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Abstract. An efficient Legendre-Galerkin spectral method and its error analysis for
a one-dimensional parabolic equation with Dirichlet-type non-local boundary condi-
tions are presented in this paper. The spatial discretization is based on Galerkin
formulation and the Legendre orthogonal polynomials, while the time derivative is
discretized by using the symmetric Euler finite difference schema. The stability and
convergence of the semi-discrete spectral approximation are rigorously set up by fol-
lowing a novel approach to overcome difficulties caused by the non-locality of the
boundary condition. Several numerical tests are included to confirm the efficacy of
the proposed method and to support the theoretical results.
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1 Introduction

Initial boundary value problems for partial differential equations with non-local
boundary conditions NLBCs have been extensively investigated in many papers
and textbooks. The main reason of such enormous attention for this kind of
problems is that some problems in physics, chemistry and many other fields of
the sciences can be effectively approached using models based on non-classical
boundary value problems for PDEs [6, 12,13,15,19,25].
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This paper is devoted to develop and analyse the implementation of Legen-
dre-Galerkin spectral method to non-local boundary value problem for a linear
parabolic equation. Our problem is given as follows

∂u

∂t
(x, t)− ∂2u

∂x2
(x, t) = f(x, t), (x, t) ∈ Λ× (0, T ],

u(x, 0) = u0(x), x ∈ Λ̄
(1.1)

with the following Dirichlet-type non-local boundary conditions

u(−1, t) =

∫ 1

−1
u(x, t)K1(x)dx, u(1, t) =

∫ 1

−1
u(x, t)K2(x)dx, (1.2)

where Λ = (−1, 1) and T stands for a final time. The integral kernels K1 and
K2, the source term f and the initial data u0 are given smooth functions.

Recently, researchers have shown an increased interest in analysing and de-
veloping computational methods for the numerical solution of nonlocal bound-
ary value problems for partial differential equations, including the diffusion
equation subject to nonlocal boundary condition of the form (1.2). Consider-
able number of existing papers that dealt with the numerical solution for this
kind of problems are mainly based on the finite difference schemas, in which
the stability, convergence and other numerical aspects were considered (see
e.g., [7,8,9,21,23] and the references therein). By way of example, Jakubėlienė
et al. [16] have studied the stability and convergence of difference schemes for
approximating a class of semilinear parabolic equations with one nonlocal con-
dition. In the same vein, discussions on the impact of complex coefficients on
the stability of difference schemes were reported in [22]. In a recent study in-
vestigating a semi-implicit difference scheme for a two-dimensional parabolic
equation with NLBCs, the authors [10] applied a methodology based on the
properties of M-matrices to examine the stability of the proposed finite differ-
ence scheme. However, solving partial differential equations with either local or
nonlocal boundary conditions by mesh-dependent schemas such as finite differ-
ence methods and finite elements methods is computationally very expensive,
as discretization for both space and time variables is required.

In the same context, the familiar operational matrices approaches have been
used by many authors to handle with several problems that fall in this category.
The authors of [30] adopted a new technique based on operational matrices of
Bernstein polynomials to approximate the one-dimensional diffusion equation
with an integral condition. Recently, Borhanifar et al. [4] presented an effective
algorithm based on operational matrix formulation to solve nonlinear reaction-
diffusion equations with mixed nonlocal boundary conditions, despite its ex-
cellent computational results for smooth problems, it seems inappropriate to
some special kind of PDEs such as oscillatory problems. Other various methods
have been also applied to the nonlocal boundary value problem (1.1)–(1.2) and
similar problems, such as radial basis functions method [17, 29], reproducing
kernel procedure [20,32], and so on.

Compared to the aforementioned numerical methods, Galerkin spectral
methods [5, 27], whose accuracy and robustness were widely recognized, can
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provide excellent computational results that enjoy superior accuracy with only
moderate discretization resources. Despises this fact, there is only a limited
number of papers that touched upon the implementation, in particular, the
analysis of spectral methods for PDEs with non-local boundary conditions,
which is basically due to the lack of a theoretical framework corresponding to
the non-locality of the boundary conditions.

