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Abstract. The aim of this work is to show an abstract framework to analyze the
numerical approximation by using a finite element method in space and a Backward-
Euler scheme in time of a family of degenerate parabolic problems. We deduce suffi-
cient conditions to ensure that the fully-discrete problem has a unique solution and to
prove quasi-optimal error estimates for the approximation. Finally, we show a degen-
erate parabolic problem which arises from electromagnetic applications and deduce its
well-posedness and convergence by using the developed abstract theory, including nu-
merical tests to illustrate the performance of the method and confirm the theoretical
results.
Keywords: parabolic degenerate equations, parabolic-elliptic equations, finite element

method, backward Euler scheme, fully-discrete approximation, error estimates, eddy current

model.

AMS Subject Classification: 35K65; 35K90.

1 Introduction

We will call degenerate parabolic equation an elliptic-parabolic equation of the
form ( [20, Chapter III], [22, Section 44], [16]):

d

dt
(Ru(t)) +A(t)u(t) = f(t), (1.1)
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where R is a linear, bounded and monotone operator independent of time and
(A(t))t∈[0,T ] is a family of linear and bounded operators. They arise in several
applications, for instance in the study of eddy currents in electromagnetic field
theory (see [5, 13,24]).

Results about existence and uniqueness of solutions for some degenerate
parabolic equations have been widely studied. In [11] Kuttler and Kenneth
show results concerning existence, uniqueness and regularity of equations of the
form (1.1), where R is non-invertible and A is a linear operator independent
of the time. Sufficient conditions to ensure the existence and uniqueness of
solutions of (1.1), even when R depends on the time, are shown by Showalter
[20] (see also [19]). Moreover, the existence and uniqueness of the solutions
for the case of the family of operators A can be non-linear, has been analyzed
in [10,12,14].

Among the numerical methods found in the literature to compute the ap-
proximated solution of classical parabolic partial differential equation, the finite
element method (with some time-stepping scheme) is one of the more extended.
We can cite the book by V. Thomée [21] as a classical reference about this topic.
Moreover, books dedicate to the finite element approximation for partial dif-
ferential equations, devote at least one chapter to the analysis of the numerical
approximation of parabolic equations (see, for instance, [9] and [17]). In fact,
the developed theory for the approximation of parabolic equations by the finite
element method, is mainly presented for a general heat-like equation, i.e., to
approximate the solution of a general parabolic problem of the form:

du

dt
+ Lu = f,

with L is a coercive differential operator of the second order.
The mathematical analysis for the numerical approximations by finite ele-

ment methods, including existence and uniqueness of the discrete solutions and
quasi-optimal error estimates, has been only performed for particular degen-
erate parabolic equations. For instance, Zlamal [24] has studied the approxi-
mation of solution for a two-dimensional eddy current problem in a bounded
domain, MacCamy and Suri [13] have proposed a FEM-BEM coupling for the
formulation analyzed in [24], and a formulation for an axisymmetric eddy cur-
rent problem was studied by Bermudez et al [5]. The formulations studied in
all these references can be expressed as particular cases of problem (1.1). Nev-
ertheless, to the best knowledge of the authors, there is not an abstract general
theory that allows to deduce the mathematical analysis of these approximations
as particular applications of that theory.

The main goal of this article is precisely to provide a general theory for
the mathematical analysis of a fully-discrete finite element approximation for
an abstract degenerate parabolic equation. To this end, we consider a fully
discrete approximation for a Cauchy problem associated to equation (1.1), by
using a finite element method in space and a Backward-Euler scheme in time.
We show sufficient conditions for the spaces and the family of operators, to
guarantee existence and uniqueness of the fully-discrete solutions by assuming
that the time step is sufficiently small. Furthermore, we prove quasi-optimal
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error estimates for this fully discretized scheme by adapting the approxima-
tion theory for classical parabolic equations to the abstract degenerate case.
Moreover, since a good discrete approximation for the time-derivative of the
solution is relevant for the applications, we prove that this time derivative can
be approximated with quasi-optimal error estimates.

The outline of the paper is as follows: Section 2 is devoted to show some con-
cepts about spaces for evolutive problems and the abstract framework for de-
generate parabolic equations and their well-posedness are recalled in Section 3.
The corresponding analysis for the fully-discrete approximation of problem by
using finite element method in space and a backward Euler scheme in time, is
presented in Section 4 and the results ensuring the quasi-optimal convergence
of the approximation method are shown in Section 5. Furthermore, the appli-
cation of the theory to an eddy current model is studied in Section 6, where
we deduce its well-posedness and theoretical convergence by using the devel-
oped abstract theory. Finally, we show some numerical results that confirm the
expected convergence of the method according to the theory.

2 Hilbert functional spaces for evolutive problems

Let us first review some basic concepts about functional analysis which are
useful in dealing with time-dependent functions. A complete and detailed pre-
sentation of the concepts that we indicate in this section can be founded, for
instance, in [23, Sections 23.2-23.6]. More precisely, we need to introduce
spaces of functions defined on a bounded time interval (0, T ) (where T > 0 is
a fixed time) and with values in separable Hilbert space X. We will denote by
‖ · ‖X , (·, ·)X and 〈·, ·〉X , the norm, the inner product and duality pairing in
X. We use the notation C0([0, T ];X) for the space consisting of all continuous
functions f : [0, T ] → X. More generally, for any k ∈ N, Ck([0, T ];X) denotes
the subspace of C0([0, T ];X) of all functions f with (strong) derivatives of order
at most k in C0([0, T ];X), i.e.,

Ck([0, T ];X) :=

{
f ∈ C0([0, T ];X) :

djf

dtj
∈ C0([0, T ];X), 1 ≤ j ≤ k

}
.

A classical result of functional analysis states Ck([0, T ];X) is a Banach space
with the norm

‖f‖Ck([0,T ];X) := sup
t∈[0,T ]

k∑
j=0

∥∥∥∥djfdtj (t)

∥∥∥∥
X

.

We also consider the space L2(0, T ;X) of classes of functions f : (0, T )→ X
that are Böchner-measurable whose norm in X belongs to L2(0, T ), i.e.,

‖f‖2L2(0,T ;X) :=

∫ T

0

‖f(t)‖2X dt < +∞.

The space L2(0, T ;X) is a Hilbert space with the norm ‖ · ‖L2(0,T ;X). Further-
more, the dual space of L2(0, T ;X) can be identified with the space L2(0, T ;X ′)
as shown in the following result.
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Proposition 1 [Dual space of L2(0, T ;X)]. Let X be a separable Hilbert
space. For any f ∈ L2(0, T ;X)′ there exists a unique vf ∈ L2(0, T ;X ′) satisfy-
ing

〈f, w〉 =

∫ T

0

〈vf (t), w(t)〉X dt, ∀w ∈ L2(0, T ;X).

Moreover, the map f 7→ vf is a linear bijection which preserves the norm, i.e.,

‖f‖(L2(0,T ;X))′ = ‖vf‖L2(0,T ;X′) , ∀f ∈
(
L2(0, T ;X)

)′
.

Proof. See, for instance, [23, Proposition 23.7]. ut

The analysis of evolutive differential problems require functional spaces in-
volving time-derivatives. Let X and Y be two separable Hilbert spaces such
that X ⊂ Y with continuous and dense embedding. Let X ′ the dual space of
X with respect to the pivot space Y . More precisely, Y will be identified with
its dual Y ′ by the Riesz map and we have X ↪→ Y ↪→ X ′ with the identity

〈w, v〉X = (w, v)Y ∀w ∈ Y ⊂ X ′ ∀v ∈ X.

We will denote by W1,2(0, T ;X,X ′) the functional space given by

W1,2(0, T ;X,X ′) :=

{
v ∈ L2(0, T ;X) :

dv

dt
∈ L2(0, T ;X ′)

}
,

where
dv

dt
is the generalized time-derivative of v characterized by∫ T

0

〈
dv

dt
(t), w

〉
X

ϕ(t)dt = −
∫ T

0

(v(t), w)Y ϕ
′(t)dt ∀w ∈ X ∀ϕ ∈ C∞0 (0, T ).

The symbols
dv

dt
, ∂tv and v′ will be used indistinctly along the text to denote

the generalized time-derivative of v. It is well known that W1,2(0, T ;X,X ′)
endowed with the norm

‖v‖W1,2(0,T ;X,X′) := ‖v‖L2(0,T ;X) +

∥∥∥∥dvdt
∥∥∥∥
L2(0,T ;X′)

is a Banach space and W1,2(0, T ;X,X ′) ⊂ C0([0, T ];Y ) with a continuous
embedding (see, for instance, [23, Proposition 23.23]).

