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1 Introduction

Nonlinear elliptic problems have been the subject of extensive research in
numerical analysis due to their applications in describing steady states in
various fields of physics, such as elasticity, flow problems, nonlinear optics
(see: [7,10,12,14]). In [16], nonlinear magnetic potential problems are discussed.
Non-Newtonian fluids with power-law stess tensors are addressed in [15].

A widely used approach is to discretize the problem with finite elements
(FEM), then apply e.g. a Newton-type iterative solver with conjugate gradient
method used in inner iteration. The construction of such inner-outer itera-
tions can be found in [11,18], their framework for uniformly monotone elliptic
problems has been presented in [1, 19], see also [17, 20] for recent applications.
The present paper extends these methods for non-uniformly monotone elliptic
operators.
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The use of similar preconditioners for elliptic problems can be found in
[13], where the authors introduce its applicability for quasi-Newton methods.
This has also been extended recently for elliptic operators with non-uniformly
monotone lower and upper bounds, see [8, 9].

This paper provides an inexact Newton method, coupled with precondi-
tioned conjugate gradient method in inner iterations, for non-uniformly elliptic
problems based on the setting of [8, 9, 13]. The preconditioners are based on
spectrally equivalent operators. Additionally, the results of a numerical exper-
iment for a subsonic flow model (see [5]) are provided as an example.

Section 2 contains the convergence result, Section 3 presents models that
fall under our assumptions, while Section 4 shows results of the numerical
experiment.

2 Abstract inner-outer iteration in Banach spaces

The theorems below show convergence results for inner-outer iteration in Ba-
nach space.

2.1 Convergence of the inexact Newton’s method

We make the following assumptions.

Assumption 1. (i) Let X be a real Banach space with norm ‖ · ‖, and X ′

its dual, with usual notation 〈v, u〉 := vu (where v ∈ X ′, u ∈ X). The
norm in X ′ is also denoted by ‖ · ‖.

(ii) We study operator equation

F (u) = 0, (2.1)

where F : X → X ′ is a nonlinear operator with bihemicontinuous Gâteaux
derivative. The latter is denoted by F ′(u) at given u ∈ X. The unique
solution of equation (2.1) is denoted by u∗.

(iii) For any u ∈ X the operator F ′(u) is symmetric.

(iv) There exists a continuous nonincreasing function λ : R+ → R+ such that∫ +∞

0

λ(t) dt = +∞

and
〈F ′(u)h, h〉 ≥ λ(‖u‖) ‖h‖2, ∀u, h ∈ X. (2.2)

(v) There exists a continuous nondecreasing function L : R+ → R+ such that

‖F ′(u)− F ′(h)‖ ≤ L(max{‖u‖, ‖h‖}) ‖u− h‖, ∀u, h ∈ X.

Remark 1. If the function λ in (2.2) can be chosen constant, then the operator
is uniformly monotone. However, we allow inf

t∈R+
λ(t) = 0, which means non-

uniform monotonicity.
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Algorithm 1. For arbitrary u0 ∈ X let (un) ⊂ X be the sequence defined by

un+1 =un + pn, n ∈ N, (2.3)

‖F ′(un) pn + F (un)‖n ≤δn‖F (un)‖n, 0 < δn ≤ δ0 < 1, (2.4)

where the energy norm ‖ · ‖n is defined below in (2.6) and

∃cγ > 0, 0 < γ ≤ 1, such that δn ≤ cγ‖F (un)‖γn. (2.5)

Theorem 1. Let Assumption 1 (i)–(v) be satisfied. Then the sequence defined
by Algorithm 1 converges locally to u∗ with order (1 + γ), namely, there exists
a neighbourhood U of u∗ that for a given u0 ∈ U there exists constants C > 0
and 0 < Q < 1 such that

‖un − u∗‖ ≤ CQ(1+γ)n , n ∈ N.

Some lemmas and definitions in [9] that are needed for the proof are repeated
below, mainly for the sake of convenience. The proofs shown in the reference
for the lemmas apply here, if not shown otherwise below.

Lemma 1. Equation (2.1) has a unique solution u∗ ∈ X.

