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Abstract. In the present paper, we analyze and study the control of a static ther-
moelastic contact problem. We consider a model which describes a frictional contact
problem between a thermoelastic body and a deformable heat conductor obstacle.
We derive a variational formulation of the model which is in the form of a coupled
system of the quasi-variational inequality of elliptic type for the displacement and the
nonlinear variational equation for the temperature. Then, under a smallness assump-
tion, we prove the existence of a unique weak solution to the problem. Moreover, we
establish the dependence of the solution with respect to the data and prove a con-
vergence result. Finally, we introduce an optimization problem related to the contact
model for which we prove the existence of a minimizer and provide a convergence
result.
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1 Introduction

Currently, the study of contact problems involving thermo-elastic materials re-
mains an active research area. Due to the intrinsic coupling between mechanical
and thermal energy, these materials has attracted the attention of industry and
engineering researchers. For this reason, a considerable effort has been made in
its modelling and numerical simulations of contact problems, and the literature
concerning this topic is rather extensive. For instance, we can see [2,3,4,6,7,8]
for general thermoelastic models and their analysis, [9,14,15,16,21,22] for the
mathematical treatment of optimal control for a system governed by varia-
tional equations and inequalities. Moreover, we refer to [1, 11, 12, 13, 17, 19, 20]
and more recently [5,18] for some comprehensive references on analysis optimal
control problems arising from contact models.

The aim of this paper is to deal with a model describing the static process of
frictional contact between a thermo-elastic body and a deformable foundation.
After proving the unique weak solvability of the contact problem, as well as
a convergence result of the solution with respect to the data, we consider an
optimization problem related to our contact problem, for which we provide un-
der some smallness conditions, the existence of a minimizer and a convergence
result.

The paper is organized as follows. In Section 2, we introduce the thermoe-
lastic frictional contact model, we list the assumptions on the data and derive
its variational formulation, which is given as a coupled system for the displace-
ment and the temperature fields. In Section 3, we state and prove the main
existence and uniqueness result, Theorem 1. In Section 4, we prove the con-
tinuous dependence of the weak solution on the set of constraints with respect
to the data and prove a convergence result, Theorem 2. Finally, in Section 5,
we introduce a class of optimization problems related to the contact model
and provide their solvability, Theorem 3. In addition, we give two examples of
optimization problems that illustrate our results.

2 A frictional thermoelastic contact problem

The physical setting of our contact problem is described as follows: we consider
a thermoelastic body occupying, in its reference configuration, a bounded do-
main Ω ⊂ Rd, d = 2, 3 with a sufficiently regular boundary Γ . The boundary
Γ is partitioned into four disjoint measurable parts Γ1, Γ2, Γ3 and Γ4, such that
meas(Γ1) > 0. The body is clamped on Γ1 and is subjected to a given volume
force f0 and heat source q0 in Ω. Moreover, it is acted upon by a given surface
traction f2 on Γ2 and a null variation of temperature on Γ1 ∪ Γ2. Finally, the
body could come in frictional contact with two obstacles over Γ3 and Γ4.

To derive the mathematical model describing the previous physical setting,
let u(x), σ(x), θ(x) and qT (x) represent the displacement field, the stress tensor
field, the temperature field, and the heat flux vector field, respectively. In what
follows, to simplify the notation, we do not indicate explicitly the dependence
of various functions on the spatial variable x ∈ Ω ∪ Γ , that is, we write,
for example, σ instead of σ(x). Moreover, the summation convention over
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repeated indices is used and the index that follows a comma indicates the partial
derivative with respect to the corresponding component of the independent
variable, e.g. ui,j = ∂ui/∂xj .

Let Sd be the space of second-order symmetric tensors on Rd, or equiva-
lently, the space of symmetric matrices of order d. We define the inner products
and the associated norms on Rd and Sd as follows

u · v = uivi, ‖v‖ = (v · v)
1
2 , ∀u, v ∈ Rd,

σ · τ = σijτij , ‖τ‖ = (τ · τ)
1
2 , ∀σ, τ ∈ Sd.

Let ν denotes the unit outward normal to the boundary Γ . Then, the normal
and tangential components of the displacement vector v ∈ Rd and the stress
tensor σ ∈ Sd on Γ are given by

vν = v · ν, vτ = v − vνν; σν = (σν) · ν, στ = σν − σνν.

Under these notations, the frictional thermoelastic contact problem can be
formulated as follows.

Problem [P]. Find a displacement u : Ω → Rd and a temperature θ : Ω → R
such that

σ = Fε(u)−Mθ in Ω, (2.1)

qT = −K∇θ in Ω, (2.2)

Div σ + f0 = 0 in Ω, div qT = q0 in Ω, (2.3)

u = 0 on Γ1, σν = f2 on Γ2, θ = 0 on Γ1 ∪ Γ2, (2.4)

σν = −S,
‖στ‖ ≤ S,
‖στ‖ < S ⇒ uτ = 0,

στ = −S uτ
‖uτ‖ ⇒ ∃λ > 0 uτ = −λστ

 on Γ3, (2.5)

qT · ν = kT (uν − g)ϕL(θ − θF ) on Γ3, (2.6)

σν = −pν(uν − g)hν(θ − θF ),

‖στ‖ ≤ pτ (uν − g)hτ (θ − θF ),

‖στ‖ < pτ (uν − g)hτ (θ − θF ) if uτ = 0,

στ = −pτ (uν − g)hτ (θ − θF ) uτ
‖uτ‖ if uτ 6= 0

 on Γ4, (2.7)

−qT · ν ≤ 0, (θ − θF ) ≤ 0, (qT · ν) (θ − θF ) = 0 on Γ4. (2.8)

Equations (2.1)–(2.2) represent the thermo-elastic constitutive law of the ma-
terial in which F = (fijkl), M = (mij) and K = (kij) are the elastic, the
thermal expansion and thermal conductivity tensors, where ε(u) = (εij) =
( 1
2 (ui,j + uj,i)) is the linearized strain tensor. Equations (2.3) are the equilib-

rium equations for the stress and the heat flux fields where Div and div denote
the divergence operator, respectively for tensor and vector valued functions.
The relations (2.4) are the mechanical and thermal boundary conditions. Con-
ditions (2.5) represents Tresca’s contact model, i.e., a nonpositive normal stress
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−S is imposed on given contact surface and the tangential stress is bounded
by prescribed friction bound S, so if such a limit is not attained, sliding does
not occur. Equation (2.6) represents the heat flow between a body and heat
conductor foundation, where g is the gap function between the body and the
foundation on the contact interface Γ3 or Γ4, θF ∈ R∗+ is the temperature of
the foundation, kT is the coefficient of heat exchange between it and the body,
and ϕL is the truncation function defined for a given large constant L > 0 by

ϕL(s) =

{
s if |s| ≤ L,
L s
|s| if |s| > L.

(2.9)

Note that ϕL is L-bounded and 1-Lipschitz continuous function. Relations (2.7)
describes the normal compliance contact condition coupled with Coulomb’s
friction law over Γ4, where pν is a prescribed nonnegative function depending
on the relative temperature θ−θF and vanishing for negative arguments, pτ is a
given function depending on uν−g, and hτ ≥ 0 is the coefficient of friction which
depends on θ − θF . Finally, Equation (2.8) denotes temperature dependent
Signorini’s law. It means that the heat flux is assumed to be unilateral from
the foundation to the body, and then the body temperature does not exceed
the foundation’s temperature θF on the contact parts.

In order to derive a weak formulation of Problem (P), we introduce the
following spaces

H = L2(Ω)d, H1 = H1(Ω)d, H =
{
τ = (τij) ; τij = τji ∈ L2(Ω)

}
,

which are real Hilbert spaces for the following inner products and their associ-
ated norms

(u, v)H=

∫
Ω

uivi dx, (u, v)H1
=(u, v)H + (ε(u), ε(v))H, (σ, τ)H=

∫
Ω

σijτij dx.