To our best knowledge, there is no research available in the literature de-
voted to analysis the implementation of spectral methods to nonlocal bound-
ary value problems for parabolic equations. Motivated by this fact, we mainly
aim in this paper to provide a suitable approach to solve the one-dimensional
parabolic equation (1.1) subject to non-local boundary conditions (1.2) by a
spectral method with efficient implementation and exponential rate of conver-
gence as in the spectral methods for problems with classical boundary con-
ditions. We emphasize the fact that the parabolic equation with boundary
conditions (1.2) considered in this work is not only interesting in its theoretical
and practical applications, but also in the methodology proposed to handle
with this problem, which constitutes a flexible approach that can be extended
for solving more general PDEs subject to NLBCs (see e.g., [2, 11,26]).

The objective of this paper is twofold. First, to construct an appropriate
spectral method for the parabolic equation (1.1) subject to boundary conditions
(1.2). Second, to carry out some error analysis for the proposed method. A
drawback of using spectral Galerkin formulation in a standard way for non-
local boundary value problems is, of course, the lack of an appropriate basis
whose elements satisfying the integral conditions at the boundary. The key
technique to overcome this obstacle is to use a non-classical weak formulation
that treats the main equation and the boundary conditions separately. As we
will see in the paper, the use of such formulation also allows us to perform the
error analysis.

The rest of the paper is organized as the following. First, in the next
section, we briefly introduce the Legendre-Galerkin spectral method for solv-
ing the problem (1.1)–(1.2) and describe the way to implement the proposed
method. Section 3 is devoted to recollect some fundamental notions and results
of spectral approximation needed for the error analysis. In Section 4, we pro-
vide error bounds in L2 and H1-norms for the semi-discrete Legendre-Galerkin
spectral method. Then, in Section 5, we examine the accuracy and robustness
of our method by extensive numerical tests. We conclude the paper with some
remarks on the main features of the method presented in previous sections and
highlight some possible extensions of our method.

2 Legendre-Galerkin spectral method

We aim in this section to give a brief description of the implementation of
the Legendre-Galerkin spectral method (LG-SM) to solve the problem under
consideration. Through this paper, (·, ·) and ‖ · ‖ denote scalar product and its
associated norm in L2(Λ). We also use Hm(Λ)(m ≥ 1) to denote the standard
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Sobolev space endowed with the norm ‖.‖m and the semi-norm | · |m, where

‖u‖m =
( m∑
r=0

‖∂rxu‖2
) 1

2

, |u|m = ‖∂mx u‖.

We define the space

H1
0 (Λ) = {u ∈ H1(Λ) | u(1) = u(−1) = 0}.

Let PN (Λ) stands for the space of all algebraic polynomials of degree at most
N , we also define the space P0

N (Λ) = PN (Λ) ∩H1
0 (Λ).

In order to derive the form of our approximation schema, we first reformu-
late problem (1.1)–(1.2) into its weak formulation, namely, find u(t) ∈ H1(Λ)
such that

(∂tu(t), v) + (∂xu(t), ∂xv) = (f(t), v),∀v ∈ H1
0 (Λ). (2.1)

For the solvability of the above weak formulation, Slodic̆ka [28] proved, by the
use of Rothe method, the existence and uniqueness of the solution.

The conventional Legendre-Galerkin semi-discrete approximation reads as:
find uN (t) ∈ PN (Λ) such that, for any ϕ ∈ P0

N (Λ){
(∂tuN (t), ϕ) + (∂xuN (t), ∂xϕ) = (f(t), ϕ), 0 < t ≤ T,
uN (0) = iCNu0,

(2.2)

where iCN is the operator of interpolation at the Chebyshev-Gauss-Lobatto
nodes ξj = cos ( jπN ), 0 ≤ j ≤ N .

Let us denote Lk(x) the k-th degree Legendre polynomial. The set of Leg-
endre polynomials {Lk}∞k=0 forms an orthogonal basis for the space L2(Λ),
namely, ∫ 1

−1
Lk(x)Lj(x)dx =

2

2k + 1
δjk.

Otherwise, any function u in L2(Λ) can be expensed in terms of Lk,

u(x) =

+∞∑
k=0

ûkLk(x), where ûk = (k + 0.5)

∫ 1

−1
u(x)Lk(x)dx.

Let N be a positive integer, we define

φk(x) =Lk(x)− Lk+2(x), 0 ≤ k ≤ N − 2,

φN−1(x) =
1

2
(L0(x) + L1(x)) , φN (x) =

1

2
(L0(x)− L1(x)) .