We define the following energy norms in X ′:

‖v‖u := 〈v, F ′(u)−1v〉1/2 (for given u ∈ X),

‖ · ‖∗ := ‖ · ‖u∗ , ‖ · ‖n := ‖ · ‖un (for given n ∈ N),
(2.6)

and strictly increasing function Λ : R+ → R+, t 7→ L(t)t+ ‖F ′(0)‖. For fixed
u ∈ X, the norms ‖ · ‖u and ‖ · ‖ are equivalent, namely:

Lemma 2. Denoting n(u) := λ(‖u‖)
Λ1/2(‖u‖) , N(u) := Λ(‖u‖)

λ1/2(‖u‖) , we have

n(u)‖v‖u ≤ ‖v‖ ≤ N(u)‖v‖u, ∀v ∈ X ′.

Specifically:

λ̃
1/2
∗ ‖v‖∗ ≤ ‖v‖ ≤ Λ̃

1/2
∗ ‖v‖∗, ∀v ∈ X ′,

where λ̃∗ :=
λ2(‖u∗‖)
Λ(‖u∗‖)

, Λ̃∗ :=
Λ2(‖u∗‖)
λ(‖u∗‖)

(2.7)

and
λ̃1/2
n ‖v‖n ≤ ‖v‖ ≤ Λ̃1/2

n ‖v‖n, ∀v ∈ X ′,

where λ̃n :=
λ2(‖un‖)
Λ(‖un‖)

, Λ̃n :=
Λ2(‖un‖)
λ(‖un‖)

.
(2.8)

Lemma 3. There exists a strictly increasing function R∗ : R+ → R+, such
that

1

1 +R∗(‖F (un)‖∗)
≤ ‖v‖

2
∗

‖v‖2n
≤ 1 +R∗(‖F (un)‖∗), v ∈ X ′.

Math. Model. Anal., 26(3):383–394, 2021.



386 B. Borsos

The investigation of norms of elements of X in certain segments leads to
the following observation.

Lemma 4. There exists a nonincreasing function λ∗ : R+ → R+ such that

λ(‖u‖) ≥ λ∗(‖F (u)‖∗), u ∈ X. (2.9)

Lemma 5. The following inequality holds

‖F ′(un)−1‖ ≤ 1

λ∗(‖F (un)‖∗)
. (2.10)

Proof. (2.2) entails:

λ(‖un‖)‖h‖2 ≤ 〈F ′(un)h, h〉 ≤ ‖F ′(un)h‖‖h‖, ∀h ∈ X

owing to F ′(un) being a bijection, by (2.9), we have (2.10). ut

Lemma 6. There exists a strictly increasing function Φ∗ : R+ → R+ such that

L̃n,n+1 := L(max{‖un‖, ‖un+1‖}) ≤ L(Φ∗(‖F (un)‖∗)). (2.11)

Proof. The following result can be readily obtained from [9]. There exists a
strictly increasing function G∗ : R+ → R+, such that

‖u‖ ≤ G∗(‖F (u)‖∗), u ∈ X. (2.12)

Let us define p∗n := −F ′(un)−1F (un), which is the Newton step, and write
expansion

un+1 = (un + p∗n) + (pn − p∗n), (2.13)

where, due to (2.7), (2.10) and (2.12), the following estimation holds for the
first term

‖un+p∗n‖ ≤ ‖un‖+‖F ′(un)−1‖‖F (un)‖ ≤ G∗(‖F (un)‖∗)+
Λ̃

1/2
∗

λ∗(‖F (un)‖∗)
‖F (un)‖∗.