Let k ∈ N. The generalized time-derivative of order k of v ∈ L2(0, T ;X),

denoted by
dkv

dtk
, can be defined inductively. Hence, we can consider the space

Hk(0, T ;X) :=

{
v ∈ L2(0, T ;X) :

djv

dtj
∈ L2(0, T ;X), j = 1, . . . , k

}
,

which is a Banach space with the norm

‖v‖Hk(0,T ;X) :=

k∑
j=0

∥∥∥∥djvdtj
∥∥∥∥
L2(0,T ;X)

.

Furthermore, the embedding Hk(0, T ;X) ⊂ Ck−1([0, T ];X) is continuous for
any k ∈ N.
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3 The degenerate parabolic problem

Let X and Y be two real separable Hilbert spaces such that X ⊂ Y with
continuous and dense embedding. We denote by (·, ·)X and (·, ·)Y the inner
products on X and Y respectively and ‖ · ‖X , ‖ · ‖Y the corresponding norms.
Furthermore, 〈·, ·〉X and 〈·, ·〉Y denote respectively the duality paring of X and
Y and their corresponding dual spaces. Let R : Y → Y ′ a linear and bounded
operator. Let T > 0, for any t ∈ [0, T ], let us consider a linear and bounded
operator A(t) : X → X ′ such that

t ∈ [0, T ] 7→ 〈A(t)v, w〉X ∈ R is measurable, ∀v, w ∈ X,
∃M > 0 constant s.t ‖A(t)‖L(X,X′) ≤M, ∀t ∈ [0, T ].

For any function w : [0, T ]→ X we will use the following notation

Rw(t) := R(w(t)), A(t)w(t) := A(t)(w(t)).

Then, given f ∈ L2(0, T ;X ′) and u0 ∈ Y , the degenerate parabolic problem
can read as follows.

Problem 1. Find u ∈ L2(0, T ;X) such that:

d

dt
〈Ru(t), v〉Y + 〈A(t)u(t), v〉X = 〈f(t), v〉X , ∀v ∈ X,

〈Ru(0), v〉Y = 〈Ru0, v〉Y , ∀v ∈ Y.

The first identity in Problem 1 is given in the space of the distributions
D′(0, T ), i.e., this equation is equivalent to

−
∫ T

0

〈Ru(t), v〉Y ϕ
′(t)dt+

∫ T

0

〈A(t)u(t), v〉X ϕ(t)dt =

∫ T

0

〈f(t), v〉X ϕ(t)dt

for all v ∈ X and ϕ ∈ C∞0 (0, T ). Moreover, Problem 1 can be formulated as
any of the following two equivalent problems.

Problem 2. Find u ∈ L2(0, T ;X) such that

−
∫ T

0

〈Ru(t), v′(t)〉Y dt+
∫ T

0

〈A(t)u(t), v(t)〉Xdt=
∫ T

0

〈f(t), v(t)〉X dt+ 〈Ru0, v(0)〉Y ,

for all v ∈ L2(0, T ;X) ∩H1(0, T ;Y ) with v(T ) = 0.

Problem 3. Find u ∈ L2(0, T ;X) satisfying

d

dt
Ru(·) +A(·)u(·) = f(·) in L2(0, T ;X ′),

Ru(0) = Ru0 in Y ′.

Remark 1. The first equation in Problem 3 implies that Ru(·) ∈ H1(0, T ;X ′),
consequently the function t 7→ Ru(t) is absolutely continuous in X ′ and in
particular Ru(0) ∈ X ′. Moreover, since the inclusion X ⊂ Y is dense and
continuous, the inclusion Y ′ ⊂ X ′ is also dense and continuous and therefore,
by recalling that Ru0 ∈ Y ′, the initial condition given by the second equa-
tion of Problem 3 has meaning, which is equivalent to the second equation of
Problem 1.
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Remark 2. Problem 1 allows some arbitrariness in the initial data u0. More
precisely, if u0 is replaced by u0 + z, where z is an arbitrary element of kerR,
the initial condition given by the second equation in Problem 1 does not change
and therefore neither does the solution of this problem.

In order to obtain the well-posedness result for Problem 1 (and equivalently
for Problem 2 and Problem 3), we need to recall the following definition; see [20,
Section III.3].

Definition 1. Let Z be a real separable Hilbert space and G := {G(t) : Z →
Z ′ : t ∈ [0, T ]} be a family of linear and bounded operators. G is called
monotone if 〈G(t)v, v〉Z ≥ 0 for any v ∈ Z and for any t ∈ [0, T ]. G is called
self-adjoint, if 〈G(t)u, v〉Z = 〈G(t)v, u〉Z for any u, v ∈ Z and for any t ∈ [0, T ].
Similarly, G is called regular if for each u, v ∈ Z the map t 7→ 〈G(t)u, v〉Z
is absolutely continuous on [0, T ] and there exists a function k : (0, T ) → R
belongs to L1(0, T ), which satisfies∣∣∣∣ ddt 〈G(t)u, v〉Z

∣∣∣∣ ≤ k(t)‖u‖Z‖v‖Z , ∀u, v ∈ Z a.e. t ∈ [0, T ].

The following result shows sufficient conditions to obtain the existence and
uniqueness of solution for Problem 1 and its proof can be founded in [20,
Proposition III.3.2 and III.3.3].

Theorem 1. Assume that the operator R is monotone, self-adjoint, and there
exist constants λ > 0 and α > 0 such that

λ 〈Rv, v〉Y + 〈A(t)v, v〉X ≥ α‖v‖
2
X , ∀v ∈ X, ∀t ∈ [0, T ]. (3.1)

Then, there exists a solution of Problem 1 and it satisfies

‖u‖L2(0,T ;X) ≤ C
(
‖f‖2L2(0,T ;X′) + 〈Ru0, u0〉Y

) 1
2

(3.2)

for some constant C > 0. Furthermore, if A(t) is a regular family of self-adjoint
operators, then the solution of Problem 1 is unique.

4 Fully-discrete approximation for degenerate parabolic
problem

In this section we present the fully-discrete approximation for the degenerate
parabolic problem which was introduced in the previous section. For this pur-
pose, we assume that the family of operators A(t) and the operator R satisfy
the sufficient conditions given in Theorem 1 to guarantee the existence and
uniqueness of solution of Problem 1.

The fully discrete approximation will be obtained by using the finite element
method in space and a backward-Euler scheme in time. Let {Xh}h>0 be a
sequence of finite-dimensional subspaces of X and let tn := n∆t, n = 0, . . . , N,
be a uniform partition of [0, T ] with a time-step ∆t := T/N .

Math. Model. Anal., 27(1):134–160, 2022.
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For any finite sequence {θn : n = 0, . . . , N} we denote ∂θn := θn−θn−1

∆t ,
n = 1, . . . , N .

Let u0,h ∈ Xh and assume that f ∈ C0([0, T ];X ′), then the fully-discrete
approximation of Problem 1 reads as follows.

Problem 4. Find unh ∈ Xh, n = 1, . . . , N , such that

〈R∂unh, v〉Y + 〈A(tn)unh, v〉X = 〈f(tn), v〉X , ∀v ∈ Xh,

u0h = u0,h.

We can easily check that in each step n = 1, . . . , N , unh is computed as the
solution of the following problem: find unh ∈ Xh such that

An(unh, v) = Fn(v), ∀v ∈ Xh,

where An and Fn are defined by

An(v, w) := 〈Rv,w〉Y +∆t 〈A(tn)v, w〉X , ∀v, w ∈ Xh,

Fn(v) := ∆t 〈f(tn), v〉X + 〈Run−1h , v〉Y , ∀v ∈ Xh.

We will use the Lax-Milgram Lemma to deduce the existence and uniqueness
of solution of Problem 4 for each n = 1, . . . , N . Since Fn is linear and bounded
and An is bilinear and bounded, we need to prove that An is elliptic in Xh. In
fact, if we assume that 0 < ∆t ≤ 1/λ, for any v ∈ Xh we have

An(v, v) = 〈Rv, v〉Y +∆t〈A(tn)v, v〉X ≥ ∆t [λ〈Rv, v〉Y + 〈A(tn)v, v〉X ] ,

then, from (3.1) it follows that

An(v, v) ≥ α∆t‖v‖2X , ∀v ∈ Xh.

Consequently, we have the following result about the existence and uniqueness
of solution for the fully-discrete Problem 4.

Theorem 2. Assume that the family of operators A(t) and the operator R
satisfy the sufficient conditions given in Theorem 1 to guarantee the existence
and uniqueness of solution of Problem 1. If the time-step ∆t is small enough
(e.g., 0 < ∆t ≤ 1/λ), the fully-discrete Problem 4 has a unique solution unh ∈
Xh for each n = 1, . . . , N .

Remark 3. As in the continuous case (see Remark 2), the fully-discrete Prob-
lem 4 allows some arbitrariness about the choice of the discrete initial data
u0,h. In fact, if zh ∈ Xh ∩ kerR, we obtain the same discrete solution unh
(n = 1, . . . , N) in both cases: by taking as discrete initial data either u0,h or
u0,h + zh.