Obviously, the set {φk}Nk=0 consists of N + 1 linearly independent elements,
therefore form a basis function for PN (Λ). We set

uN (x, t) =

N∑
k=0

ũk(t)φk(x) (2.3)
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and using (2.2) with ϕ = φj , j = 0, . . . , N − 2, we have

N∑
k=0

mj,k
dũk(t)

dt
+

N∑
k=0

pj,kũk(t) = f̃j(t), 0 ≤ j ≤ N − 2, (2.4)

where

mj,k=

∫ 1

−1
φk(x)φj(x)dx, pj,k=

∫ 1

−1
φ′k(x)φ′j(x)dx, f̃j(t) =

∫ 1

−1
f(x, t)φj(x)dx.

Upon substituting (2.3) in the boundary conditions, we get two supplementary
equations, namely,

N∑
k=0

φk(−1)ũk(t) =

N∑
k=0

ũk(t)

∫ 1

−1
φj(x)K1(x)dx,

N∑
k=0

φk(1)ũk(t) =

N∑
k=0

ũk(t)

∫ 1

−1
φj(x)K2(x)dx.

(2.5)

For the time advancing, we use the second-order symmetric Euler method for
system (2.4) with boundary conditions (2.5). Let M be positive integer and
define a step time ∆t = T

M . Let ti = i∆t(0 ≤ i ≤ M), we denote by ûik the
approximation of ûN (tk). At each time level, we need to solve the following
algebraic linear system,

(2M +∆tP)Ui+1 = (2M−∆tP)Ui +∆t(Fi+1 + Fi), for 1 ≤ i ≤M,

ũi+1
N−1 =

N∑
k=0

ũi+1
k

∫ 1

−1
φj(x)K2(x)dx, ũi+1

N =

N∑
k=0

ũi+1
k

∫ 1

−1
φj(x)K2(x)dx,

starting with
N∑
k=0

mj,kũ
0
k = (iCNu0, φj), 0 ≤ j ≤ N,

where

M = [mj,k](N−2×N) , P = [pj,k](N−2×N) ,

Ui = (ûi0, û
i
1, . . . , û

i
N−2)t, Fi = (f̂0(ti), f̂1(ti), . . . , f̂N−2(ti))

t.

By the aid of the properties of Legendre polynomials, on can easily deter-
minate the values of the quantities mj,k and pj,k, as follows [14,31]

mj,k = mk,j =



2
2k+1 + 2

2k+5 , j = k, 0 ≤ j, k ≤ N − 2,

−2/(2k + 5), j = k ± 2, 0 ≤ j, k ≤ N − 2,

1, j = 0, k ≥ N − 1,

1/3, j = 1, k = N − 1,

−1/3, j = 1, k ≥ N,
0, otherwise

0 ≤ j ≤ N − 2

and

pj,k = pk,j =

{
4k + 6, j = k, 0 ≤ j ≤ N − 2,

0, otherwise.

Math. Model. Anal., 26(2):287–303, 2021.
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3 Error analysis

This section is devoted to set up the convergence and stability results for semi-
discrete Legendre-Galerkin spectral method, we also aim to show that the pro-
posed method enjoys the spectral accuracy. In what follows, C will denote a
generic positive constant not depending on N and it may take different values
each time we use it.

3.1 Preliminaries

In order to carry out error estimates for the schema (2.2), we introduce three
projection operators with their corresponding approximation properties. We
define the L2-orthogonal projection PN : L2(Λ)→ PN (Λ) as the following

(PNu− u, ϕ) = 0, ∀ϕ ∈ PN (Λ).

Let P 1,0
N : H1

0 (Λ) → P0
N (Λ) be the orthogonal projection operator defined as

the following

P 1,0
N u(x) =

∫ x

−1
(PN∂yu)(y)dy.

It is readily verified that

(∂xP
1,0
N u− ∂xu, ∂xϕ) = 0, ∀ϕ ∈ P0

N (Λ). (3.1)

Next, we give approximations proprieties of PN and P 1,0
N .

Lemma 1 [ [3], [5]]. Let r and s be two non-negative real numbers with r ≤ s.
For any u ∈ Hs(Λ), the following estimates hold

‖u− PNu‖r ≤

{
CN (3r/2)−s‖u‖s, r ≤ 1,

CN2r−(1/2)−s‖u‖s, r ≥ 1,
(3.2)

where C > 0 is positive constant depending only on s.

