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1 Introduction

We start with some definitions. Let

SL(2,Z) =

{(
a b
c d

)
: a, b, c, d ∈ Z, ad− bc = 1

}
be the full modular group. Suppose that F (z) is a holomorphic function in the
upper half-plane, and, for all

(
a b
c d

)
∈ SL(2,Z), satisfies the functional equation

F

(
az + b

cz + d

)
= (cz + d)κF (z)

for some κ ∈ 2N. Then F (z) has the Fourier series expansion at infinity

F (z) =

∞∑
m=−∞

c(m)e2πimz.

If c(m) = 0 for m < 0, then F (z) is called a modular form of weight κ. If the
modular form F (s) has the Fourier series expansion at infinity

F (z) =

∞∑
m=1

c(m)e2πimz,

then it is called a cusp form of weight κ for the full modular group.
Suppose that F (z) is a cusp form of weight κ for the full modular group.

Then the zeta-function

ζ(s, F ) =

∞∑
m=1

c(m)

ms
, s = σ + it

can be attached to F (z). The latter series, in view of the estimate

c(m)� m
κ−1
2 ,

is absolutely convergent for σ > κ+1
2 . Moreover, it has analytic continuation

to an entire function.
We additionally require that the function F (z) would be the Hecke-eigen

cusp form, i.e., that F (z) would be the eigenfunction of all Hecke operators
Tm,

Tmf(z) = mκ−1
∑
a,d>0
ad=m

1

dκ

∑
b(modd)

F

(
az + b

d

)
, m ∈ N.

Then the form F (z) can be normalized, thus, we may suppose that c(1) = 1.
In the sequel, we suppose that F (z) is a normalized Hecke-eigen cusp form

of weight κ. In this case, the zeta-function ζ(s, F ) has, for σ > κ+1
2 , the Euler

product representation over primes

ζ(s, F ) =
∏
p

(1− α(p)/ps)
−1

(1− β(p)/ps)
−1
,
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84 A. Balčiūnas et al.

where α(p) and β(p) are conjugate complex numbers such that α(p) + β(p) =
c(p).

In [8], it was proved that the function ζ(s, F ) is universal in the Voronin
sense, i.e., a wide class of analytic functions is approximated by shifts ζ(s +
iτ, F ), τ ∈ R. More precisely, let Dκ =

{
s ∈ C : κ2 < σ < κ+1

2

}
. Denote by

KF the class of compact subsets of the strip Dκ with connected complements,
and by H0F (K) with K ∈ KF the class of continuous non-vanishing functions
on K that are analytic in the interior of K. Then the main result of [8] is the
following statement.

Theorem 1. Suppose that K ∈ KF and f(s) ∈ H0F (K). Then, for every
ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

s∈K
|ζ(s+ iτ, F )− f(s)| < ε

}
> 0.

Here measA denotes the Lebesgue measure of a measurable set A ⊂ R.
In the latter theorem, τ in shifts ζ(s + iτ, F ) takes arbitrary real values,

therefore, the theorem is of continuous type. Also, Theorem 1 has a discrete
version when τ in ζ(s + iτ, F ) takes values from certain discrete sets. The
classical discrete set is an arithmetical progression {kh : k ∈ N0 = N ∪ {0}},
where h > 0 is a fixed number. Discrete universality theorems for the function
ζ(s, F ) were considered in [9] and [10], and the following statement has been
obtained.

Theorem 2. Suppose that K ∈ KF , f(s) ∈ H0F (K) and h > 0. Then, for
every ε > 0,

lim inf
N→∞

1

N + 1
#

{
0 ≤ k ≤ N : sup

s∈K
|ζ(s+ ikh, F )− f(s)| < ε

}
> 0.

Here #A denotes the cardinality of a set A, and N runs over non-negative
integers.

In [12], more general shifts ζ(s + iϕ(k), F ) were used. Here ϕ(t) is a real-
valued positive increasing function on [k0− 1

2 ,∞), k0 ∈ N, having a continuous
derivative ϕ′(t) satisfying the estimate

ϕ(2t) max
t≤u≤2t

(
1

ϕ′(u)
+ ϕ′(u)

)
� t,

and such that the sequence {aϕ(k) : k > k0} with every a ∈ R\{0} is uniformly
distributed modulo 1.