Then, we consider the sets of admissible displacements and temperatures, de-
fined by

V = {v ∈ H1 , v = 0 on Γ1}, Q = {ξ ∈ H1(Ω) , ξ = 0 on Γ1 ∪ Γ2},
W = {ξ ∈ Q , ξ ≤ θF on Γ4}.

Over the spaces V and Q, we consider the following inner products and asso-
ciated norms

(u, v)V = (ε(u), ε(v))H , ‖u‖V = (u, u)
1/2
V , ∀u, v ∈ V,

(θ, ξ)Q = (∇θ,∇ξ)H , ‖θ‖Q = (θ, θ)
1/2
Q , ∀ θ, ξ ∈ Q.

Since Γ1 is on non-zero measure, the following Korn and Friedrichs-Poincaré
inequalities hold, for some positive constants ck and cp, depending only on Ω
and Γ1 such that

‖ε(v)‖H ≥ ck ‖v‖H1
, ∀ v ∈ V, (2.10)

‖∇ξ‖H ≥ cp ‖ξ‖H1(Ω), ∀ ξ ∈ Q. (2.11)
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Hence (V, ‖·‖V ) and (Q, ‖·‖Q) are real Hilbert spaces. Moreover, by the Sobolev
trace theorem, there exists positive constants c1 and c2 depending only on Ω,
Γ1, Γc = Γ3 or Γ4 such that

‖v‖L2(Γc)d ≤ c1 ‖v‖V , ∀ v ∈ V, (2.12)

‖ξ‖L2(Γc) ≤ c2 ‖ξ‖Q, ∀ ξ ∈ Q. (2.13)

To study of the mechanical problem (P), we need the following hypotheses

(H1) The elasticity tensor F = (fijkl) : Ω × Sd → Sd and the thermal con-
ductivity tensor K = (kij) : Ω × Rd → Rd satisfy the following usual
properties fijkl = fjikl = flkij ∈ L∞(Ω), kij = kji ∈ L∞(Ω) and there
exists a nonnegative constants mF and mK such that

fijkl(x) τkl τij ≥ mF ‖τ‖2, ∀ τ = (τij) ∈ Sd a.e. x ∈ Ω,

kij(x) ζi ζj ≥ mK ‖ζ‖2, ∀ ζ = (ζi) ∈ Rd a.e. x ∈ Ω.

Let MF = sup
i,j,k,l

‖fijkl‖L∞(Ω), MK = sup
i,j
‖kij‖L∞(Ω) be the norms of F

and K.

(H2) The thermal expansion tensor M = (mij) : Ω ×Rd → Rd satisfies
mij = mji ∈ L∞(Ω). Let ‖M‖ = sup

i,j
‖mij‖L∞(Ω) be the norm of the

thermal expansion tensor M.

(H3) The compliance function pr : Γ4 ×R→ R+ (r = ν, τ) satisfies

(a) ∃Mpr > 0 such that |pr(x, u)| ≤Mpr for all u ∈ R, a.e. x ∈ Γ4,

(b)∀u ∈ R, x 7→ pr(x, u) is measurable on Γ4 and is zero for all u ≤ 0,

(c)∃Lpr>0,∀u1, u2 ∈ R, |pr(x, u1)− pr(x, u2)| ≤ Lpr |u1−u2| a.e. x∈Γ4.

(H4) The function hr : Γ4 ×R→ R+ (r = ν, τ) satisfies the properties

(a) ∃Mhr > 0 such that |hr(x, θ)| ≤Mhr for all θ ∈ R, a.e. x ∈ Γ4,

(b) ∀ θ ∈ R, x 7→ hr(x, θ) is measurable on Γ4,

(c) ∃Lhr > 0,∀ θ1, θ2 ∈ R, |hr(x, θ1)− hr(x, θ2)| ≤ Lhr |θ1 − θ2| a.e.
x ∈ Γ4.

(H5) The thermal conductance kT : Γ3 ×R→ R+ satisfies

(a) ∃MkT > 0,∀u ∈ R, |kT (x, u)| ≤MkT a.e. x ∈ Γ3,

(b) ∀u ∈ R, x 7→ kT (x, u) is measurable on Γ3,

(c) ∃LkT > 0,∀u1, u2 ∈ R, |kT (x, u1) − kT (x, u2)| ≤ LkT |u1 − u2|
a.e. x ∈ Γ3.

(H6) The body forces, traction and heat source densities satisfy

f0 ∈ L2(Ω)d, f2 ∈ L2(Γ2)d, q0 ∈ L2(Ω).
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(H7) The friction bound, the gap function and temperature of the foundation
satisfy

S ≥ 0 a.e. x ∈ Γ3 , g ≥ 0 a.e. x ∈ Γ3 ∪ Γ4 , θF ∈ R∗+,
S ∈ L2(Γ3) and g ∈ L2(Γ3 ∪ Γ4).

Now, we use the Riesz representation theorem to define f ∈ V and q ∈ Q by

(f, v)V =

∫
Ω

f0 · v dx+

∫
Γ2

f2 · v da−
∫
Γ3

S · vν da, ∀ v ∈ V,

(q, ξ)Q =

∫
Ω

q0 ξ dx, ∀ ξ ∈ Q.

We introduce the two mappings jS : V → R and l : V ×Q×Q→ R defined by

jS(v) =

∫
Γ3

S ‖vτ‖ da, l(u, θ, ξ) =

∫
Γ3

kT (uν − g)ϕL(θ − θF ) ξ da. (2.14)

We also introduce the functionals jν , jτ and j defined on V ×Q×V as follows

jν(u, θ, v) =

∫
Γ4

pν(uν − g)hν(θ − θF ) vν da, (2.15)

jτ (u, θ, v) =

∫
Γ4

pτ (uν − g)hτ (θ − θF ) ‖vτ‖ da,

j(u, θ, v) = jν(u, θ, v) + jτ (u, θ, v). (2.16)

Then, we deduce that the variational formulation of Problem (P) is as follows.

Problem [PV]. Find a displacement field u ∈ V and a temperature field θ ∈W
such that

(Fε(u), ε(v)− ε(u))H − (Mθ, ε(v)− ε(u))H

+ jS(v)− jS(u) + j(u, θ, v)− j(u, θ, u) ≥ (f, v − u)V , ∀ v ∈ V,
(2.17)

(K∇θ,∇ξ −∇θ)H + l(u, θ, ξ − θ) ≥ (q, ξ − θ)Q, ∀ ξ ∈W. (2.18)

Problem (PV) is formulated in terms of displacement field u and tempera-
ture field θ, and once the two fields u and θ are known, the stress tensor σ and
the heat flux vector qT can be deduced by using the equations (2.1) and (2.2).
The analysis and the unique solvability of Problem (PV) will be provided in
the next section.

3 The unique solvability of Problem (PV)

First, we consider the two following nonnegative constants

LF =
mF

max
(

1
2 cp

, c1c22 , c21
) , LK =

mK

max
(

1
2 cp

, c1c22 , c22
) .

Next, the unique solvability of Problem (PV) is provided by the below theorem.

Math. Model. Anal., 26(3):444–468, 2021.
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Theorem 1. Assume the hypotheses (H1)–(H7) hold. Then, Problem (PV)
has at least one solution (u, θ) ∈ V ×W . Moreover, if the following conditions
hold

‖M‖+ LLkT + LpνMhν + LhνMpν + LpτMhτ + LhτMpτ < LF ,

‖M‖+ LLkT +MkT + LhνMpν + LhτMpτ < LK,
(3.1)

then, Problem (PV) has a unique solution.

The proof of Theorem 1 will be carried out in several steps. First, we introduce
the two product spaces X = V × Q and Y = Q × L2(Γ4)2 × L2(Γ3), which
are real Hilbert spaces for the following inner products and their associated
Euclidian norms ‖ · ‖X and ‖ · ‖Y .(

x, y
)
X

= (u, v)V + (θ, ξ)Q,(
η, ζ
)
Y

= (η1, ζ1)Q +
∑
j=2,3

(ηj , ζj)L2(Γ4) + (η4, ζ4)L2(Γ3),

for all x = (u, θ), y = (v, ξ) ∈ X and η = (ηi)i, ζ = (ζi)i ∈ Y . For a given
η = (ηi)i ∈ Y , we consider functionals jη : V → R and `η : Q→ R defined by

jη(v) = jS(v) +

∫
Γ4

η2 vν da+

∫
Γ4

η3 ‖vτ‖ da, (3.2)

`η(ξ) =

∫
Γ3

η4 ξ da. (3.3)

Then, we can now introduce the following intermediate problem.