Lemma 2 [ [3], [5]]. Let r and s be two non-negative real numbers, with the
assumption 0 ≤ r ≤ 1 ≤ s. For any u ∈ Hs(Λ)∩H1

0 (Λ) the following estimates
hold

‖u− P 1,0
N u‖r ≤ CNr−s‖u‖s, (3.3)

where C > 0 is positive constant depending only on s.

In the context of the numerical resolution of non-local boundary value problems,
we generally deal with the approximation of functions which do not vanish
at the boundary points. For this purpose, we need to define an appropriate
projection operator which preserve the function values at the boundary.

Following the same idea as in [5, page 288], for any function u in H1(Λ),
we first introduce the polynomial

K[u](x) = u(−1)
1− x

2
+ u(1)

1 + x

2
, x ∈ Λ
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and then we associate for u the function ū := u−K[u]. Since K[u](−1) = u(−1)
and K[u](1) = u(1), thus ū ∈ H1

0 (Λ). This allows us to introduce the following

operator P 1,b
N : H1(Λ)→ PN given by

(P 1,b
N u)(x) = (P 1,0

N ū)(x) +K[u](x).

We give the approximation properties for the operator P 1,b
N by stating the

following lemma

Lemma 3. For any function u ∈ H1(Λ),

(∂x P
1,b
N u− ∂xu, ∂xϕ) = 0, ∀ϕ ∈ P0

N (Λ).

Moreover, for any real numbers r and s with 0 ≤ r ≤ 1 ≤ s. If u ∈ Hs(Λ) then
the following estimate holds

‖u− P 1,b
N u‖r ≤ CNr−s‖u‖s, (3.4)

where C > 0 is a positive constant depending only on s.

Proof. Notice that
P 1,0
N ū− ū = P 1,b

N u− u,
and making use of (3.1) and (3.3) gives the desired results. ut

We conclude this section by giving some approximation properties for the op-
erator of interpolation iCN .

Lemma 4. For any u ∈ H1(Λ) the following estimate holds

N‖iCNu− u‖+ |iCNu| ≤ C‖u‖1. (3.5)

Moreover, if u ∈ Hs(Λ) with s ≥ 1, then

‖iCNu− u‖r ≤ CNr−s‖u‖s, 0 ≤ r ≤ 1, (3.6)

where C > 0 is a positive constant independent on N .

3.2 Stability and convergence

This section is devoted to analysing the stability and the convergence rate
of the semi-discrete scheme (2.2). We first give a theoretical analysis for the
stability by stating two lemmas hereafter. Before this, we derive some basic
inequalities which are needed in our proofs in the sequel. For convenience, we
denote p(x) = 1

2 (1− x). Using Cauchy and triangle inequalities,

‖K [uN (t)] ‖ ≤ ‖p‖ (|uN (−1, t)|+ |uN (1, t)|)
≤ ‖p‖ (|(uN (t),K1)|+ |(uN (t),K2)|) ≤ αK‖uN (t)‖.

(3.7)

Analogously, we can bound the term ∂xK[uN (t)] as the following

‖∂xK [uN (t)] ‖ ≤ ‖∂xp‖ (|uN (−1, t)|+ |uN (1, t)|)
≤ ‖∂xp‖ (|(uN (t),K1)|+ |(uN (t),K2)|) ≤ βK‖uN (t)‖,

(3.8)

where: αK =
√
6
3 (‖K1‖+ ‖K2‖) and βK =

√
2
2 (‖K1‖+ ‖K2‖).

Math. Model. Anal., 26(2):287–303, 2021.
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Lemma 5. Let u0 ∈ H1(Λ), ∂tu(t) ∈ C1(0, T ;H1(Λ)) and f ∈ C1(0, T ;L2(Λ)).
If αK < 1, then there exists a positive constant C independent on N such
that the solution uN (t) of the semi-discrete approximation (2.2) satisfies the
following estimate

|uN (t)|21 +

∫ T

0

‖∂tuN (t)‖2ds ≤ C
(
‖u0‖21 +

∫ T

0

‖f(t)‖dt
)
.

Proof. By setting ϕ = ∂tuN (t)−K [∂tuN (t)] in (2.2), we get

‖∂tuN (t)‖2 +
1

2

d

dt
|uN (t)|21 = I1 + I2 + I3,

where

I1 = (f(t), ∂tuN (t)−K [∂tuN (t)]), I2 = (∂tuN (t),K [∂tuN (t)]),

I3 = (∂xuN (t), ∂xK [∂tuN (t)]).

