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Abstract. The classical problems of surface water waves produced by small oscil-
lations of a thin vertical plate partially immersed as well as submerged in deep water
are reinvestigated here. Each problem is reduced to an integral equation involving
horizontal component of velocity across the vertical line outside the plate. The inte-
gral equations are solved numerically using Galerkin approximation in terms of simple
polynomials multiplied by an appropriate weight function whose form is dictated by
the behaviour of the fluid velocity near the edge(s) of the plate. Fairly accurate nu-
merical estimates for the amplitude of the radiated wave at infinity due to rolling
and also for swaying of the pate in each case are obtained and these are depicted
graphically against the wave number for various cases.
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1 Introduction

Study of water wave problems wherein waves are produced by rolling motion
of a partially immersed as well as a submerged plate which executes simple
harmonic oscillations about a horizontal axis was considered by a number of
researchers. The rolling motion of a ship modelled as a partially immersed thin
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plate in infinitely deep water was first investigated by Ursell [31] who obtained
the explicit expression for the amplitude at infinity of the wave motion. Later,
Haskind [11] obtained the exact values for general coefficients of damping and
mass coupling for partially immersed plate. Evans [6] used Green’s integral
theorem to derive a simple expression for the amplitude of the radiated waves
at infinity for the same problem considered by Ursell [31] and also deduced the
wave amplitude for swaying of the plate. Later, Mandal [19] also used Green’s
integral theorem to obtain the amplitude of the radiated wave produced by
small oscillations of a thin vertical plate submerged in deep water and also
considered the case of swaying of the plate. The two-dimensional problem of
the small-amplitude forced rolling motion of a thin vertical plate in finite depth
water was considered by Evans and Porter [9]. They used two complementary
formulations in conjunction with an accurate and efficient Galerkin method to
solve the problem. Later, Banerjea and Mandal [2] considered the generation
of waves due to rolling of a thin vertical plate which was solved by Green’s
integral theorem.

The problem of the generation of waves due to small rolling oscillations
of a thin vertical plate partially immersed in uniform finite-depth water is
investigated by Banerjea et al. [1] using eigenfunction expansion of the velocity
potentials and also by hypersingular integral equation formulation. Mandal
et al. [20] used dual integral equations involving trigonometric functions as
kernel to reinvestigate the classical rolling ship problem due to small rolling
oscillations of a thin vertical plate partially immersed in deep water. Later,
Rakshit and Banerjea [26] investigated the effect of a small bottom undulation
of the sea bed on the surface waves generated due to a rolling oscillation of a
vertical plate either partially immersed or completely submerged in water of
variable depth using Green’s integral theorem.

The Galerkin approximation is a useful method to obtain an approximate
solution of integral equations. The advantage of this method is that the set
of functions need not be an orthogonal set or not necessary be complete. The
Galerkin method converges faster than the collocation method (cf. Kanoria
and Mandal [13]). Previously, Evans and Morris [8], Porter and Evans [25]
employed Galerkins approximation technique followed by the Havelocks [12]
expansion of water wave potential to obtain numerical estimates of reflection
coefficient for oblique incidence of the wave train on a single vertical barrier
in deep as well as finite depth water. Evans and Fernyhough [7] investigated
about the numerical evidence of the existence of edge waves travelling along a
periodic coastline using Galerkin approximation technique.

The water wave scattering by vertical thin porous barriers has been solved
by Li et al. [15] considering a surface piercing barrier and a submerged bottom-
standing barrier using a multi-term Galerkin method. In recent times, Meng et
al. [24] presented a hybrid element-free Galerkin (HEFG) method for solving
three dimensional wave propagation problem. Also Liu and Cheng [16], Liu et
al. [17] and Cheng et al. [3] employed element-free Galerkin method in the study
of some problems involving swelling of polymer gels, elastoplastic deformation
problems and 3D elasticity problems. Gupta and Gayen [10] used multi-term
Galerkin approximation in terms of Chebyshev polynomials to analyse the effect
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of two submerged unequal permeable plates in the propagation of water waves
and also Roy et al. [29] used multi-term Galerkin approximation technique
with Chebyshevs polynomials for water wave scattering by unequal partially
immersed vertical barriers in water of uniform finite depth.