5 Error estimates for the fully-discrete approximation

In this section, we will deduce some error estimates for the fully-discrete ap-
proximation. To do this, from now on we assume the assumptions of Theo-
rems 1 and 2. Moreover, we assume that the solution to Problem 1 satisfies
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u ∈ H1(0, T ;X). Furthermore, we consider the orthogonal projection operator
Πh : X → Xh, defined by

Πhw ∈ Xh : (Πhw, v)X = (w, v)X , ∀v ∈ Xh,

clearly, Πh is well-defined and satisfies

‖w −Πhw‖X ≤ inf
v∈Xh

‖w − v‖X , ∀w ∈ X. (5.1)

In order to obtain the error estimates results with a regularity assump-
tions for the solution according to the degenerate parabolic problems, we will
introduce some notations and show some relevant results.

Firstly, let us consider the Riezs isomorphism ΛY : Y → Y ′. Then by
defining R̂ := Λ−1Y R and following the lines of [15, Section 4], we can observe

R̂ : Y → Y is a monotone, linear and bounded self-adjoint operator. Thus,
the operator R̂ admits a unique square root R̂1/2 which is also a monotone,
linear and bounded self-adjoint operator (see [18]). Let Y0 := ker R̂, Y+ be

the orthogonal space of Y0 and Y
1/2
+ be the completion of Y+ with respect the

topology induced by the norm ‖v‖+ := ‖R̂1/2v‖Y .
We consider now the orthogonal projection operator P+ : Y → Y+ defined

by

R̂v = R̂(P+v), ∀v ∈ Y. (5.2)

Therefore, P+ ∈ L(Y, Y+) (where Y+ is endowed with the norm of Y ) and we
can easily notice that

〈Rv, v〉Y = ‖R̂1/2v‖2Y = ‖R̂1/2P+v‖2Y = ‖P+v‖2+, ∀v ∈ Y.

On the other hand, if we assume that u ∈ H1(0, T ;X), then u∈H1(0, T ;Y ) and
by recalling that P+∈L(Y, Y+), we obtain P+u ∈ H1(0, T ;Y+) ⊂ H1(0, T ;Y )
and ∂tP+u = P+∂tu in L2(0, T ;Y+). Hence, since R ∈ L(Y, Y ′), it follows
RP+u ∈ H1(0, T ;Y ′) and ∂t(RP+u) = R∂t(P+u) in L2(0, T ;Y ′). Furthermore,
by noticing

Rv = RP+v, ∀v ∈ Y, (5.3)

we have Ru = RP+u and hence ∂t(Ru) = R∂t(P+u). In summary, if u ∈
H1(0, T ;X) then

P+u ∈ H1(0, T ;Y+) ⊂ H1(0, T ;Y ), (5.4)

∂t(Ru) = ∂t(RP+u) = R∂t(P+u) = RP+∂tu (5.5)

in L2(0, T ;Y ′).
Next we want to show that the linear operator R|Y+

: Y+ → Y ′ can be

extended to a linear continuous operator R̃ : Y
1/2
+ → Y ′. In fact, since the op-

erator R is monotone and self-adjoint, it satisfies the following Cauchy-Schwarz
type inequality

|〈Rv,w〉Y | ≤ 〈Rv, v〉1/2Y 〈Rw,w〉
1/2
Y , ∀v, w ∈ Y. (5.6)

Math. Model. Anal., 27(1):134–160, 2022.
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Consequently,

|〈Rv,w〉Y | ≤ ‖R‖
1
2

L(Y,Y ′)‖v‖+‖w‖Y , ∀v ∈ Y+, ∀w ∈ Y,

hence

‖Rv‖Y ′ ≤ ‖R‖
1
2

L(Y,Y ′)‖v‖+, ∀v ∈ Y+.

Therefore, the restriction linear operator R|Y+
: Y+ → Y ′ can be extended in

an unique way to a linear continuous operator R̃ : Y
1/2
+ → Y ′ by means of an

standard argument of continuity and density.
Moreover, by recalling (5.4) it follows P+u ∈ H1(0, T ;Y+) and since R and

R̃ coincide in Y+, we have R(P+u) = R̃(P+u). Besides, since the embedding

Y+ ⊂ Y 1/2
+ is continuous, we see that P+u ∈ H1(0, T ;Y

1/2
+ ). From this and the

fact that R̃ ∈ L(Y
1/2
+ , Y ′), it follows that R(P+u) = R̃(P+u) ∈ H1(0, T ;Y ′).

Therefore, if P+u ∈ C1([0, T ];Y
1/2
+ ) then

R(P+u) = R̃(P+u) in C1([0, T ];Y ′),

∂t(RP+u) = R̃∂t(P+u) in C0([0, T ];Y ′) ⊂ C0([0, T ];X ′). (5.7)

Consequently, by assuming that the solution of Problem 1 satisfies u ∈
H1(0, T ;X) and P+u ∈ C1([0, T ];Y

1/2
+ ), from (5.5) and (5.7) it follows

∂t(Ru) = ∂t(RP+u) = R̃∂t(P+u) in C0([0, T ];Y ′).

Hence, the first equation of Problem 1 implies

〈R̃(∂t(P+u)(t)), v〉Y +〈A(t)u(t), v〉X=〈f(t), v〉X , ∀v ∈ X, ∀t ∈ [0, T ]. (5.8)

Furthermore, by using (5.3) the first equation of Problem 4 yields

〈R̃(∂(P+u
n
h)), v〉Y + 〈A(tn)unh, v〉X = 〈f(t), v〉X , ∀v ∈ Xh (5.9)

for n = 1, . . . , N .
Now, we introduce the standard terms to obtain the error estimates for

parabolic problems. To this aim, from now on u and unh (n = 1, . . . , N) denote
the solutions of Problem 1 and Problem 4, respectively. We define the error
and consider its splitting

enh := u(tn)− unh = ρnh + σnh , n = 0, . . . , N, (5.10)

where

ρh(t) := u(t)−Πhu(t), ρnh := ρh(tn), σnh := Πhu(tn)− unh. (5.11)

Finally, by assuming P+u ∈ C1([0, T ];Y
1/2
+ ) (see (5.2)) we denote

τn :=
P+u(tn)− P+u(tn−1)

∆t
− ∂tP+u(tn)= ∂(P+u(tn))− ∂tP+u(tn), (5.12)
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for n = 1, . . . , N . Note that τn ∈ Y 1/2
+ , but in general τn 6∈ Y . Moreover, we

can easily check that

∂tP+u(tn)− ∂(P+u
n
h) = ∂(P+e

n
h)− τn = ∂(P+ρ

n
h) + ∂(P+σ

n
h)− τn (5.13)

for n = 1, . . . , N .

Lemma 1. If u ∈ H1(0, T ;X) with P+u ∈ C1([0, T ];Y
1/2
+ ) then there exists a

constant C > 0, independent of h and ∆t, such that

〈Rσnh , σnh〉Y +∆t
n∑
k=1

‖σkh‖2X

≤ C
[
〈Rσ0

h, σ
0
h〉Y +∆t

N∑
k=1

{
‖τk‖2+ + ‖∂ρkh‖2X + ‖ρkh‖2X

} ]
. (5.14)

Furthermore, if u0 ∈ X and for each t ∈ [0, T ] the operator A(t) is monotone
and there exists a constant C > 0 such that

〈A′(t)w, v〉 ≤ C‖w‖X‖v‖X , ∀w, v ∈ X, ∀t ∈ [0, T ], (5.15)

then, there exists a constant C > 0, independent of h and ∆t, such that

∆t

n∑
k=1

〈R∂σkh, ∂σkh〉Y + 〈A(tn)σnh , σ
n
h〉X

≤ C
[
‖σ0

h‖2X+‖ρ0h‖2X+‖ρnh‖2X+∆t

N∑
k=1

{
‖τk‖2++‖∂ρkh‖2X+‖ρkh‖2X

}]
. (5.16)

Proof. Let n ∈ {1, . . . , N}, k ∈ {1, . . . , n} and v ∈ Xh. From (5.8) and (5.9)
it follows〈

R̃
(
∂t(P+u)(tk)− ∂(P+u

k
h)
)
, v
〉
Y

+ 〈A(tk)ekh, v〉X = 0, ∀v ∈ Xh,

for k = 1, . . . , n. Then, using (5.13) we obtain〈
R̃∂(P+σ

k
h), v

〉
Y

+ 〈A(tk)σkh, v〉X

= 〈R̃τk, v〉Y −
〈
R̃∂(P+ρ

k
h), v

〉
Y
− 〈A(tk)ρkh, v〉X , ∀v ∈ Xh.