On the other hand, one can write

pn − p∗n = F ′(un)−1F ′(un)(pn − p∗n),

using (2.4), (2.5), (2.8), Lemma 3 and (2.10) results in the following estimation
of the second term of (2.13)

‖pn − p∗n‖ =‖F ′(un)−1‖‖F ′(un)(pn − p∗n)‖

≤ Λ̃
1/2
n

λ∗(‖F (un)‖∗)
cγ(1 +R∗(‖F (un)‖∗))

1+γ
2 ‖F (un)‖1+γ

∗ ,

the result follows. ut
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Lemma 7. The following estimate holds for all u, v ∈ X:

‖F (u)− F (v)‖ ≥ λ(max{‖u‖, ‖v‖})‖u− v‖,

in particular:

‖un − u∗‖ ≤ ‖F (un)‖/λ(max{‖un‖, ‖u∗‖}). (2.14)

Proof of Theorem 1. For given n ∈ N, one can write expansion

F (un+1) = F (un) + F ′(un)(un+1 − un) +R(un),

where ‖R(un)‖ ≤ L̃n,n+1

2
‖un+1 − un‖2,

by (2.3) and (2.4) we obtain

‖F (un+1)‖n ≤ δn‖F (un)‖n + ‖R(un)‖n,

applying (2.8) and (2.11) entail

‖F (un+1)‖n ≤ δn‖F (un)‖n +
L(Φ∗(‖F (un)‖∗))

2λ̃
1/2
n

‖pn‖2. (2.15)

Here, (2.8), (2.4), Lemma 5 and Lemma 3 imply

‖pn‖ ≤Λ̃1/2
n ‖F ′(un)−1‖‖F ′(un)pn‖n

≤Λ̃1/2
n ‖F ′(un)−1‖(‖F (un) + F ′(un)pn‖n + ‖F (un)‖n)

≤ Λ̃
1/2
n

λ∗(‖F (un)‖∗)
‖F (un)‖n(1 + δn)

≤ Λ̃
1/2
n

λ∗(‖F (un)‖∗)
(1 + δn)(1 +R∗(‖F (un)‖∗))1/2‖F (un)‖∗.

Combining this and (2.15), then using (2.5), and applying Lemma 3 again

‖F (un+1)‖∗ ≤ (1 +R∗(‖F (un)‖∗))
3
2 +γ

(
cγ‖F (un)‖1+γ

∗ +

+
L(Φ∗(‖F (un)‖∗))Λ̃n
2λ̃

1/2
n λ2

∗(‖F (un)‖∗)
(1 + cγ‖F (un)‖γ∗)2‖F (un)‖2∗

)
.

(2.16)

To conclude local convergence by induction, we need a slightly different
approach compared to [13] and [9], due to inner iteration. From (2.16), we
obtain

‖F (un+1)‖∗ ≤ ϕ(‖F (un)‖∗)‖F (un)‖1+γ
∗ , (2.17)

where ϕ : R+ → R+ is strictly increasing function

ϕ(‖F (un)‖∗) := a(‖F (un)‖∗)
(
cγ+b(‖F (un)‖∗)(1+cγ‖F (un)‖γ∗)2‖F (un)‖1−γ∗

)
Math. Model. Anal., 26(3):383–394, 2021.
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with strictly increasing and nondecreasing functions a, b : R+ → R+, respec-
tively:

a(t) := (1 +R∗(t))
3
2 +γ , b(t) :=

L(Φ∗(t))Λ̃n

2λ̃
1/2
n λ2

∗(t)
.

Similarly, we can construct a function ϕ1 : R+ → R+, that is also strictly
increasing, and

‖F (un+1)‖∗ ≤ ϕ1(‖F (un)‖∗)‖F (un)‖∗
can be written, namely: ϕ1(t) := ϕ(t)tγ .

If ϕ1(‖F (u0)‖∗) < 1, then, due to ϕ1 being increasing, ‖F (un)‖∗ < ‖F (u0)‖∗
for all n ∈ N by induction. Let r := ϕ(‖F (u0)‖∗), then (2.17) yields by induc-
tion that

‖F (un)‖∗ ≤ r
(1+γ)n−1

γ ‖F (u0)‖(1+γ)n

∗ ≤ dQ(1+γ)n ,

where d := r−1/γ , Q := r1/γ‖F (u0)‖∗ = ϕ
1/γ
1 (‖F (u0)‖∗) < 1,

(2.18)

thus lim
n→∞

‖F (un)‖∗ = 0, and lim
n→∞

ϕ1(‖F (un)‖∗) = 0.

Using (2.9) on (2.14), then (2.7) gives

‖un − u∗‖ ≤ Λ̃
1/2
∗ ‖F (un)‖∗/λ∗(‖F (un)‖∗).