We shall bound the terms I1, I2 and I3 in a standard way through both Cauchy
and ε-Young inequalities using basic inequalities (3.7) and (3.8).

We begin with I1.

|I1| = |(f(t), ∂tuN (t)−K [∂tuN (t)] | ≤ (1 + αK)‖f(t)‖.‖∂tuN (t)‖

≤ (1 + αK)2

2ε
‖f(t)‖2 +

ε

2
‖∂tuN (t)‖2.

Next, we estimate I2

|I2| = |(∂tuN (t),K[∂tuN (t)])| ≤ αK‖∂tuN (t)‖2.

The term I3 can be controlled in the same manner.

|I3| = |(∂xuN (t), ∂xK[∂tuN (t)])| ≤ βK |uN (t)|1.‖∂tuN (t)‖

≤ β2
K

2ε
|uN (t)|21 +

ε

2
‖∂tuN (t)‖2.

(3.9)

Putting things together and fixing 0 < ε < 1− αK , we get

‖∂tuN (t)‖2 +
1

2

d

dt
|uN (t)|21 ≤ C1(‖f(t)‖2 + |uN (t)|21). (3.10)

Integrating inequality (3.10) over (0, T ) and taking into account approximation
property, we obtain∫ T

0

‖∂tuN (t)‖2dt+ |uN (t)|21 ≤ ‖u0‖21 + C

(∫ T

0

|uN (t)|21dt+

∫ T

0

‖f(t)‖2dt

)
.

By the aid of Gronwall inequality, we can get the desired result. ut

Lemma 6. If u0 ∈ H1(Λ) and f ∈ C1(0, T ;L2(Λ)), then there exists a positive
constant C independent on N , such that the solution uN (t) of the semi-discrete
approximation (2.2) satisfies the following estimate

‖uN (t)‖2 +

∫ t

0

|uN (s)|21ds ≤ C
(
‖u0‖21 +

∫ t

0

‖f(s)‖ds
)
.
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Proof. Setting ϕ = uN (t)−K [uN (t)] in (2.2), we get

1

2

d

dt
‖uN (t)‖2 + |uN (t)|21 = I1 + I2 + I3,

where

I1 = (f(t), uN (t)−K [uN (t)]), I2 = (∂tuN (t),K [uN (t)]),

I3 = (∂xuN (t), ∂xK [uN (t)]).

Estimates for the terms on right hand-side of (3.9) can be derived essentially
in the same manner as in the proof of the previous lemma. As a matter of fact,
using Cauchy and Young inequalities together with basic inequalities (3.7) and
(3.8), we can get

|I1| ≤
(1 + αK)2

2
‖f(t)‖2 +

1

2
‖uN (t)‖2,

|I2| ≤
α2
K

2
‖∂tuN (t)‖2 +

1

2
‖uN (t)‖2, |I3| ≤

εβ2
K

2
|uN (t)|21 +

1

2ε
‖uN (t)‖2.

Putting things together and fixing ε sufficiently small, we get

1

2

d

dt
‖uN (t)‖2 + |uN (t)|21 ≤ C1(‖uN (t)‖2 + ‖f(t)‖2 + ‖∂tuN (t)‖2). (3.11)

The integration of (3.11) combined with (5) yields

‖uN (t)‖2 +

∫ T

0

|uN (t)|21dt ≤ ‖uN (0)‖2+C2

(
‖u0‖21+

∫ T

0

(‖uN (t)‖2+‖f(t)‖2)dt
)
.

We see that
‖uN (0)‖ = ‖iCNu0‖ = ‖iCNu0 − u0‖+ ‖u0‖

and by the use of (3.6), it follows that ‖uN (0)‖ ≤ C‖u0‖1. Therefore, the proof
is completed by applying Gronwall inequality. ut

Now we turn to the convergence analysis. We derive error estimate in L2 and
H1-norms of the error EN (t) between the semi-discrete solution uN (t) of the
schema (2.2) and the exact solution of the problem (2.1). To this end, for any
fixed t ∈ [0, T ] let us write EN (t) = u(t)− uN (t) = θN (t) + ρN (t), where

θN (t) = P 1,b
N u(t)− uN (t), ρN (t) = u(t)− P 1,b

N u(t).

According to approximations properties (1) and (2), we only need to bound
θN (t). Before stating our main results, we first need to derive some auxiliary
estimates. By a technical reduction, one can get

K[θN (t)] = p(x)

∫ 1

−1
(θN (x, t) + ρN (x, t))K1(x)dx+

p(−x)

∫ 1

−1
(θN (x, t) + ρN (x, t))K2(x)dx.