Therefore, by recalling R̃(P+v) = R(P+v) = Rv for all v ∈ Y , it follows

〈R∂σkh, v〉Y + 〈A(tk)σkh, v〉X
= 〈R̃τk, v〉Y − 〈R∂ρkh, v〉Y − 〈A(tk)ρkh, v〉X , ∀v ∈ Xh. (5.17)

By testing this previous identity with v = σkh ∈ Xh, we have

〈R∂σkh, σkh〉Y + 〈A(tk)σkh, σ
k
h〉X

= 〈R̃τk, σkh〉Y − 〈R∂ρkh, σkh〉Y − 〈A(tk)ρkh, σ
k
h〉X . (5.18)
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Using the fact that R is monotone and self-adjoint, the first term of the left-
hand term in the previous identity satisfies

〈R∂σkh, σkh〉Y ≥
1

2∆t

[
〈Rσkh, σkh〉Y − 〈Rσk−1h , σk−1h 〉Y

]
,

by recalling (3.1), there exist λ, α > 0 such that

〈A(tk)σkh, σ
k
h〉X ≥ α‖σkh‖2X − λ〈Rσkh, σkh〉Y ,

thus, replacing in (5.18), it follows that

1

2∆t

[
〈Rσkh, σkh〉Y − 〈Rσk−1h , σk−1h 〉Y

]
+ α‖σkh‖2X − λ〈Rσkh, σkh〉Y

≤ 〈R̃τk, σkh〉Y − 〈R∂ρkh, σkh〉Y − 〈A(tk)ρkh, σ
k
h〉X . (5.19)

Now, from inequality (5.6) we can deduce the following inequality by using
an standard argument of continuity and density

|〈R̃v, w〉Y | ≤ ‖v‖+〈Rw,w〉1/2Y , ∀v ∈ Y 1/2
+ , ∀w ∈ Y,

hence, by recalling that τk ∈ Y 1/2
+ (see (5.12)), we obtain

|〈R̃τk, σkh〉Y | ≤
1

4
〈Rσkh, σkh〉Y + ‖τk‖2+. (5.20)

Besides, from (5.6) we have

|〈R∂ρkh, σkh〉Y | ≤
1

4
〈Rσkh, σkh〉Y + 〈R∂ρkh, ∂ρkh〉Y .

On the other hand, by using the uniform continuity of the family of opera-
tors A(t), we can notice that

|〈A(tk)ρkh, σ
k
h〉X | ≤

α

2
‖σkh‖2X +

1

2α
M2‖ρkh‖2X . (5.21)

Therefore, by replacing (5.20)–(5.21) in (5.19) and using the fact that R is
a bounded operator and X ⊂ Y is a continuous embedding, we deduce

〈Rσkh, σkh〉Y − 〈Rσk−1h , σk−1h 〉Y + α∆t‖σkh‖2X
≤ (1 + 2λ)∆t〈Rσkh, σkh〉Y + C∆t

{
‖τk‖2+ + ‖∂ρkh‖2X + ‖ρkh‖2X

}
.

Hence, by summing over k, we obtain

〈Rσnh , σnh〉Y − 〈Rσ0
h, σ

0
h〉Y + α∆t

n∑
k=1

‖σkh‖2X

≤ (1 + 2λ)∆t

n∑
k=1

〈Rσkh, σkh〉Y + C∆t

n∑
k=1

{
‖τk‖2+ + ‖∂ρkh‖2X + ‖ρkh‖2X

}
.
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Then, if ∆t is small enough such that (1 + 2λ)∆t ≤ 1
2 , we have

1

2
〈Rσnh , σnh〉Y + α∆t

n∑
k=1

‖σkh‖2X ≤ (1 + 2λ)∆t

n−1∑
k=1

〈Rσkh, σkh〉Y

+ 〈Rσ0
h, σ

0
h〉Y + C∆t

n∑
k=1

{
‖τk‖2+ + ‖∂ρkh‖2X + ‖ρkh‖2X

}
, (5.22)

which implies

〈Rσnh , σnh〉Y ≤ 2〈Rσ0
h, σ

0
h〉Y

+ 2(1 + 2λ)∆t

n−1∑
k=1

〈Rσkh, σkh〉Y + C∆t

n∑
k=1

[
‖τk‖2+ + ‖∂ρkh‖2X + ‖ρkh‖2X

]
.

Therefore, by using the discrete Gronwall’s Lemma (see, for instance, [17,
Lemma 1.4.2]), we obtain for n ∈ {1, . . . , N}

〈Rσnh , σnh〉Y ≤ C
[
〈Rσ0

h, σ
0
h〉Y +∆t

n∑
k=1

{
‖τk‖2+ + ‖∂ρkh‖2X + ‖ρkh‖2X

} ]
.

Hence, by using this inequality to estimate the first term in the right-hand term
of (5.22), we deduce (5.14).

Next, we want to prove (5.16) by assuming that each A(t) is monotone and
(5.15) holds true. In fact, by taking v = ∂σkh ∈ Xh in (5.17), we obtain

〈R∂σkh, ∂σkh〉Y + 〈A(tk)σkh, ∂σ
k
h〉X

= 〈R̃τk, ∂σkh〉Y − 〈R∂ρkh, ∂σkh〉Y − 〈A(tk)ρkh, ∂σ
k
h〉X . (5.23)

Now, since each operator A(t) is monotone and self-adjoint, it follows

〈A(tk)σkh, ∂σ
k
h〉X ≥

1

2∆t

{
〈A(tk)σkh, σ

k
h〉X − 〈A(tk)σk−1h , σk−1h 〉X

}
and therefore

〈A(tk)σkh, ∂σ
k
h〉X ≥

1

2∆t

[
〈A(tk)σkh, σ

k
h〉X − 〈A(tk−1)σk−1h , σk−1h 〉X

]
− 1

2∆t

〈(∫ tk

tk−1

A′(t)dt

)
σk−1h , σk−1h

〉
X

. (5.24)

On the other hand, a straightforward computation shows that

〈A(tk)ρkh, ∂σ
k
h〉X =

1

∆t

[
〈A(tk)ρkh, σ

k
h〉X − 〈A(tk−1)ρk−1h , σk−1h 〉X

]
− 〈A(tk)∂ρkh, σ

k−1
h 〉X −

1

∆t

〈(∫ tk

tk−1

A′(t)dt

)
ρk−1h , σk−1h

〉
X

. (5.25)
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Hence, by using (5.24) and (5.25) in (5.23), we have

〈R∂σkh, ∂σkh〉Y +
1

2∆t

[
〈A(tk)σkh, σ

k
h〉X − 〈A(tk−1)σk−1h , σk−1h 〉X

]
≤ 〈A(tk)∂ρkh, σ

k−1
h 〉X+

1

∆t

〈(∫ tk

tk−1

A′(t)dt

)(
ρk−1h +

1

2
σk−1h

)
, σk−1h

〉
X

+ 〈R̃τk, ∂σkh〉Y−〈R∂ρkh, ∂σkh〉Y −
1

∆t

[
〈A(tk)ρkh, σ

k
h〉X−〈A(tk−1)ρk−1h , σk−1h 〉X

]
,

then, recalling that the family of operators A(t) is uniformly bounded and that
the operator R is also bounded, using (5.6), (5.20), (5.15) and X ⊂ Y is a
continuous embedding, it follows that

1

2
〈R∂σkh, ∂σkh〉Y +

1

2∆t

[
〈A(tk)σkh, σ

k
h〉X − 〈A(tk−1)σk−1h , σk−1h 〉X

]
≤ − 1

∆t

[
〈A(tk)ρkh, σ

k
h〉X − 〈A(tk−1)ρk−1h , σk−1h 〉X

]
+ C

[
‖σk−1h ‖2X + ‖τk‖2+ + ‖∂ρkh‖2X + ‖ρk−1h ‖2X

]
,

then, multiplying by 2∆t, summing over k and using the fact that

|〈A(tn)ρnh, σ
n
h〉X | ≤ 〈A(tn)ρnh, ρ

n
h〉X +

1

4
〈A(tn)σnh , σ

n
h〉X ,

we obtain

∆t

n∑
k=1

〈R∂σkh, ∂σkh〉Y +
1

2
〈A(tn)σnh , σ

n
h〉X ≤ 〈A(0)(2ρ0h + σ0

h), σ0
h〉X

+ 2〈A(tn)ρnh, ρ
n
h〉X + C∆t

n∑
k=1

{
‖σk−1h ‖2X + ‖τk‖2+ + ‖∂ρkh‖2X + ‖ρk−1h ‖2X

}
.

Finally, using (5.14) to estimate the sum involving ‖σk−1h ‖X and recalling A(t)
is uniformly bounded and monotone, we deduce (5.16). ut

Our next goal is to prove the error estimates.