Previously, Roy et al. [27, 28, 30] considered different geometrical config-
urations of multiple barriers in infinite depth water and formed a system of
singular integral equations for each problem which were solved by using single
term Galerkin expansion wherein the single-term is the exact solution of the
corresponding integral equation for single barrier due to normal incidence. To
avoid the complicacy of calculations using single term Galerkin approximation
some researchers use Galerkin approximation in terms of simple polynomials
multiplied by an appropriate weight function to solve the singular integral
equations. Das et al. [4] investigated the problem of oblique scattering by thin
vertical barriers in deep water by multiterm Galerkin technique using simple
polynomials as basis functions. Kaur et al. [14] also used the method of polyno-
mial approximation to solve the resulting singular integral equations for double
trench problem. Recently, Das et al. [5] also used multiterm Galerkin technique
with simple polynomials as basis functions to solve the integral equation arising
in the problem of thick barrier in deep water.

In this paper, we have reinvestigated the problem of wave generation due
to rolling of a partially immersed plate as well as a rolling submerged plate
in infinitely deep water by using Galerkin approximation in terms of simple
polynomials multiplied by an appropriate weight function whose form is dic-
tated by the behaviour of the fluid velocity near the submerged edge(s) of the
plate. The numerical estimate of the amplitude of the radiated wave produced
by the rolling motion of the plate is obtained and it is depicted against the
wave number for different sizes of the plate in a number of figures. The results
given previously by Ursell [31] and Mandal [19] for partially immersed and
submerged plate are recovered. Lastly, the case of swaying of the both types
of plate is considered and the amplitude is obtained and depicted against the
wavenumber in a number of figures and the results given by Evans [6] have
been recovered.

2 Formulation

A Cartesian rectangular co-ordinate system is chosen in which the y-axis is
taken vertically downwards into the fluid region and xz -plane is the rest position
of the mean free surface y = 0. The plate whose equilibrium position is x = 0,
y ∈ L where L ≡ L1 = (0, b) for partially immersed plate and L ≡ L2 = (a, b)
for submerged plate, makes small oscillations of circular frequency ω about a
fixed point (0, c) which need not to be in L. The geometry of the two positions
of the plate is best described in Figure 1.

Assuming linear theory and the motion in water to be irrotational, time
harmonic and independent of the co-ordinate z, the motion in the fluid region
can be described by a velocity potential Re{φ(x, y)e−iωt}, where φ satisfies

∇2φ = 0

Math. Model. Anal., 26(2):209–222, 2021.
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Figure 1. Diagram of rolling of (a) partially immersed plate and (b) submerged plate.

in the fluid region, the free surface condition

∂φ

∂y
+Kφ = 0 on y = 0, −∞ < x <∞,

where K = ω2

g , g being the acceleration due to gravity, the condition due to
small oscillations of the plate

∂φ

∂x
= g(y) for y ∈ L, x = 0, (2.1)

where
g(y) = −iωθ0(c− y) (2.2)

is a known function given by Evans [6] if the plate is hinged at (0, c) and makes
small oscillation of amplitude θ0. The bottom conditions for deep water is

∇φ→ 0 as y →∞, 0 < x <∞,

while the edge condition is

r
1
2∇φ is bounded as r → 0,

where r is the distance from a submerged edge of the plate, and finally for
|x| → ∞

φ(x, y) =

{
A−e

−Ky−iKx as x < 0,
A+e

−Ky+iKx as x > 0,

where A− and A+ denote the amplitude (unknown) of the water wave created
by the rolling of the plate in the negative direction and positive direction of
the x-axis respectively which is to be obtained for different sizes of the plate.

3 Reduction to integral equation

Use of Havelock’s [12] expansion for water wave potentials produces

φ(x, y) = A−e
−Ky−iKx +

∫ ∞
0

A(k)S(k, y)ekxdk for x < 0, 0 < y <∞
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and

φ(x, y) = A+e
−Ky+iKx +

∫ ∞
0

B(k)S(k, y)e−kxdk for x > 0, 0 < y <∞,

where S(k, y) = k cos ky−K sin ky and A(k) and B(k) is an unknown functions.
The continuity of velocity at x = 0, 0 < y <∞ gives

φx(+0, y) = φx(−0, y), 0 < y <∞,

which gives for 0 < y <∞

ikA+e
−Ky −

∫ ∞
0

kB(k)S(k, y)dk = −ikA−e−Ky −
∫ ∞

0

kA(k)S(k, y)dk,

so that by using Havelock’s inversion formula(cf. Mandal and Chakrabarti [23])