Math. Model. Anal., 26(2):287–303, 2021.
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Using Cauchy and triangle inequalities, we derive from the above identity the
following basic estimates

‖K[θN (t)]‖ ≤ αK(‖θN (t)‖+ ‖ρN (t)‖),
‖K[∂tθN (t)]‖ ≤ αK(‖∂tθN (t)‖+ ‖∂tρN (t)‖),
‖∂xK[θN (t)]‖ ≤ βK(‖θN (t)‖+ ‖ρN (t)‖), (3.12)

where αK and βK stand for the same constants in (3.7) and (3.8).

Lemma 7. Let r ≥ 1 be a positive real number. Assume that
u ∈ H1(0, T ;Hr(Λ)) and f ∈ H1(0, T ;Hr(Λ)). If αK < 1, then the following
estimate holds

|θN (t)|21 +

∫ t

0

‖∂tθN (s)‖2ds ≤ CN−2r.

Proof. For an arbitrary function ϕ ∈ P0
N (Λ), we difference (2.1) and (2.2) and

setting ϕ = ∂tθN (t)−K[∂tθN (t)], to obtain

‖∂tθN (t)‖2 +
d

dt
|θN (t)|21 = I1 + I2 + I3, (3.13)

where

I1 = (∂tθN (t),K[∂tθN (t)]), I2 = (∂xθN (t), ∂xK[∂tθN (t)]),

I3 = −(∂tρN (t), ∂tθN (t) + ∂tK[∂tθN (t)]).

Estimates for the terms on the right hand-side of (3.13) are quite similar to
those which appear in the proofs of previous lemmas. In analogue manner, by
the aid of Cauchy and ε-Young inequalities besides basic estimates (3.12) we
can get

|I1| ≤
(
αK +

ε

4

)
‖∂tθN (t)‖2 +

α2
K

ε
‖∂tρN (t)‖2,

|I2| ≤
β2
K

ε
|θN (t)|21 +

ε

4
‖∂tθN (t)‖2 +

ε

4
‖∂tρN (t)‖2,

|I3| ≤
(
αK +

(1 + αK)2

ε

)
‖∂tρN (t)‖2 +

ε

4
‖∂tθN (t)‖2.

Combining the above estimates with (3.13), to get

‖∂tθN (t)‖2+
1

2

d

dt
|θN (t)|21 ≤ C1(ε)‖ρN (t)‖2+C2(ε)|θN (t)|21+(ε+αk)‖∂θN (t)‖2.

By choosing 0 < ε < 1− αK and utilizing Gronwall inequality, we get∫ t

0

‖∂tθN (s)‖2ds+ |θN (t)|21 ≤ |θN (0)|21 + C3

∫ t

0

‖∂tρN (s)‖2ds. (3.14)

Meanwhile, we can see that

θN (0) =iCNu0 − P
1,b
N u0 = (iCNu0 − u0) + (u0 − P 1,b

N u0),

∂tρN (t) =∂t

(
u(t)− P 1,b

N u(t)
)

= ∂tu(t)− P 1,b
N ∂tu(t).

(3.15)
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Combining (3.15) with approximation properties (3.2), (3.4) and (3.5), we ob-
tain

|θN (0)|21 ≤ C4N
−2r‖u0‖2r,

‖∂tρN (t)‖2 ≤ C5N
−2r‖∂tu(t)‖2r.

Therefore, inequality (3.14) takes the form

|θN (t)|21 +

∫ t

0

‖∂tθN (s)‖2ds ≤ C6N
−2r

(
‖u0‖2r +

∫ t

0

‖∂tu‖2rds
)
,

which is the desired result. ut

Lemma 8. Let r ≥ 1 be a positive real number. Assume that
u ∈ H1(0, T ;Hr(Λ)) and f ∈ C1(0, T ;Hr(Λ)) for certain r ≥ 1. Then the
following estimate holds

‖θN (t)‖2 +

∫ t

0

|θN (s)|21ds ≤ CN−2r.

Proof. The proof of Lemma (8) can be done exactly in the same manner as
the one of the previous Lemma. ut

Next, on the basis of Lemmas (7) and (8) we state the following result directly
without proof

Lemma 9. Let r ≥ 1 be a positive real number. Assume that
u ∈ H1(0, T ;Hr(Λ)) and f ∈ C1(0, T ;Hr(Λ)). Then the following estimate
holds

‖θN (t)‖21 ≤ CN−2r,
where C is a positive constant not depended on N .

