.38 0.1625 0.38
4 0.85 0.2875 0.50 0.275 0.50 0.225 0.50
5 0.92 0.2875 0.50 0.3181 0.50 0.30 0.50
6 0.97 0.3580 0.50 0.3542 0.50 0.3745 0.50
7 0.99 0.50 0.50 0.4646 0.50 0.4143 0.50
8 * 0.50 * 0.50 * 0.50 *

As the resolutions J increases, the value of the nonuniformity parameter q
at which the best results were obtained approaches 1. This is because otherwise
there would be too many grid points gathered near the boundary of the domain
which leads to numerically singular matrices because the grid points or the
respective Haar wavelet function values are numerically equal. It is clear that
for J > 6 the advantages of a nonuniform grid vanish simply because of the
abundance of collocation points. In fact, none of the nonuniform grids used
outperformed the uniform grid in this case, which is why such results are not
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Table 3. Maximal deviation from the exact solution ∆u against the resolution J in the
case of the Burgers’ equation with ν = 1

100π
, 1
110π

, 1
120π

.

ν 1
100π

1
110π

J N Uniform Nonuniform Uniform Nonuniform
q ∆u ∆u ∆u ∆u

3 16 0.71 — 0.004674 — 0.0066496

4 32 0.85 — 1.1031 · 10−4 — 1.1622 · 10−4

5 64 0.92 — 7.0345 · 10−6 — 7.3215 · 10−6

6 128 0.97 0.0418 5.1019 · 10−6 0.0875 5.1855 · 10−6

7 256 0.99 6.8360 · 10−4 4.0604 · 10−6 0.001034 4.8919 · 10−6

8 512 * 5.0941 · 10−5 * 8.0159 · 10−5 *

ν 1
120π

J N Uniform Nonuniform
q ∆u ∆u

3 16 0.71 — 0.005067

4 32 0.85 — 1.3072 · 10−4

5 64 0.92 — 7.974 · 10−6

6 128 0.97 0.2021 3.8774 · 10−6

7 256 0.99 0.001611 5.9934 · 10−6

8 512 * 1.0959 · 10−4 *

included in Table 2. Such cases are marked with * in the table as well as
subsequent tables.

The maximal deviations from the exact solution ∆u in case of the Burgers’
equation are shown in Table 3 whereN = 2M denotes the number of collocation
points. It must be noted that for J < 6 the HOHWM using the uniform grid
was unable to successfully calculate the numerical result up to the final time
of tf = 0.5. However, even at J = 6 the nonuniform grid approach easily
outperforms the uniform grid version of the HOHWM. The table also shows
that for resolution J > 4 the accuracy no longer increases significantly in the
case of the nonuniform grid.

The KdV equation (4.3) was solved at various resolutions J and the nu-
merical results were compared to the exact solution (4.4). The uniform grid
results from [76] were used and new results with the nonuniform grid (2.3) and
the adaptive grid (2.4) were calculated. The numerical result itself was used as
the basis for the weight function in the adaptive grid for this model equation.
The maximal deviation from the exact solution for the numerical experiments
are shown in Table 4. It must be noted that the values of d, e and δ for which
the best numerical accuracy was obtained vary from resolution to resolution.

When dealing with the sine-Gordon equation (4.5), the uniform grid, non-
uniform grid (2.3) as well as the adaptive grid (2.4) were used. In this case,
the first spatial derivative was used as the basis for the weight function. The
numerical results were compared to the exact solution (4.6). The maximal
deviation from the exact solution ∆u for the different grids can be seen in
Table 5.
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Table 4. Maximal deviation from the exact solution ∆u against resolution J in the case of
the KdV equation with α = 6, β = 4 · 10−4 and x0 = 0.3, c = 2, tf = 0.2.

J Uniform grid Grid (2.3) with γ = 0.1 Adaptive grid (2.4)
∆u ∆u ∆u d e δ

4 — — 6.1679 · 10−4 0.41 0.1 0.004

5 0.01123 0.001352 1.5731 · 10−5 0.33 0.05 0.002

6 0.002541 0.001143 1.5085 · 10−6 0.4 0.1 0.002

7 1.704 · 10−4 7.694 · 10−5 1.2250 · 10−5 0.3 0.3 0.006

Table 5. Maximal deviation from the exact solution ∆u against resolution J in the case of
the sine-Gordon equation with c = 1 − 5 · 10−5 and x0 = 0.3, tf = 1−2x0

c
.

J N Uniform grid Grid (2.3) with γ = 0.1 Adaptive grid (2.4)
∆u ∆u ∆u d e δ

4 32 1.189817 1.095051 0.033198 0.33 0.3 0.008

5 64 0.4856858 0.3261581 0.0018608 0.32 0.2 0.018

6 128 0.1039031 0.06173826 1.0331 · 10−4 0.3 0.2 0.018

7 256 0.01376712 0.006484227 1.1429 · 10−5 0.3 0.2 0.024

Finally, the mKdV equation (4.7) was numerically solved using the uniform
grid, the nonuniform grid (2.3) as well as the adaptive grid (2.4). The numer-
ical result itself was used for the weight function in the adaptive grid for this
equation. The obtained numerical results were compared to the exact solution
(4.8). The maximal deviation from the exact solution ∆u for the different grids
at different resolutions can be seen in Table 6.