− iKA− = iKA+ = 2K

∫ ∞
0

F (u)e−Kudu, (3.1)

kA(k) = −kB(k) =
2

π

1

k2 +K2

∫ ∞
0

F (u)S(k, u)du, (3.2)

wherein we have used

∂φ

∂x
= F (y) =

{
g(y) for y ∈ L, x = 0,
f(y) for y ∈ L̄, x = 0,

(3.3)

where L̄ ≡ L̄1 = (b,∞) for partially immersed plate and L̄ ≡ L̄2 = (0, a) ∪
(b,∞) for submerged plate and f(y) is an unknown function having square root
singularity at y = b for L̄ = L̄1 and at y = a, b for L̄ = L̄2.

Then, (2.1) and (3.1)–(3.3) provides

A− = −A+ = 2i

[∫
L

g(u)e−Kudu+

∫
L̄

f(u)e−Kudu

]
,

A(k) = −kB(k) =
2

π

1

k(k2 +K2)

[∫
L

g(u)S(k, u)du+

∫
L̄

f(u)S(k, u)du

]
.

Now the continuity of pressure at x = 0, 0 < y <∞ gives

φ(+0, y) = φ(−0, y), 0 < y <∞.

This provides the integral equation for f(y) ≡ f1(y) for partially immersed
plate given by ∫

L̄1

f1(y)M1(y, u)du = G1(y), y ∈ L̄1, (3.4)

where

M1(y, u) = 2ie−K(y+u) − 1

π
ln

∣∣∣∣y − uy + u

∣∣∣∣− 2

π
e−K(y+u)

∫ K(y+u)

−∞

ev

v
dv, y, u ∈ L̄1
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and ∀y ∈ L̄1

G1(y)=

∫
L1

g(u)

[
1

π
ln

∣∣∣∣y − uy + u

∣∣∣∣+ 2

π
e−K(y+u)

∫ K(y+u)

−∞

ev

v
dv−2ie−K(y+u)

]
du,

while

f1(y) = O((y − b)− 1
2 ) as y → b+ 0.

The integral equation for f(y) ≡ f2(y) for submerged plate is given by∫
L̄2

f2(y)M2(y, u)du = G2(y), y ∈ L̄2, (3.5)

where

M2(y, u) = 2ie−K(y+u) − 1

π
ln

∣∣∣∣y − uy + u

∣∣∣∣− 2

π
e−K(y+u)

∫ K(y+u)

−∞

ev

v
dv, y, u ∈ L̄2

and

G2(y) =

∫
L2

g(u)

[
1

π
ln

∣∣∣∣y − uy + u

∣∣∣∣+
2

π
e−K(y+u)

∫ K(y+u)

−∞

ev

v
dv − 2ie−K(y+u)

]
du

y ∈ L̄2,

while

f2(y) =

{
O((a− y)−

1
2 ) as y → a− 0,

O((y − b)− 1
2 ) as y → b+ 0.

It may be noted that the integral equations (3.4) and (3.5) are weakly sin-
gular integral equations. These integral equations were solved in the literature
in closed from using somewhat complicated procedure. However, the compli-
cated procedure for each barrier configuration is avoided here and the integral
equations are solved numerically using Galerkin approximation involving simple
polynomials multiplied by appropriate weight functions whose form is dictated
by the edge condition. Very accurate numerical estimates for the amplitude of
the radiated waves are obtained from the approximate solution of the integral
equations.

4 Numerical solutions of the integral equations

Numerical solutions of the integral equations (3.4) and (3.5) are now obtained
by using Galerkin approximation in terms of simple polynomials multiplied by
weight functions whose forms are dictated by the appropriate edge conditions.
Thus we expand f1(y) and f2(y) as

f1(y) =

(
b

b− y

) 1
2

e−Ky
N∑
n=0

an

(y
b

)n
for b < y <∞ (4.1)
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and

f2(y) =


(

a
a−y

) 1
2 ∑N

n=0 bn
(
y
a

)n
for 0 < y < a,(

b
y−b

) 1
2

e−Ky
∑N
n=0 cn

(
y
b

)n
for b < y <∞,

(4.2)

where N is an integer to be chosen suitably.
Substituting the expression of f1(y) given by (4.1), f2(y) given by (4.2) in

place of f(y) and g(y) given by (2.2) in (3.3) we obtain A− and A+ as given
by,

A− = −A+

=



2i

[
−
∫ b

0
iωθ0(c− u)e−Kudu+

∑N
n=0 an

∫∞
b

(
b

b−u

) 1
2 (u

b

)n
e−2Kudu

]
for partially immersed plate,

2i

[
−
∫ b
a
iωθ0(c− u)e−Kudu+

∑N
n=0 bn

∫ a
0

(
a

a−u

) 1
2 (u

a

)n
e−Kudu

+
∑N
n=0 cn

∫∞
b

(
b

u−b

) 1
2 (u

b

)n
e−2Kudu

]
for submerged plate.