Now we are in position to provide error bounds for the semi-discrete approxi-
mation (2.2) by stating the following theorem.

Theorem 1. Let r ≥ 1 be a positive real number. Assume that
u ∈ H1(0, T ;Hr(Λ)), f ∈ C1(0, T ;Hr(Λ)) and αK < 1. Then the following
estimates hold

‖u(t)− uN (t)‖ ≤ CN−r,

‖u(t)− uN (t)‖1 ≤ C(1 +N)N−r, (3.16)

where C is a positive constant not depended on N .

Proof. By definition,

‖u(t)− uN (t)‖ = ‖θN (t) + ρN (t)‖ ≤ ‖θN (t)‖+ ‖ρN (t)‖.

Applying triangular inequality and using Lemmas (8) and (3), we get the L2-
error estimate,

‖u(t)− uN (t)‖ ≤ CN−r + C ′N−r.

Following an analogue manner we can prove the H1-error estimate by the aid
of Lemma (9). ut
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4 Numerical experiment

In this section, we present several numerical tests using Legendre-Galerkin spec-
tral method described in previous sections. During the process, we computed
the integral terms using the Clenshaw-Curtis quadrature for high accuracy.
Meanwhile, the linear algebraic systems resulted from the full-discrete approx-
imation had solved by applying a direct method based on LU decomposition.

Example 1. Consider the following linear one-dimensional parabolic

∂tu(x, t)− ∂2xu(x, t) = (π2 − 1)(sin (πx) + cos (πx))e−t,

u(−1, t) = −
∫ 1

−1
sin (πx)u(x, t)dx, u(1, t) = −

∫ 1

−1
cos (πx)u(x, t)dx,

with the exact solution u(x, t) = (sin (πx) + cos (πx))e−t.
In this first example, we begin our computational investigation by testing

the accuracy to demonstrate the effectiveness of our method. Set N = 16 and
∆t = 10−3. Figure 1 displays the profiles of exact and approximate solutions,
and also shows the absolute error function EN = |u − uN |. The results show
an excellent agreement between the exact and approximate solutions, which
confirm the accuracy of (LG-SM) method.

Figure 1. Computational results of Example (1) for N = 16 and ∆t = 10−3.

Table 1. Spatial convergence rates at t = 1 for Example 1.

N L2-error order L∞-error order CPU

4 6.0502e− 002 - 7.9737e− 002 - 0.72
8 1.2277e− 004 N−8.95 1.4299e− 004 N−9.12 0.98
12 4.5721e− 008 N−19.5 5.2390e− 008 N−19.5 1.33
16 4.9285e− 011 N−23.8 5.3667e− 011 N−23.9 2.13
20 4.9029e− 011 - 4.9202e− 011 - 2.94

We turn to the convergence behaviour of the approximate solution. For the
spatial discretization, we fix the step time ∆t sufficiently small, say ∆t = 10−5,
so that the error of temporal discretization is negligible, and vary N ≤ 20.
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The error ‖u− uN‖ in L∞ and L2-norms at two selected points t = 1 and
t = T are reported in Tables 1 and 2. According to the computational results,
the error shows an exponential decay, which demonstrates the spectral accuracy
property.

Table 2. Spatial convergence rates at t = 2 for Example 1.

N L2-error order L∞-error order CPU

4 2.2437e− 002 - 2.9727e− 002 - 1.97
8 4.5164e− 005 N−8.96 5.2615e− 004 N−9.14 4.31
12 1.6821e− 008 N−19.5 1.9273e− 008 N−19.5 7.22
16 1.8137e− 011 N−23.6 1.9745e− 011 N−23.9 10.48
20 1.8042e− 011 - 1.8109e− 011 - 13.22

Next, we check the temporal discretization. By choosing N big enough, so
that, the spatial discretization error is negligible, and let ∆t varies. The results
are presented in Table 3.

Table 3. Temporal convergence rates at t = 1 and t = 2 for Example 1.

t = 1 t = T
∆t L2-error order L2-error order

10−1 4.8824e-005 - 1.7962e-005 -
10−2 4.8837e-007 1.9996 1.7982e-007 1.9995
10−3 4.8874e-009 2.0000 1.7982e-009 2.0000
10−4 4.9029e-011 1.9996 1.8042e-011 1.9986

As expected, the temporal accuracy is of order 2, which is consistent with
theoretical results.