Combining this with (2.18), and using definition C := dΛ̃
1/2
∗ /λ∗(‖F (u0)‖∗), we

get:
‖un − u∗‖ ≤ CQ(1+γ)n . �

Remark 2. One can obtain, using [9], the following inequalities for the conver-
gence for γ < 1:

lim sup
‖F (un+1)‖∗
‖F (un)‖∗

= 0, lim sup
‖F (un+1)‖∗
‖F (un)‖1+γ

∗
≤ cγ .

2.2 Inner-outer iteration

In what follows, the applied inner iteration is specified, i. e., for given n ∈ N,
the method of obtaining approximate solution pn ∈ X to auxiliary equation

F ′(un)p∗n = −F (un).

Let us introduce the energy inner product on X as 〈x, y〉B = 〈Bx, y〉.

Algorithm 2. For fixed n ∈ N, since F ′(un) is a uniformly positive bounded
linear symmetric operator, we can apply the preconditioned conjugate gradient
method to obtain the pn, namely, let Bn be a uniformly positive bounded linear
symmetric operator, for which

mn〈Bnh, h〉 ≤ 〈F ′(un)h, h〉 ≤Mn〈Bnh, h〉, ∀h ∈ X (2.19)

holds (Mn ≥ mn > 0). The resulting sequence is
(
p

(k)
n

)
⊂ X, where k ∈

N is the index corresponding to the inner iteration, and we set
(
p

(0)
n

)
:= 0.
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Furthermore, let us denote the error and the residual error e
(k)
n := p

(k)
n − p∗n,

and r
(k)
n := F ′(un)e

(k)
n = F ′(un)p

(k)
n + F (un), respectively. The step is defined

as follows, where sn denotes the conjugate directions:

p(k+1)
n := p(k)

n + α(k)
n s(k)

n , r(k+1)
n := r(k)

n + α(k)
n z(k)

n , where :

Bnz
(k)
n := F ′(un)s(k)

n , and α(k)
n := −

‖r(k)
n ‖2Bn

〈F ′(un)s
(k)
n , s

(k)
n 〉

,

s(k+1)
n := r(k+1)

n + β(k)
n s(k)

n , where : β(k)
n :=

‖r(k+1)
n ‖2Bn
‖r(k)
n ‖2Bn

.

By (2.19), we have

mn‖h‖2Bn ≤ 〈B
−1
n F ′(un)h, h〉Bn ≤Mn‖h‖2Bn , ∀h ∈ X,

therefore, the conjugate gradient method can be applied [3] in the energy space
corresponding to operator Bn.

We choose outer iteration step

pn := p(k)
n , for some k ≥ kn,min, where kn,min =

⌈
ln(δn/2)

ln(Qn)

⌉
(2.20)

is the minimum number of iterations, and

Qn :=

√
Mn −

√
mn√

Mn +
√
mn

. (2.21)

Theorem 2. Let Assumptions 1 be satisfied. For the sequence generated by
Algorithm 1, let us apply Algorithm 2 in the inner iteration in each step. If the
two iterations are connected by (2.20)–(2.21), then we have

‖F ′(un)p(k)
n + F (un)‖n ≤ 2Qkn‖F (un)‖n, n, k ∈ N (2.22)

and (2.4) holds for all n ∈ N.

Proof.
For the conjugate gradient method in the energy space corresponding to

operator Bn, the following is known

‖e(k)
n ‖F ′(un)

‖e(0)
n ‖F ′(un)

≤ 2Qkn,

on the other hand

‖e(k)
n ‖2F ′(un) = 〈F ′(un)e(k)

n , e(k)
n 〉 = 〈r(k)

n , F ′(un)−1r(k)
n 〉 = ‖r(k)

n ‖2F ′(un)−1 .

Combining these and using ‖r(k)
n ‖F ′(un)−1 = ‖r(k)

n ‖n yields

‖r(k)
n ‖n ≤ 2Qkn‖r(0)

n ‖n,

since r
(0)
n = F (un), (2.22) follows.