Table 6. Maximal deviation from the exact solution ∆u against resolution J in the case of
the mKdV equation with α = 1, β = 10−2, c = 16 and x0 = 0.3, tf = 1/40.

J N Uniform grid Grid (2.3) with γ = 0.1 Adaptive grid (2.4)
∆u ∆u ∆u d e δ

4 32 — — 0.009246 0.44 0.2 0.004

5 64 0.0719508 0.070632 1.86 · 10−4 0.48 0.1 0.002

6 128 0.0117955 0.0052081 6.1 · 10−5 0.31 0.2 0.002

7 256 8.4875 · 10−4 — 7.84 · 10−4 0.3 0.2 0.048

Tables 2–6 show that the nonuniform grid always outperformed the uniform
grid version of the HOHWM. This is especially clear given that in some cases
the uniform and static nonuniform grid approaches in Tables 4 and 6 are unable
to successfully finish the integration. Furthermore, Tables 4–6 show that the
adaptive grid outperforms the static nonuniform grid as well. It is clear from
Tables 2 and 3 that the same (or even better) accuracy obtained with the
uniform at 256 or 512 grid points is achieved with only 32 grid points by
employing the nonuniform grid (2.2). Similarly, Tables 4–6 clearly show that
the same (or even better) accuracy obtained with the uniform grid at 256 grid
points can be achieved with only 64 grid point by employing the adaptive grid
(2.4). It must be noted that as can be seen from Table 6, a higher resolution
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J does not always guarantee a numerical result of higher accuracy. This is the
case because the matrices involved get closer to being singular matrices as the
resolution increases and solving a linear system with a near-singular matrix
introduces inaccuracies.

It is clear that the usage of the nonuniform as well as the adaptive grid will
also have an impact on the computational time. The computational times of
the nonuniform grid approach is compared to the uniform grid approach in case
of the Burgers’ equation in Table 7. In Table 7 for J = 8 only the uniform grid
approach is considered since a nonuniform approach was not observed to give
a better result. Similar comparison is made for the other model equations in
Table 8. Tables 7–8 show that a result of similar or better accuracy is able to be
obtained with less CPU time using the adaptive grid approach when compared
to the uniform grid approach.

An example of how the grid adapts to the moving wave can be seen in
Figure 3. The figure shows that as the wave moves, the grid adapts to its
position.

Figure 3. Example of how the adaptive grid changes with the changes in the waveform in
case of the KdV equation: calculated solution (left) and exact solution (right).

7 Conclusions

A nonuniform grid approach was developed and used alongside the HOHWM
in order to account for abrupt changes within the solution. Firstly, two static
nonuniform grids were introduced. For either of those grids, a prior knowledge
of the shape of the solution is required in order to show significant improvement
in accuracy. However, in a lot of cases it is impossible to know the shape of
the solution before the start of the calculations. Thus, an adaptive nonuniform
grid was proposed. It changes the grid adaptively so that the areas with the
most abrupt changes always have the most grid points.

The numerical results (Tables 2–3) showed that in case of the Burgers’
equation a significant gain in accuracy can be obtained by the use of a static
nonuniform grid when compared to the uniform grid HOHWM. In fact, the
same level of accuracy was obtained with the nonuniform grid given 8–16 times
fewer grid points.

The adaptive grid (Tables 4–6) also showed a significant gain in accuracy
when compared to both the uniform grid approach as well as the static nonuni-
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form grid approach. The same level of accuracy was obtained using 8 times
fewer grid points than were needed for the uniform grid approach.

The most computationally expensive part of the numerical calculation is
solving the linear system of equations. Therefore, the ability to obtain results
with the same accuracy with considerably fewer grid points is quite an advan-
tage. Instead of solving a 256×256 linear system one can solve a 32×32 linear
system.

The use of a nonuniform or an adaptive grid alongside the HOHWM have
shown to give significant advantages. However, further studies need to be car-
ried out in order to find an optimal way of obtaining the necessary parameters
for the adaptive grid. Herein constant boundary conditions were utilized. How-
ever, time dependent boundary conditions can be handled similarly to cases
where differential equations include time dependent function as coefficients or
right-hand side terms (similarly to handling of graded materials in [63]). This
is a promising subject for future studies.
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[71] Ö. Oruç, F. Bulut and A. Esen. Numerical solutions of regularized long wave
equation by Haar wavelet method. Mediterranean Journal of Mathematics,
13(5):3235–3253, 2016. https://doi.org/10.1007/s00009-016-0682-z.
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