Theorem 3. If u ∈ H1(0, T ;X) with P+u ∈ H2(0, T ;Y
1/2
+ ), then there exists

a constant C > 0, independent of h and ∆t, such that

max
1≤n≤N

〈R(u(tn)− unh), u(tn)− unh〉Y +∆t

N∑
n=1

‖u(tn)− unh‖2X

≤C
{
〈R(u0 − u0,h), u0 − u0,h〉Y + max

0≤n≤N

[
inf
v∈Xh

‖u(tn)− v‖2X
]

(5.26)

+

∫ T

0

inf
v∈Xh

‖∂tu(t)− v‖2X dt+ (∆t)2
∫ T

0

‖∂ttP+u(t)‖2+ dt

}
.
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Furthermore, if for each t ∈ [0, T ] the operator A(t) is monotone and (5.15)
holds true, then there exists a constant C > 0 independent of h and ∆t, satis-
fying

∆t

N∑
k=1

‖∂t(P+u)(tk)− ∂P+u
k
h‖2+ + max

1≤n≤N
〈A(tn)(u(tn)− unh), u(tn)− unh〉X

≤ C
{
‖u(0)− u0,h‖2X + max

0≤n≤N

[
inf
v∈Xh

‖u(tn)− v‖2X
]

+

∫ T

0

inf
v∈Xh

‖∂tu(t)− v‖2X dt+ (∆t)2
∫ T

0

‖∂ttP+u(t)‖2+ dt
}
. (5.27)

Remark 4. The first term on the right hand side of (5.26) is

〈R(u0 − u0,h), u0 − u0,h〉Y .

We can easily check that this term does not change if u0 and u0,h are re-
spectively replaced with u0 + z and u0,h + zh for any z ∈ X ∩ kerR and any
zh ∈ Xh ∩ kerR, respectively. This property is very convenient in view of
the “freedom of choosing” the continuous and the discrete initial data (cf. Re-
mark 2 and Remark 3).

Remark 5. The initial condition of the problem is Ru(0) = Ru0, then u(0) and
u0 can be different. Therefore, the term ‖u(0)− u0,h‖X which appears on the
right hand side of (5.27) is not an actual a priori error estimate, because u(0)
is not a data of the problem. At the end of this section, we will show some
conditions to bound this norm in terms of the initial data error ‖u0 − u0,h‖X .

Proof. First of all, we notice that (5.11) and (5.1) imply

‖ρnh‖X = ‖ρh(tn)‖X ≤ C inf
z∈Xh

‖u(tn)− z‖X . (5.28)

Moreover, the regularity assumption about u implies ∂tΠhu(·) = Πh(∂tu(·))
and consequently∫ T

0

‖∂tρh(t)‖X dt ≤ C
∫ T

0

inf
z∈Xh

‖∂tu(t)− z‖X dt.

Hence, it is easy to check that

∆t

N∑
k=1

‖∂ρkh‖2X = ∆t

N∑
k=1

∥∥∥∥ 1

∆t

∫ tk

tk−1

∂tρh(t) dt

∥∥∥∥2
X

≤
N∑
k=1

∫ tk

tk−1

‖∂tρh(t)‖2X dt ≤ C
∫ T

0

inf
v∈Xh

‖∂tu(t)− v‖2X dt.

On the other hand, by combining a Taylor expansion with the Cauchy-
Schwarz inequality, we obtain

N∑
k=1

‖τk‖2+=

N∑
k=1

∥∥∥∥ 1

∆t

∫ tk

tk−1

(tk−1 − t)∂ttP+u(t) dt

∥∥∥∥2
+

≤ ∆t
∫ T

0

‖∂ttP+u(t)‖2+ dt.
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Now, by writing σ0
h = e0h − ρ0h and using the fact that R is self-adjoint and

monotone1, from the second equation of Problem 1, it follows that

〈Rσ0
h, σ

0
h〉Y ≤ 2〈R(u0 − u0,h), u0 − u0,h〉Y + 2〈Rρ0h, ρ0h〉Y . (5.29)

By using inequalities (5.28)–(5.29) and Lemma 1, (5.26) follows from the fact
that u(tn)− unh = ρnh + σnh (see (5.10)) and the triangle inequality.

Next, we need to deduce (5.27). From (5.13) it follows that

‖∂t(P+u)(tk)− ∂P+u
k
h‖2+ ≤ C

[
〈R∂σkh, ∂σkh〉Y + ‖∂ρkh‖2Y + ‖τk‖2+

]
.

Consequently, (5.27) follows by using (5.16), by proceeding as in the proof of
(5.26) and noticing that∥∥σ0

h

∥∥2
X
≤ 2 ‖u(0)− u0,h‖2X + 2

∥∥ρ0h∥∥2X ,
∆t

N∑
n=1

inf
v∈Xh

‖u(tn)− v‖2X ≤ T max
1≤n≤N

[
inf
v∈Xh

‖u(tn)− v‖2X
]
.

ut

Remark 6. To end this section, we will discuss around the term ‖u(0)−u0,h‖X
which appears in the estimate (5.27) (see Remark 5). We start by proving that
under some assumptions about the solution and the data of the problem, u(0)
is uniquely determined by Ru0 and f .

Let X0 := X ∩kerR and assume that f ∈ C0([0, T ];X ′). By using (3.1), we
can easily check that for any v ∈ X there exists a unique Ev ∈ X such that:

Ev − v ∈ X0, 〈A(0)Ev, w〉X = 〈f(0), w〉X , ∀w ∈ X0. (5.30)

The operator E : X → X satisfies E2 = E . Moreover, if the initial data u0 ∈ X
and the solution u of Problem 1 satisfies u ∈ C0([0, T ];X) then u(0) = Eu0.
Consequently, if u0 ∈ X and the assumptions of Theorem 3 hold true, then

‖u(0)− u0,h‖X = ‖Eu0 − u0,h‖X . (5.31)

In the same manner we can define a discrete version of the operator E . In
fact, if we denote X0,h := Xh∩kerR, the operator Eh : Xh → Xh characterized
by (for any vh ∈ Xh):

Ehvh − vh ∈ X0,h 〈A(0)Ehvh, wh〉X = 〈f(0), wh〉X , ∀wh ∈ X0,h (5.32)

is well defined and satisfies E2h = Eh. Furthermore, for any v ∈ X and vh ∈ Xh

the following estimate holds true for some C > 0 independent of h:

‖Ev − Ehvh‖X ≤ C
[
‖v − vh‖X + inf

wh∈X0,h

‖(Ev − v)− wh‖X
]
. (5.33)

1 Notice that if R is self-adjoint and monotone, we have 〈R(v + w), (v + w)〉Y ≤
2 [〈R(v), v〉Y + 〈R(w), w〉Y ] for any v, w ∈ Y .
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On the other hand, by testing the first equation of Problem 4 with wh ∈ X0,h

it follows
〈A(tn)unh, wh〉X = 〈f(tn), wh〉X , ∀wh ∈ X0,h

for n = 1, . . . , N . Therefore, then we could choice u0,h ∈ Xh such that

〈A(0)u0,h, wh〉X = 〈f(0), wh〉X , ∀wh ∈ X0,h,

which implies u0,h = Ehu0.h. Hence, by using (5.31) and (5.33) we obtain

‖u(0)− u0,h‖X =‖Eu0 − Ehu0,h‖X

≤ C

[
‖u0 − u0,h‖X + inf

wh∈X0,h

‖(Eu0 − u0)− wh‖X

]
.

(5.34)

This estimate shows that if Eu0 − u0 ∈ X0 can be satisfactorily approximated
in X0,h, then ‖u(0) − u0,h‖X goes to zero if h → 0 when the initial error
‖u0 − u0,h‖X goes to zero. Moreover, if Problem 1 is equivalently formulated
by considering the new initial data û0 := u0 + z with z := Eu0 − u0 ∈ X0 (cf.
Remark 2), then the new initial data û0 satisfies û0 = Eu0 = u(0) and therefore
from (5.34) it follows

‖u(0)− u0,h‖X= ‖û0 − u0,h‖X . (5.35)

6 Application to the eddy current problem

The eddy current model is obtained by dropping the displacement currents
from Maxwell equations [7, Chapter 8]) and it provides a reasonable approxi-
mation to the solution of the full Maxwell system in the low frequency range
(see [2]). This model is commonly used in many problems in science and in-
dustry: induction heating, electromagnetic braking, electric generation, etc
(see [1, Chapter 9]). The purpose for the eddy current problem is to deter-
mine the eddy currents induced a three-dimensional conducting domain Ω̂C

by a given time dependent compactly-supported current density J. The eddy
current problem can be read as follows.

Problem 5. Find the magnetic field H : R3 × [0, T ] → R3 and the electric field
E : R3 × [0, T ]→ R3 satisfying

∂t (µH) + curlE = 0, curlH = J + σE,

div(εE) = 0, div(µH) = 0,

where µ, σ and ε represent the physical (scalar) parameters respectively called
magnetic permeability, electric conductivity and electric permittivity.