Therefore, inequality
2Qkn ≤ δn

is sufficient for (2.4) to hold, and this follows from assumption (2.20). ut

Math. Model. Anal., 26(3):383–394, 2021.
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3 Elliptic models

By [9], the following boundary value problems posed in W 1,p(Ω) fall under
the assumptions above. Such BVPs arise e.g. in non-Newtonian fluids [15],
bending of elastic beams [6], etc.

Firstly, as a general nonlinearity, let us consider the class of models de-
scribed by {

−div f(x, ∇u) = ω,

u|∂Ω = 0,
(3.1)

where f : Ω × Rn → Rn is a C1 nonlinear vector field. It is assumed to have

symmetric Jacobians ∂f(x, η)
∂η , that satisfy:

c1
(
k0 + |η|2

) p−2
2 |ξ|2 ≤ ∂f

∂η
(x, η) ξ · ξ ≤ c̃1

(
k0 + |η|2

) p−2
2 |ξ|2, (3.2)∥∥∥∂f

∂η
(x, η1)− ∂f

∂η
(x, η2)

∥∥∥ ≤ d1 max
η∈[η1,η2]

{
(k0 + |η|2)

p−3
2

}
|η1 − η2|, (3.3)

∀x ∈ Ω, ξ, η, η1, η2 ∈ Rn for some constants 1 < p <∞, c̃1 ≥ c1 > 0, k0 >
0 , and we assume ω ∈ Lp′(Ω).

One can also use mixed boundary conditions in (3.1)

u |ΓD = 0, f(x, ∇u) · n |ΓN = γ, (3.4)

where ΓD ∪ ΓN = ∂Ω. Then the solution is looked for in the subspace
{u ∈W 1,p(Ω) : u |ΓD = 0}.

In particular, we may have a given scalar nonlinearity:

f(x, η) := a(x, |η|2) η for (x, η) ∈ Ω× Rn, (3.5)

where a : Ω × R+ → R+ is a C1 scalar-valued function. Then problem (3.1)
with mixed boundary conditions (3.4) becomes

−div
(
a(x, |∇u|2) ∇u

)
= ω in Ω ,

u = 0 on ΓD ,
a(x, |∇u|2) ∂u∂n = γ on ΓN .

(3.6)

If we assume that for all (x, r) ∈ Ω×R+, a(x, r2) ∈ C2 w.r.t. r, furthermore

a(x, r2) := min
{
a(x, r2),

∂

∂r

(
a(x, r2) r

)}
≥ c1

(
k0 + r2

) p−2
2 (3.7)

and
∂a

∂r
(x, r2) ≤ d2(k0 + r2)

p−4
2 ,

∂2a

∂r2
(x, r2) ≤ d3(k0 + r2)

p−6
2 , (3.8)

then the vector field (3.5) satisfies (3.2)–(3.3).
In accordance with [9], the definition of operators Bn can be given with

scalar coefficients

〈Bnh, v〉 =

∫
Ω

β(x, |∇un|2) ∇h · ∇v, ∀h, v ∈ Vh.
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Let us define a by replacing min with max in (3.7). If the function β satisfies

a(x, r2) ≤ β(x, r2) ≤ a(x, r2), e.g. β(x, r2) :=
1

2

(
a(x, r2) + a(x, r2)

)
,

then, for all n, spectral equivalence of Bn and F ′(un) can be obtained readily,
in other words, (2.19) holds.

The Newton equation must be discretized which adds to the inexactness.
This can be based on a combination of a coarse and a fine mesh which can
save computer time (see [2,4,21], etc.). Future work in the topic might include
corresponding investigations.

4 Numerical experiment

4.1 Subsonic flow example

The following boundary value problem describing potential flow in a wind tun-
nel section Ω ⊂ R2 has been presented in [5, Chap. 9]. For the geometry,
see [5, Fig. 5]. Let us consider:

−div
(
%(|∇u|2)∇u

)
= 0 in Ω ,

%(|∇u|2) ∂u∂n = γ on ΓN ,
u = v∞ on ΓD ,

(4.1)

the scalar nonlinearity is %(|∇u|2) = %∞
(
1+ 1

5 (M2
∞−|∇u|2)

)5/2
, where %∞ > 0

is the air density at infinity, and u is the velocity potential. M∞ > 0 denotes
the Mach number at infinity, v∞ stands for the constant velocity potential on
Dirichlet boundary ΓD, while ΓN := ∂Ω \ ΓD is the Neumann boundary. The
range of γ is {0, ṽ∞}, where ṽ∞ > 0 is a parameter describing outflow velocity.