Problem [PVη]. Given η = (ηi)i=1,..,4 ∈ Y , find xη = (uη, θη) ∈ U = V ×W
such that

(Fε(uη), ε(v)− ε(uη))H − (Mη1, ε(v)− ε(uη))H

+ jη(v)− jη(uη) ≥ (f, v − uη)V , ∀ v ∈ V,
(3.4)

(K∇θη,∇ξ −∇θη)H + `η(ξ − θη) ≥ (q, ξ − θη)Q, ∀ ξ ∈W. (3.5)

To prove the unique solvability of Problem (PVη), we consider the operator
A : X → X, the element F η ∈ X and the functional Jη : X → R defined by

(Ax, y)X = (Fε(u), ε(v))H + (K∇θ,∇ξ)H , (3.6)

(F η, y)X = (f, v)V + (q, ξ)Q + (Mη1, ε(u))H, (3.7)

Jη(y) = jη(v) + `η(ξ), (3.8)

where x = (u, θ), y = (v, ξ) ∈ X. Then, we have the following Lemma

Lemma 1. For any given η ∈ Y , we have the following results

1. The couple xη = (uη, θη) is a solution of Problem (PVη) if and only
if

(Axη, y−xη)X+Jη(y)−Jη(xη) ≥ (F η, y−xη)X , ∀ y = (v, ξ) ∈ U. (3.9)
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2. The problem (PVη) has unique solution xη = (uη, θη) ∈ U = V ×W .

3. The mapping η 7→ (uη, θη) is Lipschitz continuous on Y.

Proof. Let xη = (uη, θη) a solution of Problem (PVη), we add the two in-
equalities (3.4) and (3.5), and we use (3.6)–(3.8) to obtain (3.9). Conversely, if
xη = (uη, θη) ∈ U satisfies the elliptic inequality (3.9), we take y = (uη, ξ) in
(3.9) where ξ is an arbitrary element of W , to obtain (3.5), and for an arbitrary
v ∈ V , we take y = (v, θη) in the inequality (3.9) to get (3.4), which concludes
the first part of Lemma 1.

For the second part of Lemma 1, it follows from the definition (3.6) and the
hypothesis (H1) that for all x1 = (u1, θ1) and x2 = (u2, θ2) of X, we have

(Ax1 −Ax2, x1 − x2)X = (Fε(u1)−Fε(u2), ε(u1)− ε(u2))H

+ (K∇θ1 −K∇θ2,∇θ1 −∇θ2)H ≥ mF‖u1 − u2‖2V +mK‖θ1 − θ2‖2Q
≥ min(mF ,mK)︸ ︷︷ ︸

=mA

‖x1 − x2‖2X . (3.10)

Moreover, for all x1 = (u1, θ1), x2 = (u2, θ2) and y = (v, ξ) of X, we have

(Ax1 −Ax2, y)X = (Fε(u1)−Fε(u2), ε(v))H + (K∇θ1 −K∇θ2,∇ξ)H .

Then, we conclude

(Ax1 −Ax2, y)X ≤MF‖u1 − u2‖V ‖v‖V +MK‖θ1 − θ2‖Q‖ξ‖Q
≤ (MF +MK)︸ ︷︷ ︸

=MA

‖x1 − x2‖X‖y‖X . (3.11)

From (3.10)–(3.11), we conclude that the operator A is strongly monotone and
Lipschitz continuous on X. Moreover, using the definitions (3.2), (3.3) and
(3.8), it is easy to verify that the function Jη is continuous. Keeping in mind
that U is a nonempty closed convex subset of X and the element F η ∈ X,
it comes from standard arguments on variational inequalities that the elliptic
inequality (3.9) has unique solution xη = (uη, θη) ∈ U . Hence, Problem (PVη)
has unique solution xη = (uη, θη), which finishes the second part of Lemma 1.
For the last part of Lemma 1, we consider η = (ηi)i and η̃ = (η̃i)i two elements
of Y , and let xη = (uη, θη) and xη̃ = (uη̃, θη̃) denote their corresponding
solution of Problem (PV η), respectively. Therefore, the inequality (3.9) implies
that, for all y = (v, ξ) ∈ U , we have

(Axη, y − xη)X + Jη(y)− Jη(xη) ≥ (F η, y − xη)X ,

(Axη̃, y − xη̃)X + J η̃(y)− J η̃(xη̃) ≥ (F η̃, y − xη̃)X .

Taking y = xη̃ in the first inequality and y = xη in the second inequality, and
add the two obtained inequalities to obtain

(Axη −Axη̃, xη − xη̃)X ≤ (F η − F η̃, xη − xη̃)X + Jη(xη̃)

− Jη(xη) + J η̃(xη)− J η̃(xη̃).
(3.12)

Math. Model. Anal., 26(3):444–468, 2021.
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From the definition (3.7) of functional F η and the assumption (H2), we get

(F η − F η̃, xη − xη̃)X = (Mη1 −Mη̃1, ε(u
η)− ε(uη̃))H

≤ ‖M‖‖η1 − η̃1‖L2(Ω)‖uη − uη̃‖V ≤
‖M‖
cp
‖η − η̃‖Y ‖uη − uη̃‖V . (3.13)

Next, using the definitions (3.2), (3.3) and (3.8), we obtain

Jη(xη̃)− Jη(xη) + J η̃(xη)− J η̃(xη̃) =

∫
Γ4

(η2 − η̃2)(uη̃ν − uην) da

+

∫
Γ4

(η3 − η̃3)(‖uη̃τ‖ − ‖uητ‖) da+

∫
Γ3

(η4 − η̃4)(θη̃ − θη)da

≤ c1 ‖η2 − η̃2‖L2(Γ4)‖u
η̃ − uη‖V + c1 ‖η3 − η̃3‖L2(Γ4)‖u

η̃ − uη‖V
+ c2 ‖η4 − η̃4‖L2(Γ3)‖θ

η̃ − θη‖Q ≤ (2c1 + c2) ‖η − η̃‖Y ‖xη − xη̃‖X . (3.14)

Finally, we combine (3.12)–(3.14) and (3.10) to deduce

‖(uη, θη)− (uη̃, θη̃)‖X ≤ c ‖η − η̃‖Y ,

where c =
(
(2c1 + c2) + ‖M‖

cp

)
/mA > 0, and hence Lemma 1 is proved. ut

In the next step, we consider the operator Λ : Y → Y defined as follows

Λ(η) = (Λ1(η), Λ2(η), Λ3(η), Λ4(η)), (3.15)

Λ1(η) = θη, Λ2(η) = pν(uην − g)hν(θη − θF ),

Λ3(η) = pτ (uην − g)hτ (θη − θF ), Λ4(η) = kT (uην − g)ϕL(θη − θF ),

where (uη, θη) is the unique solution of Problem (PVη) corresponding to η. We
will prove that the operator Λ has fixed point and to this end, we consider the
following closed convex subsets

E1 = {ξ ∈ Q, ‖ξ‖Q ≤ k1}, E2 = {ω ∈ L2(Γ4), ‖ω‖L2(Γ4) ≤ k2},
E3 = {ω ∈ L2(Γ4), ‖ω‖L2(Γ4) ≤ k3}, E4 = {η ∈ L2(Γ3), ‖η‖L2(Γ3) ≤ k4},

where the nonnegative constants k1, k2, k3 and k4 are given by

k1 = (‖q‖Q + c2k4)/mK, k2 = MpνMhνmeas(Γ4)
1
2 ,

k3 = MpτMhτmeas(Γ4)
1
2 , k4 = MkTLmeas(Γ3)

1
2 .

Then, we consider a nonempty, convex and closed subset E =
4∏
i=1

Ei of Y .