To find the unknown constants an (n = 0, 1, 2, . . . , N),we put y = b
yi

(i =

0, 1, 2, . . . , N), (0 < b
yi
< 1) in the relation (3.4) to obtain the linear system

N∑
n=0

anAin = G

(
b

yi

)
, i = 0, 1, 2, . . . , N, (4.3)

Ain =

∫ ∞
b

(
b

b− u

) 1
2 (u

b

)n
e−KuM1

(
b

yi
, u

)
du, i = 0, 1, 2, . . . , N.

Suitable transformations like u = b
w can be made to change the range of the

integration to a finite one. The collocation points b
yi

are to be chosen suitably.
Here we have chosen

b/yi = 1− i/N, i = 0, 1, 2, . . . , N.

Actually i = 0 or N have not been used. For i = 0 or N a point little bit away
from end points (towards right for i = 0 and towards left for i = N) have been
chosen during the numerical computation to avoid singularity.

To find the unknown constants bn and cn (n = 0, 1, 2, . . . , N) we put

y =

{
yi (i = 0, 1, 2, . . . , N) for 0 < yi < a,
b/yi (i = 0, 1, 2, . . . , N) for 0 < b

yi
< 1

to obtain the combined linear system

N∑
n=0

bnBin +

N∑
n=0

cnCin = G(yi), i = 0, 1, 2, . . . , N, (4.4)

N∑
n=0

bnBin +

N∑
n=0

cnCin = G

(
b

yi

)
, i = 0, 1, 2, . . . , N, (4.5)
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where

Bin =

∫ a

0

(
a

a− u

) 1
2 (u

a

)n
M2 (yi, u) du, i = 0, 1, 2, . . . , N,

Cin =

∫ ∞
b

(
b

u− b

) 1
2 (u

b

)n
e−KuM2

(
b

yi
, u

)
du, i = 0, 1, 2, . . . , N.

To find Cin (i = 0, 1, 2, . . . , N), suitable transformations like u = b
w can be

made to change the range of the integration to a finite one. The collocation
points are to be chosen as

yi = ia/N for 0 < yi < a, i = 0, 1, 2, . . . , N,

b/yi = 1− i/N for 0 < b/yi < 1, i = 0, 1, 2, . . . , N.

Here also, i = 0 or N have not been used. For i = 0 or N a point little bit
away from end points (towards right for i = 0 and towards left for i = N) have
been chosen during the numerical computation to avoid singularity.

Now, the linear systems (4.3), (4.4) and (4.5) can be solved by any standard
method to obtain the constants an, bn and cn (n = 0, 1, 2, . . . , N). Hence the
approximate solution of the integral equation (3.4) and (3.5) are obtained.

Special cases

In the case of swaying of a partially immersed and submerged plate given by
Evans [6] and Mandal [19], that is when θ0 −→ 0 and c −→ ∞ in such a
way that θ0c = Γ is a finite real constant called the amplitude of sway (cf.
Evans [6]), then the expression of g(y) given by (2.2) becomes

g∗(y) = −iωΓ

and the amplitude of the radiated wave of a swaying plate is then obtained.

5 Numerical results

5.1 Convergence of the numerical results

To study the convergence of the numerical results on N(N +1 is the number of

terms in the polynomial approximation), numerical estimates for |A∗| (=
∣∣∣ Aωθ0 ∣∣∣

as in [18], |A| = |A+| = |A−|) is tabulated in Tables 1 and 2 for the partially
immersed and submerged plates respectively for N = 1, 2, . . . , 5 and different
values of wave number Kb and other parameters mentioned therein. Table 1
shows the number of terms of the simple polynomial in the Galerkin approxi-
mation given by N = 1, 2, . . . , 5. The value of the amplitude converges up to
three or four decimal places for the partially immersed plate as computed from
the exact expression given by Ursell [31] for c/b = 0.4. Similarly, Table 2 shows
the number of terms of the simple polynomial in the Galerkin approximation
given by N = 1, 2, . . . , 5. The value of the amplitude converges up to three
or four decimal places for the partially immersed plate as computed from the
exact expression given by Mandal [19] for a/b = 0.2 and c/b = 0.5. Thus for
all numerical computations N = 4 is chosen throughout.
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Table 1. Values of |A∗| against Kb for different values of N for a partially immersed plate
with c/b = 0.4.