We assume that these parameters are piecewise smooth real valued functions
satisfying:

εmax ≥ ε(x) ≥ εmin > 0 a.e. in Ω̂
C

and ε(x) = εmin a.e. in R3 \ Ω̂
C
,

σmax ≥ σ(x) ≥ σmin > 0 a.e. in Ω̂
C

and σ(x) = 0 a.e. in R3 \ Ω̂
C
,

µmax ≥ µ(x) ≥ µmin > 0 a.e. in Ω̂
C

and µ(x) = µmin a.e. in R3 \ Ω̂
C
.
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Different formulations for the eddy current model ( [5,13,24]) can be analyzed
as a degenerate parabolic problem of Section 3 and the mathematical analysis
of their numerical approximation by using finite element methods can be ob-
tained with the theory performed in Sections 4 and 5, however we only focus in
the formulation studied in the first of that references. Other formulations for
the eddy current problem on a moving domain can be found in [3,4]. These for-
mulations lead to parabolic degenerate problems more general than problems
studied in Section 3 because the operator R in that case is time-dependent.

Zlamal [24] (see also [25]) has proposed a solution of a particular case of the
eddy current Problem 5 by solving the following two-dimensional degenerate
parabolic problem, for a given data source J

D
: R2 × [0, T ]→ R.

Problem 6. Find u : R2 × [0, T ]→ R such that

σ
∂u

∂t
= div

(
1

µ
∇u
)

+ JD, (6.1)

where the physical parameters σ and µ are independent of x3.

The following result shows the relationship between the eddy current Problem 5
and the degenerate parabolic equation Problem 6.

Proposition 2. If u : R2 × [0, T ] → R is an enough regular solution of Prob-
lem 6 and the electric permittivity ε is independent of x3, then

E :=

(
0, 0,−∂u

∂t

)
and H :=

1

µ

(
∂u

∂x2
,− ∂u

∂x1
, 0

)
(6.2)

are solutions of problem Problem 5 with J := (0, 0, JD).

Proof. Let u be a regular solution of Problem 6 and assume that J := (0, 0, J
D
).

Let us define E and H as in (6.2). Therefore,

curlE =

(
− ∂

∂x2

(
∂u

∂t

)
,
∂

∂x1

(
∂u

∂t

)
, 0

)
= − ∂

∂t
(µH),

and the first equation of Problem 5 follows. Furthermore, the second equation
of Problem 6 is obtained by noticing that

curlH =

(
0, 0,− ∂

∂x1

(
1

µ

∂u

∂x1

)
− ∂

∂x2

(
1

µ

∂u

∂x2

))
=

(
0, 0,−div

(
1

µ
∇u
))

= J + σE.

Next, by recalling that u and ε are independent of x3, it follows the third
equation of Problem 5. Finally, the last equation of Problem 5 follows by using
the regularity of u. ut



Fully-Discrete Approximation for a Family of Degenerate... 151

6.1 Well-posedness for the eddy current formulation

Let Ω̂ ⊂ R3 be an open, bounded and simply connected set containing Ω̂C and
SuppJ, with J as in Proposition 2. In order to obtain a weak formulation for
Problem 6, we have to consider the projection of both sets Ω̂ and the conducting
domain Ω̂

C
onto the plane x1x2, that will be denoted respectively as Ω and

Ω
C
. We can notice that in this case Ω

C
⊂ Ω. Therefore, given u0

C
∈ L2(Ω

C
)

and J
D
∈ L2(0, T ; L2(Ω)), by multiplying equation (6.1) with v ∈ H1

0(Ω) and
integrating by parts over Ω, we obtain the following weak formulation for the
Problem 6.

Problem 7. Find u ∈ L2(0, T ; H1
0(Ω)) such that

d

dt

∫
Ω

C

σuv +

∫
Ω

1

µ
∇u · ∇v =

∫
Ω

J
D
v, ∀v ∈ H1

0(Ω),

u(0)|Ω
C

= u0
C

in Ω
C
.

The analysis of existence and uniqueness of solution for the previous problem
is obtained by using Theorem 1. For this purpose, in order to fit Problem 7
in the abstract structure of Problem 1, we have to define X := H1

0(Ω) and
Y := L2(Ω), with their usual inner products. Furthermore, we define the
operators R : Y → Y ′ and A : X → X ′ given by

〈Av,w〉X :=

∫
Ω

1

µ
∇v · ∇w, ∀v, w ∈ X, (6.3)

〈Rv,w〉Y :=

∫
Ω

C

σvw, ∀v, w ∈ Y. (6.4)

We can notice that in this case the family of operators A(t) in Problem 1 is
constant with respect of t and the functional spaces and operators satisfy the
corresponding properties of Section 3. Moreover, it is easy to check that

R̂v = σχΩ
C
v, R̂1/2v = σ1/2χΩ

C
v, ∀v ∈ Y := L2(Ω),

where χΩ
C

is the characteristic function of Ω
C
. Furthermore,

Y
1/2
+ = Y+ =

{
v ∈ L2(Ω) : v|Ω\Ω

C
= 0
}
∼= L2(ΩC)

and P+v = χΩ
C
v for all v ∈ Y .

Additionally, we need to define the function f ∈ L2(0, T ;X ′) given by

〈f(t), v〉X :=

∫
Ω

J
D
(t)v, ∀v ∈ X. (6.5)

Finally, we should notice that the initial condition of Problem 7 is equivalent
to Ru(0) = Ru0 in Y ′, where u0 := ũ0

C
∈ Y is the extension by zero of u0

C
to

the whole Ω.

Theorem 4. There exists a unique solution u of Problem 7 satisfying

‖u‖L2(0,T ;H1
0(Ω)) ≤ C

{∥∥u0
C

∥∥
L2(Ω

C
)

+ ‖J
D
‖L2(0,T ;L2(Ω))

}
.
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Proof. The operator R is clearly monotone and self-adjoint. Furthermore, the
following Garding-type inequality holds true for all v ∈ X:

〈Rv, v〉Y + 〈Av, v〉X =

∫
Ω

C

σ |v|2 +

∫
Ω

1

µ
|∇v|2

≥ 1

µmax

∫
Ω

|∇v|2 ≥ CP

µmax
‖v‖2H1(Ω) ,

(6.6)

where CP is the positive constant given by the Poincaré inequality in H1
0(Ω).

Consequently, Theorem 1 shows that Problem 7 has at least a solution. More-
over, since the family of operators A is independent of time, it is trivially a
regular family and consequently the solution u of Problem 7 is unique. Finally,
by using (3.2) and noticing that

〈Ru0, u0〉Y =

∫
Ω

C

σ |u0|2 ≤ σmax

∥∥u0
C

∥∥2
L2(Ω

C
)
,

we conclude the proof. ut

Remark 7. It is easy to see that

σ∂tu− div

(
1

µ
∇u
)

= J
D

in L2(0, T ; H1
0(Ω)′),

consequently σ∂tu ∈ L2(0, T ; H1
0(ΩC)′) and it is given by

〈σ∂tu, ϕ〉 =

∫
Ω

C

JD ϕ−
∫
Ω

C

1

µ
∇u · ∇ϕ, ∀ϕ ∈ H1

0(ΩC).

Therefore u|Ω
C

belongs to the space W 1,2(0, T ; H1(Ω
C
),H1

0(Ω
C
)′).

6.2 Error estimates for the fully-discrete degenerate formulation

The fully-discrete approximation for the degenerate Problem 7 is obtained by
using a finite element subspaces to define Xh which is the corresponding family
of finite dimensional subspaces of X (see Section 4). For this purpose, in what
follows we assume that Ω and Ω

C
are Lipschitz polygonal. Let {Th}h be a

regular family of triangles meshes of Ω such that each element K ∈ Th is

contained either in Ωc or in Ωd := Ω \Ω
C
. As usual, h stands for the largest

diameter of the triangles K in Th.
We defineXh using the standard Lagrange finite element subspace of H1

0(Ω),
i.e.,

Xh :=
{
vh ∈ C0(Ω) : v|K ∈ P1(K)

}
∩H1

0(Ω),

where C0(Ω) is the space of scalar continuous functions defined on Ω and P1

is the set of polynomials of degree not greater than 1. Then, the fully-discrete
approximation for the degenerate parabolic formulation is given by Problem 4,
by using the notation (6.3)–(6.5). More precisely if J

D
∈ C0([0, T ]; L2(Ω)) and

u0,h ∈ Xh, the fully-discrete approximation of Problem 7 can be read as follows.
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Problem 8. Find unh ∈ Xh, n = 1, . . . , N , such that∫
Ω

C

σ

(
unh − u

n−1
h

∆t

)
v +

∫
Ω

1

µ
∇unh · ∇v =

∫
Ω

J
D
(tn)v, ∀v ∈ Xh,

Ru0h = Ru0,h.