Lemma 2. The operator Λ defined by (3.15) has at least one fixed point.

Proof. For η = (ηi)i ∈ E given, let (uη, θη) denote the unique solution of
Problem (PVη) corresponding to η. Then, it comes from assumptions (H3)(a),
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(H4)(a) and (H5)(a) that

‖pν(uην − g)hν(θη − θF )‖L2(Γ4) ≤MpνMhνmeas(Γ4)
1
2 = k2, (3.16)

‖pτ (uην − g)hτ (θη − θF )‖L2(Γ4) ≤MpτMhτmeas(Γ4)
1
2 = k3, (3.17)

‖kT (uην − g)ϕL(θη − θF )‖L2(Γ3) ≤MkTLmeas(Γ3)
1
2 = k4. (3.18)

On the other hand, we take ξ = 0 in the inequality (3.5) to obtain

(K∇θη,∇θη)H + `η(θη) ≤ (q, θη)Q. (3.19)

Using the definition (3.3) of the mapping `η, we have

|`η(θη)| ≤ c2‖η4‖L2(Γ3)‖‖θ
η‖Q. (3.20)

We combine the hypothesis (H1) and the inequalities (3.19) and (3.20) to get

mK‖θη‖2Q ≤ ‖q‖Q‖θη‖Q + c2‖η4‖L2(Γ3)‖‖θ
η‖Q,

which leads to the following inequality

‖θη‖Q ≤
1

mK
(‖q‖Q + c2k4) = k1. (3.21)

From (3.16)–(3.18) and (3.21), we deduce that Λ is an operator of E into itself.
We recall that E is a nonempty convex and closed subset of a reflexive space Y .
Then, E is weakly compact. Using the continuity of pν , pτ , hν , hτ , kT and ϕL,
and Lemma 1, we deduce that Λ is weakly continuous. Then, by Schauder’s
fixed point theorem, the operator Λ has at least one fixed point. ut

Now, we have all the ingredients to provide the proof of Theorem 1.
Existence. Let η∗ be the fixed point of Λ, we denote by x∗ = (u∗, θ∗), the
solution of Problem (PVη) for η = η∗. The definition (3.15) of the operator Λ
implies that x∗ = (u∗, θ∗) satisfies Problem (PV) and that leads to the existence
part of Theorem 1.
Uniqueness. Let (u1, θ1) and (u2, θ2) denote two solutions of Problem (PV).
Then, it follows from (2.17) that, for all v ∈ V , we have

(Fε(u1), ε(v)− ε(u1))H − (Mθ1, ε(v)− ε(u1))H

+ jS(v)− jS(u1) + j(u1, θ1, v)− j(u1, θ1, u1) ≥ (f, v − u1)V ,
(3.22)

(Fε(u2), ε(v)− ε(u2))H − (Mθ2, ε(v)− ε(u2))H

+ jS(v)− jS(u2) + j(u2, θ2, v)− j(u2, θ2, u2) ≥ (f, v − u2)V .
(3.23)

After taking v = u2 in (3.22) and v = u1 in (3.23), we add the two obtained
inequalities to get

(Fε(u1)− ε(u2), ε(u1)− ε(u2))H ≤ (Mθ1 −Mθ2, ε(u1)− ε(u2))H

+ j(u1, θ1, u2)− j(u1, θ1, u1) + j(u2, θ2, u1)− j(u2, θ2, u2).
(3.24)
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In addition, it comes from the inequality (2.18) that for all ξ ∈W , we have

(K∇θ1,∇ξ −∇θ1)H + l(u1, θ1, ξ − θ1) ≥ (q, ξ − θ1)Q, (3.25)

(K∇θ2,∇ξ −∇θ2)H + l(u2, θ2, ξ − θ2) ≥ (q, ξ − θ2)Q. (3.26)

Taking ξ = θ2 in (3.25), ξ = θ1 in (3.26), we add obtained inequalities to find

(K∇θ1 −K∇θ2,∇θ1 −∇θ2)H ≤ l(u1, θ1, θ2 − θ1)− l(u2, θ2, θ2 − θ1). (3.27)

Therefore, we combine the two inequalities (3.24) and (3.27) to conclude

(Fε(u1)− ε(u2), ε(u1)− ε(u2))H+ (K∇θ1−K∇θ2,∇θ1−∇θ2)H ≤M, (3.28)

where the constant M = M1 +M2 +M3 is defined by the following expressions

M1 = (Mθ1 −Mθ2, ε(u1)− ε(u2))H,

M2 = l(u1, θ1, θ2 − θ1)− l(u2, θ2, θ2 − θ1),

M3 = j(u1, θ1, u2)− j(u1, θ1, u1) + j(u2, θ2, u1)− j(u2, θ2, u2).

Using the assumption (H2) and the Friedrichs-Poincaré inequality (2.11) to
obtain

M1 ≤ ‖Mθ1 −Mθ2‖H‖ε(u1)− ε(u2)‖H

≤ 1

cp
‖M‖‖θ1 − θ2‖Q‖u1 − u2‖V ≤

1

2cp
‖M‖

(
‖θ1 − θ2‖2Q + ‖u1 − u2‖2V

)
.

Keeping in mind that ϕL is L-bounded and 1-Lipschitz function, we use the
definition (2.14), the assumption (H5) and the Sobolev trace inequalities (2.12)
and (2.13) to deduce

M2 =

∫
Γ3

(kT (u1ν − g)− kT (u2ν − g))ϕL(θ1 − θF )(θ2 − θ1) da

+

∫
Γ3

kT (u2ν − g) (ϕL(θ1 − θF )− ϕL(θ2 − θF ))(θ2 − θ1) da

≤ c1 c2 LLkT ‖u1 − u2‖V ‖θ1 − θ2‖Q + c22MkT ‖θ1 − θ2‖2Q

≤ c1c2
2

LLkT
(
‖u1 − u2‖2V + ‖θ1 − θ2‖2Q

)
+ c22MkT ‖θ1 − θ2‖2Q.

(3.29)

Similarly, we use (2.12)–(2.13), (2.15)–(2.16) and assumptions (H3)-(H4) to get

M3 ≤ c21Lpν Mhν ‖u1 − u2‖2V + c1c2LhνMpν‖θ1 − θ2‖Q‖u1 − u2‖V

+ c21Lpτ Mhτ ‖u1 − u2‖2V + c1c2LhτMpτ ‖θ1 − θ2‖Q‖u1 − u2‖V

≤ c21Lpν Mhν ‖u1 − u2‖2V +
c1c2

2
LhνMpν

(
‖u1 − u2‖2V + ‖θ1 − θ2‖2Q

)
+ c21LpτMhτ ‖u1 − u2‖2V +

c1c2
2
LhτMpτ

(
‖u1 − u2‖2V + ‖θ1 − θ2‖2Q

)
.

(3.30)
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Now, we combine inequalities (3.28)–(3.30) and assumptions (H1) to deduce

mF‖u1−u2‖2V +mK‖θ1 − θ2‖2Q

≤ max
( 1

2cp
,
c1c2

2
, c21

)
(L1‖u1−u2‖2V +L2‖θ1−θ2‖2Q),

where the two nonnegative constants L1 and L2 are given by

L1 = (‖M‖+ LLkT + LpνMhν + LpτMhτ + LhνMpν + LhτMpτ ), (3.31)

L2 = (‖M‖+ LLkT +MkT + LhνMpν + LhτMpτ ). (3.32)

Recalling the smallness conditions (3.1), we conclude

‖u1 − u2‖2V + ‖θ1 − θ2‖2Q ≤ 0,

which implies u1 = u2 and θ1 = θ2. Thus, the uniqueness part is proved.

4 Convergence results

In this section, we deal with the continuous dependence of the solution of Prob-
lem (PV) on the data. To this end, we assume (H1)–(H7) and the smallness
conditions (3.1) holds. Then, according to Theorem 1, Problem (PV) has a
unique solution (u, θ). Since the solution (u, θ) depends on the data f0, f2, q0,
S, θF and g, we denote it by (u, θ)=

(
u(f0, f2, q0, S, θF , g), θ(f0, f2, q0, S, θF , g)

)
.