Kb Ursell |A∗| |A∗| |A∗| |A∗| |A∗|
(1947) (N = 1) (N = 2) (N = 3) (N = 4) (N = 5)

0.30 0.0044968 0.0042668 0.004328 0.0043568 0.0044712 0.0044774
0.45 0.0005737 0.0004967 0.0004973 0.0005343 0.00055745 0.0005634
0.60 0.0113109 0.0110232 0.0112766 0.0113365 0.0113023 0.0113219
0.75 0.0242648 0.0249897 0.0246533 0.0243655 0.0242751 0.0242688
0.90 0.035554 0.0354981 0.0355198 0.0355378 0.0355117 0.0355294
1.05 0.0442971 0.0443568 0.0443414 0.04424351 0.0442543 0.0442658
1.20 0.0511054 0.0511126 0.0511047 0.0511086 0.0511091 0.0511035
1.35 0.0566166 0.0567652 0.056734 0.0566128 0.0566354 0.0566187
1.50 0.0612313 0.0611874 0.0612645 0.0612726 0.0612944 0.0612388

Table 2. Values of |A∗| against Kb for different N for a submerged plate with a/b = 0.2
and c/b = 0.5.

Kb Mandal |A∗| |A∗| |A∗| |A∗| |A∗|
(1991) (N = 1) (N = 2) (N = 3) (N = 4) (N = 5)

0.31 0.0209182 0.0204345 0.0207587 0.0209654 0.0209764 0.0209134
0.51 0.0392564 0.0391747 0.0391158 0.0391941 0.0392747 0.0392843
0.71 0.0471074 0.0473679 0.0471288 0.0471105 0.0471064 0.0471087
0.91 0.0491133 0.0496542 0.0492761 0.0491545 0.0491087 0.0491241
1.11 0.0477695 0.0478254 0.0476429 0.0477635 0.0477583 0.0477847
1.31 0.0446953 0.0445788 0.0447277 0.0446105 0.0446235 0.0446876
1.51 0.0400838 0.0401852 0.0401208 0.0400965 0.0400557 0.0400896
1.71 0.0322326 0.0322175 0.0322658 0.0322759 0.0322484 0.0322398
1.91 0.0217085 0.0217652 0.0217275 0.0217118 0.0217077 0.0217064

5.2 Graphical representation of the numerical results

In Figure 2, we have plotted |A∗| for the rolling motion of a partially immersed
plate for c/b = 0.4 againstKb. The curve totally coincides with the curve drawn
from the explicit solutions of the amplitude at infinity given by Ursell [31]. In
Figure 3, we have plotted |A∗| for the rolling motion of the submerged plate
for c/b = 0.5 and a/b = 0.2 against Kb. This curve totally coincides with
the curve drawn from the explicit expression given by Mandal [19]. These two
figures provide a check on the correctness of the method employed here.

In Figure 4, |A∗| is depicted against Kb for a submerged plate taking a/b =
0.0001, 0.01, 0.05, 0.1 and c/b = 0.5. When a/b = 0.0001, the value of |A∗| is
almost zero when Kb is zero and then increases with the wave number Kb. For
the other values of a/b = 0.01, 0.05, 0.1, the amplitude increases at first and
then decreases nearly to zero for some value of Kb and then again increases
with Kb for larger values of a/b.

In Figure 5, |A∗| is depicted against Kb for a submerged plate for different
values of a/b = 0.1, 0.15, 0.2, 0.25 and c/b = 0.5. Here, the value of the am-
plitude starts from zero and rapidly increases until it reaches a peak and then

Math. Model. Anal., 26(2):209–222, 2021.
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decreases upto zero at some point and again increases as Kb increases further,
thus showing a oscillatory behaviour.
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Figure 4. |A∗| vs Kb for
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c/b = 0.5.
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Figure 5. |A∗| vs Kb for
a/b = 0.1 to a/b = 0.25 and

c/b = 0.5.