Thus, by using (6.6), the existence and uniqueness of solution unh ∈ Xh,
n = 1, . . . , N , of the fully-discrete problem is guaranteed by Theorem 2 for a
small enough time-step.

In order to to obtain a suitable error estimate for the approximation and
according to the analysis at the end of Section 5 (cf. Remark 6), we can take
advantage of the “allowed freedom” to choice both the initial data u0 to analyze
Problem 7 and the discrete initial data u0,h in Problem 8 (see [4] for similar
ideas). To do this, in what follows we assume that u0

C
∈ H1(ΩC) (cf. Problem 7).

Let u0
D
∈ H1(Ω

D
) such that u0

D
|∂Ω

C
= u0

C
|∂Ω

C
, u0

D
|∂Ω = 0 and satisfying∫

Ω
D

1

µ
∇u0

D
· ∇v =

∫
Ω

D

J
D
(0)v, ∀v ∈ H1

0(Ω
D
). (6.7)

Consequently, if we define

u0 :=

{
u0

C
in Ω

C
,

u0
D

in ΩD,
(6.8)

then u0 ∈ H1
0(Ω) and the initial condition in Problem 7 is equivalent to Ru(0) =

Ru0. Furthermore, we can notice that

X0 := H1
0(Ω) ∩ kerR =

{
ṽ : v ∈ H1

0(ΩD)
}
,

where ṽ is the extension by zero of v to the whole Ω, hence from (5.30) and
(6.7) it follows that u0 = Eu0.

We now proceed to define u0,h. To this end, we introduce the following
notation

Xh(Ω
C
) :=

{
vh|Ω

C
: vh ∈ Xh

}
, Xh(Ω

D
) :=

{
vh|Ω

D
: vh ∈ Xh

}
and X0

h(Ω
D
) := Xh(Ω

D
) ∩H1

0(Ω
D
).

Let u0
C,h

be an arbitrary function in Xh(Ω
C
) and u0

D,h
∈ Xh(Ω

D
) such that

u0
D,h
|∂Ω

C
= u0

C,h
|∂Ω

C
, u0

D,h
|∂Ω = 0 and satisfying∫

Ω
D

1

µ
∇u0

D,h
· ∇vh =

∫
Ω

D

JD(0)vh ∀vh ∈ X0
h(ΩD).

We can notice that u0
D,h

is the discrete finite element approximation for the so-

lution of Problem (6.7), hence by proceeding analogously to [17, Section 6.2.1],
we deduce

‖u0
D
− u0

D,h
‖H1(Ω

D
) ≤ C inf

wh∈X∗h(ΩD
)

∥∥u0
D
− wh

∥∥
H1(Ω

D
)
, (6.9)
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where
X∗h(Ω

D
) :=

{
wh ∈ Xh(Ω

D
) : wh|∂Ω

C
= u0

C,h
|∂Ω

C

}
.

Therefore, by defining

u0,h :=

{
u0

C,h
in Ω

C
,

u0
D,h

in ΩD,
(6.10)

then u0,h ∈ Xh and it can be considered as the initial data in Problem 8.
Moreover, by recalling (5.32) it follows immediately that Ehu0,h = u0,h. Con-
sequently if the solution of Problem 7 satisfies u ∈ C0([0, T ]; H1

0(Ω)), u0 and
u0,h are given by (6.8) and (6.10) respectively, the analysis in Remark 6 (see
(5.35)) shows that

u(0) = u0. (6.11)

Then, from (6.9) it follows that there exists a constant C > 0 such that

‖u(0)− u0,h‖H1
0(Ω) = ‖u0 − u0,h‖H1

0(Ω)

≤ C
{∥∥u0

C
− u0

C,h

∥∥
H1(Ω

C
)

+ inf
w∈X∗h(ΩD

)

∥∥u0
D
− w

∥∥
H1(Ω

D
)

}
.

Finally, by noticing that in this case we have

‖∂t(P+u)(tk)− ∂P+u
k
h‖2+ =

∫
Ω

C

σ
∣∣∂tu(tk)− ∂ukh

∣∣2,
we obtain the following result about the error estimates for the fully-discrete
approximation of the degenerate parabolic Problem 7 (cf. Problem 8), which
is a direct consequence of Theorem 3.

Theorem 5. Let u0
C
∈ H1(ΩC) and u0

C,h
∈ Xh(ΩC), u0 ∈ H1

0(Ω) and u0,h ∈ Xh

given by (6.8) and (6.10) respectively. Let u be the solution of the eddy current
Problem 7 and unh ∈ Xh (n = 1, . . . , N) the fully-discrete solution of Problem 8.

If u ∈ H1(0, T ; H1
0(Ω)) with u|Ω

C
∈ H2(0, T ; L2(Ω

C
)) then there exists a

constant C > 0, independent of h and ∆t, such that

max
1≤n≤N

‖u(tn)−unh‖2σ+∆t

N∑
n=1

‖u(tn)− unh‖2H1
0(Ω)+∆t

N∑
n=1

∥∥∂tu(tn)−∂unh
∥∥2
σ

≤ C
{
‖u0

C
−u0

C,h
‖2H1(Ω

C
)+ inf

w∈X∗h(ΩD
)

∥∥u0
D
−w
∥∥2
H1(Ω

D
)

+ max
0≤n≤N

[
inf
v∈Xh

‖u(tn)− v‖2H1
0(Ω)

]
+

∫ T

0

inf
v∈Xh

‖∂tu(t)− v‖2H1
0(Ω) dt

+ (∆t)2
∫ T

0

‖∂ttu(t)dt‖2L2(Ω
C
)

}
, where ‖w‖2σ :=

∫
Ω

C

σ|w|2.

Finally, to obtain the asymptotic error estimate, we need to consider the
Sobolev space H1+s(Ω) for 0 < s ≤ 1. It is well known that the Lagrange
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interpolant Lhv ∈ Xh is well defined for all v ∈ H1
0(Ω) ∩H1+s(Ω) and satisfies

the following estimate (see, for instance, [8])

‖v − Lhv‖H1(Ω) ≤ Ch
s‖v‖H1+s(Ω), ∀v ∈ H1

0(Ω) ∩H1+s(Ω). (6.12)

Consequently, we have the following result which shows the asymptotic conver-
gence of the fully-discrete approximation.

Corollary 1. Let u0
C
∈ H1(Ω

C
) and let u0 ∈ H1

0(Ω) given by (6.8). Assume that

u ∈ H1(0, T ; H1
0(Ω) ∩H1+s(Ω)) with u|Ω

C
∈ H2(0, T ; L2(Ω

C
)).

Then, if u0
C,h

:= (Lhu0)|Ω
C

and u0,h is defined by (6.10), there exists a constant
C > 0 independent of h and ∆t, such that

max
1≤n≤N

‖u(tn)−unh‖2σ+∆t

N∑
n=1

‖u(tn)−unh‖2H1
0(Ω)+∆t

N∑
n=1

∥∥∂tu(tn)− ∂unh
∥∥2
σ

≤ C
{
h2s
[
‖u0‖2H1+s(Ω)+ max

1≤n≤N
‖u(tn)‖2H1+s(Ω) + ‖∂tu‖L2(0,T ;H1+s(Ω))

]
+ (∆t)2‖∂ttu‖2L2(0,T ;L2(Ω

C
))

}
Proof. We firstly notice that since u(0) = u0 (see (6.11)), the regularity of
u implies u0 ∈ H1

0(Ω) ∩ H1+s(Ω) and Lhu0 ∈ Xh is well defined. Hence
u0

C,h
:= (Lhu0)|Ω

C
∈ Xh(Ω

C
) is also well defined and

‖u0
C
− u0

C,h
‖H1(Ω

C
) ≤ ‖u0 − Lhu0)‖H1(Ω).

On the other hand, if u∗
D,h

:= (Lhu0)|Ω
D

then u∗
D,h
∈ X∗h(Ω

D
) and

inf
w∈X∗h(ΩD

)
‖u0

D
− w‖H1(Ω

D
) ≤ ‖u0D− u

∗
D,h
‖H1(Ω

D
) ≤ ‖u0 − Lhu0‖H1(Ω).

Consequently, the result follows from Theorem 5 and the interpolation error
estimate (6.12). ut

Remark 8. If the discrete initial condition u0
C,h

is chosen as in Corollary 1 (i.e.

u0
C,h

:= (Lhu0)|Ω
C
) the obtention of the error estimate can be further simplified.

There is no need to introduce u0
D,h

. It is enough to take (in lieu of (6.10))

u0,h := Lhu0 ∈ Xh, what is allowed due to (Lhu0)|Ω
C

= u0
C,h

and the definition

of operator R (see (6.4)). Since u0 is defined by (6.8), we have u(0) = u0
and the term ‖u(0) − u0,h‖X in (5.27) reduces simply to ‖u0 − u0,h‖H1(Ω) =
‖u0 − Lhu0‖H1(Ω).