Moreover, we consider in the sequel, a perturbation f0n, f2n, q0n, Sn, θFn and
gn of the elements f0, f2, q0, S, θF and g, respectively.

For each n ∈ N, we consider the subset Wn of Q given by

Wn = {ξ ∈ Q , ξ ≤ θFn on Γ4},

functionals jSn : V → R, jn : V ×Q× V → R, ln : V ×Q×Q→ R defined by

jSn(v) =

∫
Γ3

Sn‖vτ‖ da, (4.1)

ln(u, θ, ξ) =

∫
Γ3

kT (uν − gn)ϕL(θ − θFn)ξ da, (4.2)

jn(u, θ, v) =

∫
Γ4

pν(uν − gn)hν(θ − θFn)vν da︸ ︷︷ ︸
=jnν(u,θ,v)

(4.3)

+

∫
Γ4

pτ (uν − gn)hτ (θ − θFn)‖vτ‖ da︸ ︷︷ ︸
=jnτ (u,θ,v)

(4.4)

and the elements fn and qn defined for all v ∈ V and ξ ∈ Q by

(fn, v)V =

∫
Ω

f0n · v dx+

∫
Γ2

f2n · v da−
∫
Γ3

Sn · vν da, (4.5)

(qn, ξ)Q =

∫
Ω

q0nξ dx. (4.6)

Then, we introduce the following perturbation of Problem (PV)
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Problem [PVn]. Find (un, θn) ∈ V ×Wn such that

(Fε(un), ε(v)− ε(un))H − (Mθn, ε(v)− ε(un))H + jSn(v)

− jSn(un) + jn(un, θn, v)− jn(un, θn, un) ≥ (fn, v − un)V ∀ v ∈ V,
(4.7)

(K∇θn,∇ξ −∇θn)H + ln(un, θn, ξ − θn) ≥ (qn, ξ − θn)Q ∀ ξ ∈ Q. (4.8)

As done to prove Theorem 1, we can get that for each n ∈ N, Problem (PVn)
has a unique solution (un, θn) ∈ V ×Wn, that we can also write as follows

(un, θn) =
(
un(f0n, f2n, q0n, S, θFn , gn), θn(f0n, f2n, q0n, S, θFn , gn)

)
.

Now, we state the main convergence result of this section.

Theorem 2. Assume that the following convergences hold

f0n ⇀ f0 in L2(Ω)
d
, (4.9)

f2n ⇀ f2 in L2(Γ2)
d
, (4.10)

q0n ⇀ q0 in L2(Ω), (4.11)

Sn ⇀ S in L2(Γ3), (4.12)

gn → g in L2(Γ3 ∪ Γ4), (4.13)

θFn → θF in R. (4.14)

Then, the solution (un, θn) of Problem (PVn) converges to the solution (u, θ)
of Problem (PV), i.e.,

un → u in V, θn → θ in Q. (4.15)

The convergence result in Theorem 2 is important from the mechanical point of
view, since it shows that the weak solution of the contact Problem (P) depends
continuously on the data. The proof of Theorem 2 will be carried out in several
steps. We start by considering the following intermediate problem.

Problem [PVn]. Find (un, θn) ∈ V ×W such that for all (v, ξ) ∈ V ×W , we
have

(Fε(un), ε(v)− ε(un))H − (Mθn, ε(v)− ε(un))H

+ jSn(v)− jSn(un) + jn(un, θn, v)− jn(un, θn, un) ≥ (fn, v − un)V ,
(4.16)

(K∇θn,∇ξ −∇θn)H + ln(un, θn, ξ − θn) ≥ (qn, ξ − θn)Q. (4.17)

The difference between the two previous problems is that, in Problem (PVn),
we are looking for θn ∈ W, while in Problem (PVn), we search for θn ∈ Wn.
Note that the solvability of Problem (PVn) is a consequence of Theorem 1.
Moreover, we have the following result.

Lemma 3. Let (u, θ), (un, θn) and (un, θn) be the solutions of the problems
(PV), (PVn) and (PVn), respectively. Then, we have
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1. For any n ∈ N, there exists a constant δ > 0 such that

‖un‖V + ‖θn‖Q ≤ δ, ‖un‖V + ‖θn‖Q ≤ δ.

2. The sequence {(un, θn)} converge weakly to (u, θ) in V ×Q, that is

un ⇀ u in V, θn ⇀ θ in Q.

3. The sequence {(un, θn)} converge strongly to {(u, θ)} in V × Q, that
is

un → u in V, θn → θ in Q.

4. The sequence {(un, θn)− (un, θn)} converge strongly to zero in V ×Q,
i.e.,

‖un − un‖V + ‖θn − θn‖Q → 0.

Proof. Let n ∈ N, after taking v = 0 in (4.7) and ξ = 0 in (4.8), we add the
obtained inequalities. Recalling jSn(0V ) = jn(un, θn, 0V ) = 0, we find

(Fε(un),ε(un))H + (K∇θn,∇θn)H ≤ (fn, un)V + (qn, θn)Q

− jSn(un)− jn(un, θn, un)− ln(un, θn, θn) + (Mθn, ε(un))H.

The definitions of jSn and jnτ imply jSn(un) ≥ 0 and jnτ (un, θn, un) ≥ 0. Then

(Fε(un), ε(un))H + (K∇θn,∇θn)H ≤ (fn, un)V + (qn, θn)Q

− jnν(un, θn, un)− ln(un, θn, θn) + (Mθn, ε(un))H.
(4.18)

Using the definition (4.5) of fn and the inequalities (2.10) and (2.12), we find

(fn, un)V≤
1

ck
‖f0n‖L2(Ω)d‖un‖V +c1‖f2n‖L2(Γ2)d‖un‖V +c1‖Sn‖L2(Γ3)‖un‖V .

(4.19)

Next, it follows from (4.9), (4.10) and (4.12) that sequences {f0n} ⊂ L2(Ω)d,
{f2n} ⊂ L2(Γ2)d and {Sn} ⊂ L2(Γ3) are bounded, i.e., there exist nonnegative
constants δ1, δ2 and δ3 such that

‖f0n‖L2(Ω)d ≤ δ1, ‖f2n‖L2(Γ2)d ≤ δ2, ‖Sn‖L2(Γ3) ≤ δ3. (4.20)

Then, we combine the two previous inequalities (4.19) and (4.20) to deduce

(fn, un)V ≤ (
1

ck
δ1 + c1δ2 + c1δ3) ‖un‖V . (4.21)

Similarly, the convergence condition (4.11) implies that {q0n} ⊂ L2(Ω) is a
bounded sequence. Then, there exists a nonnegative constant δ̃1 which does
not depend on n, such that

‖q0n‖L2(Ω) ≤ δ̃1. (4.22)
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Using the previous inequality, the definition (4.6) of qn and (2.11), we find

(qn, θn)Q ≤ ‖q0n‖L2(Ω)‖θn‖L2(Ω) ≤
δ̃1
cp
‖θn‖Q.

The definitions (2.9), (4.2) of ϕL and ln, assumption (H5) and (2.13) imply

|ln(un, θn, θn)| ≤ LMkTmeas(Γ3)
1
2 ‖θn‖L2(Γ3)

≤ c2LMkTmeas(Γ3)
1
2 ‖θn‖Q.

In addition, the hypotheses (H3), (H4) and inequality (2.12) lead to

|jnν(un, θn, un)| ≤MpνMhνmeas(Γ4)
1
2 ‖un‖L2(Γ4)d

≤ c1MpνMhνmeas(Γ4)
1
2 ‖un‖V .