We only deal with the case v∞ = 0 without the loss of generality, since u
is a potential (one may observe that (4.1) only contains derivatives of u except
for the constant Dirichlet boundary condition).

By involving problem (4.1), our goal is to test that our method may work
even beyond the limitations posed by our previous theoretical assumptions.
Namely, the condition for ellipticity is that |∇u| is pointwise below the sub-
sonic limit, hence the operator cannot be defined on a whole function space.
Therefore, the above subsonic flow problem described by (4.1) is not precisely
contained in the elliptic model (3.6) with assumptions (3.7)–(3.8). However,
one can expect that the method of present paper converges properly while the
solution and the utilized part of the iterative sequence satisfy the subsonic limit
condition.

We apply the results of Section 2, and use the finite element method (FEM)
for the discretization of the problem, namely, Courant elements. Hence the
above Banach space X is a finite dimensional space consisting of Courant ele-
ments for which u|ΓD = 0. Therefore, all norms are equivalent.

Thus one can define the operator describing (4.1) in weak form as

〈F (u), v〉 ≡
∫

Ω

ρ(|∇u|2)∇u · ∇v −
∫

ΓN

γv, ∀u, v ∈ Vh.

Math. Model. Anal., 26(3):383–394, 2021.
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Consequently, the FEM problem becomes the task of finding u ∈ Vh, such that
〈F (u), v〉 = 0, ∀v ∈ Vh. This can be written shortly in the form of (2.1) as

F (u) = 0 in Vh.

The Gâteaux derivative of the operator can be obtained readily in weak
form

〈F ′(u)h, v〉

=

∫
Ω

(
ρ(|∇u|2)∇h · ∇v + 2ρ′(|∇u|2)(∇u · ∇h)(∇u · ∇v)

)
, ∀h, v ∈ Vh.

The applied preconditioner in the n-th outer step is

〈Bnh, v〉 =

∫
Ω

(
ρ(|∇un|2) + ρ′(|∇un|2)|∇un|2

)
∇h · ∇v, ∀h, v ∈ Vh.

It provides a substantial simplification of the Gâteaux derivative of the opera-
tor.

4.2 Numerical results

The results of the above experiment with five different meshes and two different
ṽ∞ values are presented below.

Let symbol DoF stand for the degrees of freedom of the FEM model. Denote
n1, n2 the number of outer iteration steps necessary to achieve smaller relative
residual error than 10−4 and 10−6, respectively. Let k denote the number of
inner iteration steps required for relative residual error to be smaller than 10−4

for an individual outer iteration step. The numerical results are summarized in
Table 1, where the outer step number, which the given value of k corresponds
to, can be identified in the header.

As a conclusion, we state the following observations. Firstly, we readily find
robustness of the method developed here for the subsonic flow example. A sim-
ilar robustness result for a quasi-Newton method with the same preconditioner
can be found in [9].

Secondly, (2.20) states for the subsonic model that at most 8 inner iterations
are sufficient to reach relative tolerance 10−4. Comparing this to Table 1 shows
that in fact far less iterations can be sufficient as well.

Table 1. The number of required outer (n1, n2) and inner (k) iteration steps

ṽ∞ = 0.4 ṽ∞ = 0.6

DoF n1 n2 k n1 n2 k

1 2 3 4 1 2 3 4 5

243 3 4 1 3 3 3 4 5 1 3 4 4 4
884 3 4 1 3 3 3 4 5 1 3 3 4 4
3432 3 4 1 2 3 3 4 5 1 3 4 4 4
13520 3 4 1 2 3 3 4 5 1 3 4 4 4
53664 3 4 1 2 3 3 4 5 1 3 4 4 4
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