Example 2. As for all other spectral methods, the convergence rate of the
present spectral method is depending on the regularity of the solution. In
this example, we consider a problem with a non-smooth solution to examine
the validity of the error estimates derived above. Let us consider the following
exact solution with limited regularity

u(x, t) =

(
x2

2
arcsin(x) +

1

4
arcsin(x) +

3

4
x
√

1− x2
)
t
5
2

of the Equation (1.1) subject to the following boundary conditions

u(−1, t) =−
∫ 1

−1
(2x2 +

5

8
x+ 1)u(x, t)dx,

u(1, t) =−
∫ 1

−1
(x− 1

8
)(x− 1

2
)u(x, t)dx.

In Figure 2, we plot error decay rates in L2 and L∞-norms versus the
polynomial degree in log-scale with a fixed step time ∆t = 10−4. The lines of
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decay rates N−3 and N−5 are also plotted for a close comparison. It is obvious
that the L2 and L∞-errors decay with a rate between N−3 and N−5, which is
match with error estimate (3.16). This computational result seems better than
the theoretical one, as the solution belongs at most to H2(Λ).

Figure 2. Left: L2 and L∞-errors versus N in log-scale. Right: Point-wise errors at t = 1
with ∆t = 10−4 and N = 20.

Example 3. Consider the following problem [18]

∂tu(x, t)− ∂2xu(x, t) = −et
(
x(x− 1) +

δ

6(1 + δ)
+ 2

)
, 0 ≤ x ≤ 1, 0 ≤ t ≤ 2,

where the kernels in the nonlocal boundary conditions (1.2) are chosen to be
K1(x) = K2(x) = −δ. The exact solution of this problem is given as,

u(x, t) = −et
(
x(x− 1) +

δ

6(1 + δ)

)
.

For this problem, we applied Legendre-Galerkin spectral method described in
the previous sections by taking N = 4 and ∆t = 10−5 and compare the compu-
tational results for δ = 0.0144 with the results obtained in [1,4,24] (see Tables
4 and 5).

Table 4. Absolute errors of Example 3 using methods in [1, 4] and LG-SM for x = 0.5.

t Method in [1] Method in [4] Our method
N = 33 N = 8 N = 4

0.3 8.2e-007 5.0871e-013 1.3927e-013
0.6 6.5e-007 9.9447e-012 8.8825e-012
0.9 4.9e-007 1.5016e-010 4.1322e-012
1.2 3.6e-007 8.6060e-011 1.4103e-012
1.5 2.7e-007 7.2216e-011 1.3278e-012
1.8 1.9e-007 9.0763e-011 1.1801e-012

Obviously, the computational results of LG-SM are better than the obtained
ones using the algorithms presented in [1,4,24] even for small polynomial degree
N , this may relax the storage limit and decrease the computational cost. More-
over, we can obtain more accurate results if a high-order schema is employed
for the time-discretization.
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Table 5. Absolute errors of Example 3 using methods in [4, 24] and LG-SM for t = 0.5.

x Method in [24] Method in [4] LG-SM
N = 10 N = 8 N = 4

0.0 2.778e-014 1.3678e-014 4.9831e-012
0.2 1.851e-012 9.3545e-013 3.6441e-012
0.4 2.790e-012 1.3398e-012 2.3854e-012
0.6 2.790e-012 1.3398e-012 8.4064e-013
0.8 1.851e-012 9.3545e-013 4.2046e-013
1.0 2.772e-014 1.3687e-014 1.0780e-013

5 Conclusions

In the present paper, Legendre-Galerkin spectral method for the diffusion equa-
tion with non-local boundary conditions is proposed. Based on the weak for-
mulation of the problem under consideration, we were able to implement and
analyse the proposed spectral method. Our approach enjoys the spectral ac-
curacy property, which has proven by deriving suitable error estimates, and
illustrated by several numerical examples.

This work is a primary attempt in developing spectral methods for parabolic
equations with non-local boundary conditions, in which, we only considered a
one-dimensional linear parabolic equation. The approach developed in this
work could serve as a base for the analysis and implementation of spectral
methods for more general PDEs with analogous boundary conditions, such as
semilinear and nonlinear parabolic equations. In further works, we plan to
extend the present approach to investigate space-time spectral methods for
solving such classes of PDEs.
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