Also, it comes from assumption (H2) and (2.11) that

(Mθn, ε(un))H ≤ ‖Mθn‖H‖ε(un)‖H

≤ 1

cp
‖M‖‖θn‖Q‖un‖V ≤

1

2cp
‖M‖

(
‖θn‖2Q + ‖un‖2V

)
. (4.23)

Next, we combine (4.18) and (4.21)–(4.23) with the inequality below

(Fε(un), ε(un))H + (K∇θn,∇θn)H ≥ mF‖un‖2V +mK‖θn‖2Q

to find that there exist two constants c̃1 > 0 and c̃2 > 0 such that(
mF −

1

2cp
‖M‖

)
‖un‖2V +

(
mK −

1

2cp
‖M‖

)
‖θn‖2Q ≤ (c̃1MpνMhνmeas(Γ4)

1
2

+ ‖fn‖V )‖un‖V + (c̃2LMkTmeas(Γ3)
1
2 + ‖qn‖Q)‖θn‖Q. (4.24)

Recalling condition (3.1), we have mF − 1
2cp
‖M‖ > 0 and mK − 1

2cp
‖M‖ > 0.

Then, it comes from (4.24) that there exists a constant c > 0 such that

‖un‖2V + ‖θn‖2Q ≤ c
(
‖un‖V + ‖θn‖Q

)
.

Hence, this inequality combined with the fact (a+b)2 ≤ 2(a2 +b2) for two reals
a and b, we conclude that there exists a nonnegative constant δ such that

‖un‖V + ‖θn‖Q ≤ δ.

In addition, using the same technique, we also deduce

‖un‖V + ‖θn‖Q ≤ δ.

Let us now, show that the sequence {(un, θn)} converge weakly to (u, θ). It
follows from the first part of Lemma 3 that {(un, θn)} is bounded sequence in
V × Q. Therefore, there exists an element (u, θ) ∈ V × Q and a subsequence
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of {(un, θn)}, denoted again {(un, θn)}, such that {(un, θn)} converge weakly
to (u, θ) in V ×Q, i.e.,

un ⇀ u in V, θn ⇀ θ in Q. (4.25)

Using compactness result of the embedding of H1(Ω) ↪→ L2(Ω) [10, Theorem
16.1], we get that {(un, θn)} converge strongly to (u, θ) in L2(Ω)d×L2(Ω), i.e.,

un → u in L2(Ω)d , θn → θ in L2(Ω). (4.26)

Since the trace map γ1 : V → L2(Γ )d and γ2 : Q→ L2(Γ ) are compacts, then
the weak convergence (un, θn) ⇀ (u, θ) in V ×Q leads to the strong convergence
(un, θn)→ (u, θ) in L2(Γ )d × L2(Γ ), i.e.,

un → u in L2(Γ )d , θn → θ in L2(Γ ). (4.27)

To prove that (u, θ) = (u, θ), we recall that V ×W is a nonempty closed convex
subset of space V ×Q and {(un, θn)} ⊂ V ×W . Hence, the convergence (4.25)
implies that (u, θ) ∈ V ×W . Then, we take v = u in (4.16) and ξ = θ in (4.17),
and after adding the two obtained inequalities and using the definition (3.6) of
the operator A, we obtain

(A(un, θn), (un, θn)−(u, θ))X≤(fn, un−u)V +(qn, θn−θ)Q+jSn(u)−jSn(un)

+ jn(un, θn, u)−jn(un, θn, un)− ln(un, θn, θn − θ) + (Mθn, ε(un)− ε(u))H.
(4.28)

Moreover, we use the definitions (4.5), (4.6) of fn and qn to deduce

(fn, un − u)V =

∫
Ω

f0n ·
(
un − u

)
dx+

∫
Γ2

f2n ·
(
un − u

)
da

−
∫
Γ3

Sn ·
(
uνn − uν

)
da ≤ ‖f0n‖L2(Ω)d ‖un − u‖L2(Ω)d

+ ‖f2n‖L2(Γ2)d ‖un − u‖L2(Γ2)d + ‖Sn‖L2(Γ3) ‖un − u‖L2(Γ3)d ,

(qn, θn − θ)Q =

∫
Ω

q0n
(
θn − θ

)
dx ≤ ‖q0n‖L2(Ω)‖θn − θ‖L2(Ω).

From the conditions (4.20), (4.22) and the convergences (4.26)–(4.27), we get

(fn, un − u)V → 0, (qn, θn − θ)Q → 0. (4.29)

From the definitions (4.1)–(4.3) and assumptions (H3)–(H4), we have

jSn(u)− jSn(un) ≤ ‖Sn‖L2(Γ3)‖u− un‖L2(Γ3)d , (4.30)

ln(un, θn, θn − θ) ≤MkTLmeas(Γ3)
1
2 ‖θn − θ‖L2(Γ3), (4.31)

jn(un, θn, u)− jn(un, θn, un) ≤MpνMhνmeas(Γ4)
1
2 ‖u− un‖L2(Γ4)d

+MpτMhτmeas(Γ4)
1
2 ‖u− un‖L2(Γ4)d .

(4.32)
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Therefore, the convergence condition (4.27), combined with (4.20) and (4.30)–
(4.32), leads to

jSn(u)− jSn(un)→ 0, (4.33)

jn(un, θn, u)− jn(un, θn, un)→ 0, (4.34)

ln(un, θn, θn − θ)→ 0. (4.35)

The operator ε is linear, then ε(un) → ε(u) in H, and by boundedness of the
sequence {θn}, we get

(Mθn, ε(un)− ε(u))H → 0. (4.36)

Then, we use (4.28), convergences (4.29) and (4.33)–(4.36) to obtain

lim sup(A(un, θn), (un, θn)− (u, θ))X ≤ 0. (4.37)

The inequality (4.37) combined with (3.11) implies that A is a pseudomonotone
operator. Thus, for all (v, ξ) ∈ V ×Q, we have

lim inf(A(un, θn), (un, θn)− (v, ξ))X ≥ (A(u, θ), (u, θ)− (v, ξ))X .

Therefore, we add the two inequalities of Problem (PVn) and use the definition
of the operator A to get

(A(un, θn), (un, θn)−(v, ξ))X≤(fn, un − v)V +(qn, θn−ξ)Q + jSn(v)−jSn(un)

+jn(un, θn, v)−jn(un, θn, un)−ln(un, θn, θn−ξ)+(Mθn, ε(un)−ε(v))H,
(4.38)

for all (v, ξ) ∈ V ×W . The inequality (4.38) can be reformulated as follows

(A(un, θn), (un, θn)− (v, ξ))X

≤ (fn, u− v)V + (fn, un − u)V + (qn, θ − ξ)Q + (qn, θn − θ)Q
+ jSn(v)− jSn(u)− (jSn(un)− jSn(u)) + jn(un, θn, v)

− jn(un, θn, u)− (jn(un, θn, un)− jn(un, θ, u))− ln(un, θn, θ − ξ)
− ln(un, θn, θn − θ) + (Mθn, ε(u)− ε(v))H + (Mθn, ε(un)− ε(u))H.

Then, by passing to the limit, we get that for all (v, ξ) ∈ V ×W , we have

lim inf(A(un, θn), (un, θn)− (v, ξ))X ≤ (f, u− v)V + (q, θ − ξ)Q + jS(v)

− jS(u) + j(u, θ, v)− j(u, θ, u)− l(u, θ, θ − ξ) + (Mθ, ε(u)− ε(v))H,

(A(u, θ), (u, θ)− (v, ξ))X ≤ (f, u− v)V + (q, θ − ξ)Q
+ jS(v)− jS(u) + j(u, θ, v)− j(u, θ, u)− l(u, θ, θ − ξ) + (Mθ, ε(u)− ε(v))H.

Then, for all (v, ξ) ∈ V ×W , we have

(A(u, θ), (v, ξ)− (u, θ))X − (Mθ, ε(v)− ε(u))H + jS(v)− jS(u)

+ j(u, θ, v)− j(u, θ, u) + l(u, θ, ξ − θ) ≥ (f, v − u)V + (q, ξ − θ)Q.
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Now, we take successively ξ = θ and v = u in the previous inequality to get

(Fε(u), ε(v)− ε(u))H − (Mθ, ε(v)− ε(u))H

+ jS(v)− jS(u) + j(u, θ, v)− j(u, θ, u) ≥ (f, v − u)V , ∀ v ∈ V,
(K∇θ,∇ξ −∇θ)H + l(u, θ, ξ − θ) ≥ (q, ξ − θ)Q, ∀ ξ ∈W.