The technique based on the introduction of u0
D,h

and estimate (6.9) has
a more general scope since it allows to consider an arbitrary discrete initial
condition u0

C,h
∈ Xh(Ω

C
) such that limh→0+ ‖u0C − u0

C,h
‖H1(Ω

C
) = 0 and not

necessarily u0
C,h

= (Lhu0)|Ω
C
. In fact, since the family of triangle meshes of Ω

is regular, if we define Xh(∂ΩC) := {zh|∂Ω
C

: zh ∈ Xh}, there exists a discrete
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lifting operator (see [6, Theorem 5.1]) Rh : Xh(∂Ω
C
)→ Xh(Ω

D
) and a constant

C > 0 independent of h such that for h small enough the inequality

‖Rhg‖H1(Ω
D
) ≤ C ‖g‖H1/2(∂Ω

C
) , ∀g ∈ Xh(∂Ω

C
)

holds. Using this, it is easy to obtain that

inf
w∈X∗h(ΩD

)

∥∥u0
D
− w

∥∥
H1(Ω

D
)

≤ C
{
‖u0

C
− u0

C,h
‖H1(Ω

C
) + inf

w∈Xh(ΩD
)

∥∥u0
D
− w

∥∥
H1(Ω

D
)

}
. (6.13)

The convergence (and the corresponding error estimate under the assumption
‖u0

C
− u0

C,h
‖H1(Ω

C
) = O(hs)) follows from Theorem 5 by using an interpolation

error estimate like (6.12) to bound the infimum in the right hand side of (6.13).

Remark 9. Corollary 1 shows that the fully-discrete approximation Problem 8
provides a suitable approximation for the physical variables of the eddy current
problem at each time tn, namely the electric field E(tn) in the three-dimensional
conducting domain Ω̂C and the magnetic field H(tn) in the three-dimensional
computational domain Ω̂. More precisely, we can use the relationship (6.2), to
define

E(tn) := (0, 0,−∂tu(tn)) in Ω̂
C
, H(tn) :=

1

µ

(
∂u

∂x2
(tn),− ∂u

∂x1
(tn), 0

)
in Ω̂,

for any n = 1, . . . , N , and propose the following approximations

E(tn) ≈ Enh := (0, 0,−∂unh) in Ω̂C,

H(tn) ≈ Hn
h :=

1

µ

(
∂unh
∂x2

,−∂u
n
h

∂x1
, 0

)
in Ω̂.

Consequently, by using Corollary 1, we deduce the following quasi-optimal error
estimates

∆t

N∑
n=1

‖E(tn)−Enh‖2σ +∆t

N∑
n=1

‖H(tn)−Hn
h‖

2
µ,Ω̂ ≤ C

[
h2s + (∆t)2

]
,

where ‖w‖2σ :=
∫
Ω̂

C
σ |w|2 and ‖w‖2µ,Ω̂ :=

∫
Ω̂

1
µ |w|

2
.

6.3 Numerical results

In this subsection we present some numerical results obtained with a MAT-
LAB code which implements the numerical method described in Problem 8,
to illustrate the convergence with respect to the discretization parameters. To
this end, we describe the results obtained for a test problem with a known
analytical solution.

We consider Ω̂ with Ω̂
C

and their respective projection onto the plane x1x2,
Ω := (0, 1)2 \ [0.5, 1]2 and ΩC := (0.2, 0.8)2 \ [0.4, 0.8]2 (see Figure 1) and T = 1.
The right hand side JD, is chosen so that

u(x1, x2, t) = e−5πt sin(πx1) sin(πx2),



Fully-Discrete Approximation for a Family of Degenerate... 157

Figure 1. Sketch of the domain 3D (left) and 2D (right).

Table 1. Percentage errors for H in the L2(0, T ; L2(Ω̂))-norm, with h = 0.3687 and
∆t = 0.025.

h h/2 h/4 h/8 h/16 h/32 h/64

∆t 41.369 22.1296 12.8925 9.1603 7.9516 7.6190 7.5335

∆t/2 41.309 21.4624 11.4341 6.8342 5.0574 4.5040 4.3546

∆t/4 41.445 21.3041 10.9212 5.8293 3.5396 2.6751 2.4108

∆t/8 41.582 21.3044 10.7883 5.5072 2.9460 1.845 1.3784

∆t/16 41.672 21.3307 10.7652 5.4225 2.7648 1.4813 0.9115

∆t/32 41.724 21.3514 10.7663 5.4038 2.7172 1.3851 0.7428

∆t/64 41.751 21.3637 10.7702 5.4008 2.7059 1.3599 0.6932

is the solution to Problem 6 in Ω with boundary condition u = 0 on ∂Ω. Notice
that u is also solution of Problem 7 with u0(x1, x2) = sin(πx1) sin(πx2) where,
in particular u0 ∈ H1

0(Ω) ∩ H2(Ω). We have taken µ = µ0 = 4π × 10−7 Hm−1,
σ = σ = 106 (Ωm)−1 in Ω

C
, the magnetic permeability and electric conductivity

of vacuum, respectively.
The numerical method has been applied with several successively refined

meshes and time-steps. The computed approximate solutions have been com-
pared with the analytical one, by calculating the relative percentage error in
time-discrete norms from Corollary 1. More accurately, thanks to Proposition 2
and Remark 9, we have compute the relative percentage error for the physical
variables of interest, the magnetic field and the electric field in the conductor
domain, namely

100
∆t
∑N
n=1 ‖H(tn)−Hn

h‖
2
µ,Ω̂

∆t
∑N
n=1 ‖H(tn)‖2µ,Ω̂

, 100
∆t
∑N
n=1 ‖E(tn)−Enh‖2σ,Ω̂

C

∆t
∑N
n=1 ‖E(tn)‖2

σ,Ω̂
C

,

which are time-discrete forms of the square of the errors in L2(0, T ; L2(Ω̂)) and
L2(0, T ; L2(Ω̂

C
)) norms, respectively.

The Table 1 shows the relative errors for H in the L2(0, T ; L2(Ω̂))-norm,
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Table 2. Percentage errors for E in the L2(0, T ; L2(ΩC))-norm, with h = 0.3687 and
∆t = 0.025.

h h/2 h/4 h/8 h/16

∆t 26.3489 23.9703 23.6728 23.6232 23.6127

∆t/2 17.2551 13.4472 13.1275 13.1028 13.1006

∆t/4 13.7947 7.5263 6.9433 6.9188 6.9213

∆t/8 13.2102 4.8159 3.6233 3.5566 3.5592

∆t/16 13.3954 3.9628 1.9873 1.8078 1.8042

∆t/32 13.6309 3.8427 1.3093 0.9290 0.9082

∆t/64 13.7873 3.8923 1.1142 0.5144 0.4574

∆t/128 13.8756 3.9494 1.0886 0.3501 0.2352

∆t/256 13.9223 3.9870 1.0992 0.3049 0.1323

∆t/512 13.9463 4.0081 1.1111 0.2992 0.0927
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Figure 2. Percentage discretization error curves for H (left) and E (right) versus number
of d.o.f. (log-log scale).

namely the relative errors for u in the L2(0, T ; H1
0(Ω))-norm. We notice that

by taking a small enough time-step ∆t, we can observe the behavior of the
error with respect to the space discretization (see the row corresponding to
∆t/64). On the other hand, by considering a small enough mesh-size h, we
can check the order convergence with respect ∆t (see the first entries of the
column corresponding to h/64). Hence, we conclude an order the convergence
O(h + ∆t) for H, which confirm the theoretical results given in Remark 9,
proved in Corollary 1.

The Table 2 shows the relative errors for E in L2(0, T ; L2(Ω̂
C
)), namely the

relative errors ∂tu in the L2(0, T ; L2(Ω
C
))-norm. We proceed as above, now

we can see an order the convergence O(h2 + ∆t) (see the row corresponding
to ∆t/512 and the column corresponding to h/16), in spite of the fact that
only a linear order of convergence in h has been proved above. Hence, we have
obtained the theoretical results proved in Corollary 1, too.

Figure 2 shows log-log plots of the error of H (left) and E (right) versus
number of degrees of freedom (d.o.f). To report this we have been values of ∆t
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proportional to h (see the values within boxes in Table 1) and ∆t proportional
to h2 (see the values within boxes in Table 2), respectively. The slopes of
the curves clearly show an order of convergence O(h + ∆t) and O(h2 + ∆t),
respectively.
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eddy current problem on a moving domain. Numerical analysis. Adv. Comput.
Math.,42(4):757–789, 2016. https://doi.org/10.1007/s10444-015-9441-0.
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