In Figure 6, |A∗| for a submerged plate is plotted against Kb for a/b =
0.25, 0.35, 0.45 and c/b = 0.5. From this figure it is observed that, as a/b
increases |A∗| first increases upto a peak value as a function of the wave number
Kb and then decreases asymptotically to zero as Kb further increases.

Figure 7 depicts |A∗| for a submerged plate when the point (0, c) lies above
the plate i.e. the plate undergoes a small rolling oscillations about a point
which lies above it. We choose a/b = 0.6, 0.7, 0.8, 0.95 and c/b = 0.5. Here also
the same nature of the amplitude can be observed as before but the peak value
of |A∗| is smaller when larger values of a/b are considered. Here also the value
of the amplitude asymptotically tends to zero for higher values of Kb.

The difference of change of |A∗| can also be observed for the different values
of the oscillatory point c/b keeping a/b fixed. In Figure 8, |A∗| is depicted
against Kb for c/b = 0.5, 0.6, 0.7 and a/b = 0.2. Here the oscillatory behaviour
of the amplitude is observed and in Figure 9, |A∗| is depicted for the same set
of values of c/b with fixed a/b = 0.45. Different peak points for |A∗| can be
observed for different values of c/b and for all cases |A∗| becomes small as Kb
increases further.

Figure 10 depicts |A∗| for the case of swaying of a partially immersed plate.
The curve for |A∗| almost coincides with the same drawn from the expression
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given by Evans [6] considering the value of the constant Γ = 1
ωπ . It is observed

that |A∗| is zero when the value of Kb is zero and then |A∗| increases while Kb
increases and then decreases after reaching e peak value as Kb further increases.
The coincidence of the numerical values of the amplitude of a swaying partially
immersed plate with Evans [6] gives another check on the correctness of the
method employed here.
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Figure 6. |A∗| vs Kb for
a/b = 0.25 to a/b = 0.45 and

c/b = 0.5.
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Figure 7. |A∗| vs Kb for
a/b = 0.6 to a/b = 0.95 and

c/b = 0.5.
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Figure 8. |A∗| vs Kb for
a/b = 0.2 for different values of

c/b.
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Figure 9. |A∗| vs Kb for
a/b = 0.45 for different values

of c/b.
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Figure 10. |A∗| vs Kb coincides with Evans [6] for a swaying partially immersed plate.

The amplitude of a swaying submerged plate can similarly be observed in
Figures 11 and 12 for a/b = 0.0001, 0.05, 0.2, 0, 4 and for a/b = 0.5, 0.6, 0.7, 0.9
respectively. Here also the amplitude becomes higher at first and then begin
to decrease along with the increase of Kb and tends to zero for further increase
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of Kb. It is also observed that for a/b = 0.9 i.e. when the size of the plate is
very much small the amplitude becomes almost zero, which is obvious.
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Figure 11. |A∗| vs Kb for
a/b = 0.0001 to a/b = 0.4 for

swaying plate.
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Figure 12. |A| vs Kb for
a/b = 0.5 to a/b = 0.9 for

swaying plate.

6 Conclusions

Here the problems of surface water wave generated by rolling oscillations of a
thin vertical plate partially immersed as well as submerged in deep water are
reinvestigated. The integral equation for the horizontal component of velocity
along the plate is solved numerically by Galerkin technique wherein the un-
known functions are expanded in terms of simple polynomials multiplied by
an weight function whose form is dictated by the edge condition of the plate.
Very accurate numerical estimates for the amplitude of the radiated waves are
obtained and are depicted in a number of figures against the wave number. The
effect of change of the size of the submerged plate has been studied for rolling
as well as swaying of the plates.

It may be noted that, in some water wave problems involving thin plates
the original integral equations to which these are reduced are logarithmically
singular (weakly singular). Then after some mathematical operations involving
differentiation (once or twice) these are reduced to strongly singular (Cauchy
singular or hypersingular) integral equations. Fortunately, in some cases the
strongly singular integral equations (usually Cauchy singular) can be solved in
closed forms. However, this may not succeed always, for example for the case
of thin curved plates. In those cases, one has to employ some appropriate nu-
merical methods. As most of these methods involve expansion involving some
special functions (which are basically polynomials), the polynomial approxima-
tion employed here is also applicable. That Cauchy singular and hypersingular
integral equations can be solved numerically by using polynomial approxima-
tions can be seen in the papers by Mandal and Bera ( [21,22]).
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