It means that (u, θ) is also a solution of Problem (PV), and from the uniqueness
of the solution of Problem (PV), we conclude that (u, θ) = (u, θ). Then, the
sequence {(un, θn)} converge weakly to (u, θ) in V ×Q.

Now, we move to prove that {(un, θn)} converges strongly to (u, θ) in V ×Q.
We take v = u in (4.16) and ξ = θ in (4.17) and add the obtained inequalities
to get

(Fε(un), ε(un)− ε(u))H + (K∇θn,∇θn −∇θ)H
≤ (fn, un − u)V + (qn, θn − θ)Q + jSn(u)− jSn(un) + jn(un, θn, u)

− jn(un, θn, un)− ln(un, θn, θn − θ) + (Mθn, ε(un)− ε(u))H,

i.e.,

(Fε(un)−Fε(un), ε(un)− ε(u))H + (K∇θn −K∇θ,∇θn −∇θ)H
≤ (fn, un − u)V + (qn, θn − θ)Q + jSn(u)− jSn(un) + jn(un, θn, u)

− jn(un, θn, un)− ln(un, θn, θn − θ) + (Mθn, ε(un)− ε(u))H

− (Fε(un), ε(un)− ε(u))H − (K∇θ,∇θn −∇θ)H .

(4.39)

Recalling that the sequence (un, θn) converges weakly to (u, θ) in V ×Q, then
by the same techniques used to find (4.29) and (4.33)–(4.36), we deduce

(Fε(un), ε(un)− ε(u))H → 0, (K∇θ,∇θn −∇θ)H → 0, (4.40)

(fn, un − u)V → 0, (qn, θn − θ)Q → 0, (4.41)

jSn(u)− jSn(un)→ 0, jn(un, θn, u)− jn(un, θn, un)→ 0, (4.42)

ln(un, θn, θn − θ)→ 0, (Mθn, ε(un)− ε(u))H → 0. (4.43)

Next, we combine (4.39), (4.40)–(4.43) and assumption (H1) to find

lim
n→∞

∥∥un − u‖2V + ‖θn − θ‖2Q
)
≤ 0.

Hence,
{

(un, θn)
}

converges strongly to (u, θ) in V ×Q.

Let us now prove
(
‖un−un‖V +‖θn−θn‖Q

)
→ 0. We consider a nonnegative

real αn = θF /θFn . Using the definitions of W and Wn, it is easy to deduce

αnθn ∈W, θn/αn ∈Wn,

where (un, θn), (un, θn) are the solution of Problem (PVn) and Problem (PVn),
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respectively. We take v = 1
αn
un in (4.7) and v = αnun in (4.16), then we get

(Fε(un), ε(
1

αn
un)− ε(un))H − (Mθn, ε(

1

αn
un)− ε(un))H + jSn(

1

αn
un)

− jSn(un) + jn(un, θn,
1

αn
un)− jn(un, θn, un) ≥ (fn,

1

αn
un − un)V ,

(Fε(un), ε(αnun)− ε(un))H − (Mθn, ε(αnun)− ε(un))H + jSn(αnun)

− jSn(un) + jn(un, θn, αnun)− jn(un, θn, un) ≥ (fn, αnun − un)V .

Next, we add the two previous inequalities to obtain

(Fε(un), ε(un)− ε( 1

αn
un))H + (Fε(un), ε(un)− ε(αnun))H

≤ (1− αn)(fn, un)V + (1− 1

αn
)(fn, un)V + (αn − 1)jSn(un)

+ (
1

αn
− 1)jSn(un) + (αn − 1) jn(un, θn, un) + (

1

αn
− 1) jn(un, θn, un)

+ jn(un, θn, un)− jn(un, θn, un) + jn(un, θn, un)− jn(un, θn, un)

+ (1− αn)(Mθn, ε(un))H + (1− 1

αn
)(Mθn, ε(un))H

+ (Mθn −Mθn, ε(un)− ε(un))H. (4.44)

Using the assumption (H1), it comes from the previous inequality that

(Fε(un), ε(un)− ε( 1

αn
un))H + (Fε(un), ε(un)− ε(αn un))H

= (Fε(un)−Fε(un), ε(un)− ε(un))H + (1− αn)(Fε(un), ε(un))H

+ (1− 1

αn
)(Fε(un), ε(un))H ≥ mF‖un − un‖2V

− |1− αn|MF ‖un‖V ‖un‖V − |1−
1

αn
|MF ‖un‖V ‖un‖V .

(4.45)

Remembering that fn, Sn, un, un, θn and θn are all bounded, we use hy-
potheses (H1)–(H5) and inequalities (4.44) and (4.45) to get that there exists
a nonnegative constant c̃1 such that

mF‖un − un‖2V

≤ c̃1 (|1− αn|+ |(1−
1

αn
|) + jn(un, θn, un)− jn(un, θn, un)

+ jn(un, θn, un)− jn(un, θn, un) + (Mθn −Mθn, ε(un)− ε(un))H.

(4.46)

Moreover, by the same arguments used to prove (3.30), we can deduce that

|jn(un, θn, un)− jn(un, θn, un) + jn(un, θn, un)− jn(un, θn, un)|

≤ c21LpνMhν‖un − un‖2V +
c1c2

2
LhνMpν

(
‖un − un‖2V + ‖θn − θn‖2Q

)
+ c21LpτMhτ ‖un − un‖2V +

c1c2
2
LhτMpτ

(
‖un − un‖2V + ‖θn − θn‖2Q

)
.

(4.47)
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Hence, by combining (4.46)–(4.47) and assumption (H2), we get

mF ‖un − un‖2V

≤ c̃1
(
|1− αn|+ |1−

1

αn
|
)

+ c21LpνMhν‖un − un‖2V

+
c1c2

2
LhνMpν

(
‖un − un‖2V + ‖θn − θn‖2Q

)
+ c21LpτMhτ ‖un − un‖2V

+
c1c2

2
LhτMpτ

(
‖un − un‖2V + ‖θn − θn‖2Q

)
+

1

2cp
‖M‖

(
‖θn − θn‖2Q + ‖un − un‖2V

)
. (4.48)

Now, we take ξ = αnθn ∈ W and ξ = 1
αn
θn ∈ Wn in (4.17) and (4.8), respec-

tively, to obtain

(K∇θn,
1

αn
∇θn −∇θn)H + ln(un, θn,

1

αn
θn − θn) ≥ (qn,

1

αn
θn − θn)Q,

(K∇θn, αn∇θn −∇θn)H + ln(un, θn, αnθn − θn) ≥ (qn, αnθn − θn)Q.

Then, we add the two previous inequalities to deduce

(K∇θn,∇θn −
1

αn
∇θn)H + (K∇θn,∇θn − αn∇θn)H

≤ (1− αn)(qn, θn)Q + (1− 1

αn
)(qn, θn)Q

+ (αn − 1) ln(un, θn, θn) + (
1

αn
− 1) ln(un, θn, θn)

+ ln(un, θn, θn − θn)− ln(un, θn, θn − θn).

(4.49)

In addition, it comes from the hypothesis (H1) that

(K∇θn,∇θn −
1

αn
∇θn)H + (K∇θn,∇θn − αn∇θn)H

= (K∇θn −K∇θn,∇θn −∇θn)H + (1− αn) (K∇θn,∇θn)H

+ (1− 1

αn
) (K∇θn,∇θn)H

≥ mK‖θn − θn‖2Q −
(
|1− αn|+ |1−

1

αn
|
)
MK‖θn‖Q ‖θn‖Q.

By the same arguments as used to find (3.29), we can get

|ln(un, θn, θn − θn)− ln(un, θn, θn − θn)|

≤ c1c2
2
LLkT

(
‖un − un‖2V + ‖θn − θn‖2Q

)
+ c22MkT ‖θn − θn‖2Q.

(4.50)

Recalling that qn, θn, θn, un and un are all bounded, then it follows from
the hypotheses (H1) and (H5), the definition (2.9) of ϕL and the inequalities
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(4.49)–(4.50) that, there exists a nonnegative constant c̃2 such that

mK‖θn − θn‖2Q ≤ c̃2
(
|1− αn|+ |1−

1

αn
|
)

+ c22MkT ‖θn − θn‖2Q

+
c1c2

2
LLkT

(
‖un − un‖2V + ‖θn − θn‖2Q

)
.

(4.51)

Next, we combine (4.48) and (4.51) to conclude that there exists a constant
c̃3 > 0 such that

mF ‖un − un‖2V +mK‖θn − θn‖2Q ≤ c̃3
(
|1− αn|+ |1−

1

αn
|
)

+ max(
1

2cp
,
c1c2

2
, c21)L1 ‖un − un‖2V + max(

1

2cp
, c22,

c1c2
2

)L2 ‖θn − θn‖2Q,

where the constants L1 and L2 are previously defined (see page 12). Keeping
in mind conditions (3.1), then there exists a nonnegative constant c such that

‖un − un‖2V + ‖θn − θn‖2Q ≤ c
(
|1− αn|+ |1−

1

αn
|
)
. (4.52)

Finally, from (4.14), we get αn =
θF
θFn
→ 1, and then (4.52) leads to

‖un − un‖V + ‖θn − θn‖Q → 0,

which concludes the proof of Lemma 3. ut

Now, we have all the ingredients to provide the proof of Theorem 2. Let n ∈ N,
we denote by (u, θ), (un, θn) and (un, θn), the solutions of the problems (PV),
(PVn) and (PVn), respectively. We know that

‖un − u‖V + ‖θn − θ‖Q ≤ ‖un − un‖V + ‖un − u‖V + ‖θn − θn‖Q + ‖θn − θ‖Q.

Hence, it follows from Lemma 3 that (4.15) holds, and thus ends the proof of
Theorem 2.

5 Optimization problem

In the previous section, we have seen that for given loading functions f0, f2,
q0, g, S and θF , Problem (PV) has a unique solution (u, θ). So, each of these
quantities could play the role of controlling the inequalities of this Problem.

Now, we would like to study an optimization problem which is described by
the following construction. Let β and δ be one or a part of the problem’s data
such that

β ∩ δ = ∅, β ∪ δ = {f0, f2, q0, g, S, θF }.

To guarantee the conditions of Theorem 2, we assume that β ∈ T and δ ∈ T ′,
where T and T ′ are subsets of two appropriate Hilbert spaces Z and Z ′. For
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a given δ, we want to act through a good choice of β, and then the solution of
Problem (PV), which of course depends on the data β ∪ δ, is now considered
as function of β. Hence, we denote it in what follows by (u(β), θ(β)). Next,
we consider a the cost functional L : X → R, and the following minimization
problem.

Problem [PO]. Given δ ∈ T ′, find β ∈ T such that

L(u(β∗), θ(β∗)) = min
β∈T
L(u(β), θ(β)). (5.1)

We note here that for a given δ ∈ T ′, the mapping β 7→ (β, δ) is linear con-
tinuous for the strong topologies, and then it is also continuous for the weak
topologies.

The main result of this section is stated as follows.

Theorem 3. We assume that the following hypotheses hold,

T is a bounded weakly closed subset of the space Z, (5.2)

L : X → R is a lower semicontinuous function. (5.3)

Then, for each δ ∈ T ′, Problem (PO) has at least one solution β∗ ∈ T .

Proof. For δ ∈ T ′ given, we consider ϑ = inf
β∈T
L(u(β), θ(β)) and (βn) ⊂ T the

minimizing sequence for the functional L. Then, it comes from the definition
of L that

limL(u(βn), θ(βn)) = ϑ. (5.4)

From hypothesis (5.2), T is bounded subset in Z, and hence (βn) is a bounded
sequence in Z. Thus, there exist β∗ ∈ Z and a subsequence of (βn), still
denoted (βn), such that

βn ⇀ β∗ in Z. (5.5)

Moreover, since T ⊂ Z is weakly closed, the convergence (5.5) implies

β∗ ∈ T. (5.6)

Then, using the regularity (5.6), the convergence (5.5) and Theorem 2, we
obtain

(u(βn), θ(βn))→ (u(β∗), θ(β∗)) in X.

Keeping in mind hypothesis (5.3), we deduce

lim inf L(u(βn), θ(βn)) ≥ L(x(β∗, δ)). (5.7)

Next, we combine the previous inequality (5.7) and (5.4) to get

ϑ ≥ L(u(β∗), θ(β∗)). (5.8)

In addition, it follows from (5.6) that

ϑ = inf
β∈T
L(u(β), θ(β)) ≤ L(u(β∗), θ(β∗)). (5.9)
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Finally, we use (5.8) and (5.9) to see that (5.1) holds, and thus concludes the
proof. ut

We could as well consider various examples of cost function in which we can
obtain analogous results without any additional difficulties. For instance, we
take two examples of optimization problems for which the existence results
provided by Theorem 3.

Example 1. A first example of Problem (PO) can be obtained by taking

β = (f2, S, g, θF ), δ = (f0, q0),

Z = L2(Γ2)d × L2(Γ3)× L2(Γ3 ∪ Γ4)×R, Z ′ = L2(Ω)d × L2(Ω),

T = {β ∈ Z , ‖β‖Z ≤ C}, T ′ = Z ′,

where C is a nonnegative constant, and the following cost function

L(v, ξ) =

∫
Ω

(‖σ(v, ξ)‖2 + ‖qT (ξ)‖2) dx ∀ (v, ξ) ∈ V ×Q,

where σ(v, ξ) = Fε(v)−Mξ and qT (ξ) = −Kξ. The mechanical interpretation
is the following; given a contact process of the form (2.1)–(2.6), with the data
(f0, q0) ∈ T ′, we are looking for a traction f∗2 , a friction bound S∗, a gap
function g∗ and a foundation’s temperature θ∗F such that the corresponding
stress in the body and heat flux are as small as possible.

We note that T is a bounded weakly closed subset of Z and hence it satisfies
condition (5.2). Moreover, since the function L : X → R is continuous, it is
a fortiori lower semicontinuous function, and then, it satisfies condition (5.3).
Therefore, Theorem 3 guarantees the existence of solutions to the corresponding
optimization problem.

Example 2. In second example of Problem (PO), we consider

β = f2, δ = (f0, q0, g, θF ),

Z = L2(Γ2)d, Z ′ = L2(Ω)d × L2(Ω)× L2(Γ3 ∪ Γ4)×R,
T = {β ∈ Z, ‖β‖Z ≤ C}, T ′ = {δ ∈ Z ′, g0 ≤ g ≤ g1 et θ0 ≤ θF ≤ θ1},

L(v, ξ) =

∫
Γ4

(‖vν − ud‖2 + ‖ξ − θd‖2) da, ∀ (v, ξ) ∈ V ×Q,

where C, g0, g1, θ0 and θ1 are nonnegative constants such that g0 ≤ g1, θ0 ≤ θ1,
ud ∈ L2(Γ4) and θd ∈ L2(Γ4) are given. We want to find the surface traction
f2 acting on Γ2 which leads to the desired displacement field ud and desired
temperature θd on the part Γ4.

It easy to see that T is a bounded weakly closed subset of Z, and hence
it satisfies the condition (5.2). In addition, since L : X → R is continuous,
it is a fortiori lower semicontinuous, and then it satisfies condition (5.3). Fi-
nally, Theorem 3 guarantees the existence of solutions to the corresponding
optimization problem.
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Dunod, Paris, 1968.

[11] A. Matei and S. Micu. Boundary optimal control for nonlinear antiplane
problems. Nonlinear Anal. Theory Methods Appl., 74(5):1641–1652, 2011.
https://doi.org/10.1016/j.na.2010.10.034.

[12] A. Matei and S. Micu. Boundary optimal control for a frictional contact
problem with normal compliance. Appl. Math. Optim., 78:379–401, 2018.
https://doi.org/10.1007/s00245-017-9410-8.
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