In [13], a joint version of a theorem from [12] has been proved.

The aim of this paper is an extension of Theorem 2 for the discrete set
related to non-trivial zeros of the Riemann zeta-function ζ(s) which is defined,
for σ > 1, by the series

ζ(s) =

∞∑
m=1

1

ms
,



Universality of Zeta-Functions of Cusp Forms and Non-Trivial Zeros . . . 85

and has a meromorphic continuation to the whole complex plane. The function
ζ(s) has infinitely many so-called non-trivial zeros % = β+ iγ lying in the strip
{s ∈ C : 0 < σ < 1}. By the Riemann hypothesis, all non-trivial zeros of ζ(s)
lie on the critical line σ = 1

2 .
Thus, let 0 < γ1 < γ2 < ... 6 γk 6 ... be the sequence of imaginary

parts of non-trivial zeros of the function ζ(s). We will use a hypothesis on the
distribution of the sequence {γk : k ∈ N}, namely, we suppose that, for c > 0,∑

γk6T

∑
γl6T

|γk−γl|< c
log T

� T log T, T →∞. (1.1)

The latter estimate is implied by the famous Montgomery pair correlation con-
jecture [16]. The main result of the paper is the following theorem.

Theorem 3. Suppose that the estimate (1.1) is true. Let K ∈ KF , f(s) ∈
H0F (K) and h > 0. Then, for every ε > 0,

lim inf
N→∞

1

N
#

{
1 ≤ k ≤ N : sup

s∈K
|ζ(s+ iγkh, F )− f(s)| < ε

}
> 0.

Moreover, the limit

lim
N→∞

1

N
#

{
1 ≤ k ≤ N : sup

s∈K
|ζ(s+ iγkh, F )− f(s)| < ε

}
> 0

exists for all but at most countably many ε > 0.

Theorem 3 with the Riemann hypothesis in place of (1.1) was proved in [4]
by using [3].

We recall that the condition (1.1) for the first-time was applied in [5] for
the approximation by shifts ζ(s+ iγkh), and in [7] for joint approximation by
shifts (ζ(s+ iγkh), ζ(s+ iγkh, α)), where ζ(s, α) is the Hurwitz zeta-function

ζ(s, α) =

∞∑
m=0

1

(m+ α)s
, σ > 1

with transcendental parameter α. In [11], the joint approximation by shifts
of Dirichlet L-functions involving the sequence {γk} was discussed. Finally,
the paper [1] is devoted to a generalization of [7] for shifts of the periodic and
periodic Hurwitz zeta-functions.

For the proof of Theorem 3, we will apply some results from [5] and [8]. On
the mentioned results, we will construct a probabilistic model.

2 Probabilistic model

Denote by B(X) the Borel σ-field of the space X, and let H(DF ) be the space
of analytic functions on DF endowed with the topology of uniform convergence

Math. Model. Anal., 26(1):82–93, 2021.
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on compacta. In this section, we will consider the weak convergence as N →∞
for

PN,F (A)
def
=

1

N
#
{

1 ≤ k ≤ N : ζ(s+ iγkh, F ) ∈ A
}
, A ∈ B(H(DF )).

To state a limit theorem for PN,F , we need some notation. Denote by γ the
unit circle on the complex plane, by P the set of all prime numbers, and define
the set Ω =

∏
p∈P γp, where γp = γ for all p ∈ P. With the product topology

and operation of pointwise multiplication, the infinite-dimensional torus Ω is a
compact topological Abelian group. Therefore, on (Ω,B(Ω)), the probability
Haar measure mH exists, and we have the probability space (Ω,B(Ω),mH).
Denote by ω = (ω(p) : p ∈ P) the elements of the torus Ω, and on the above
probability space define the H(DF )-valued random element

ζ(s, ω, F ) =
∏
p∈P

(
1− α(p)ω(p)

ps

)−1(
1− β(p)ω(p)

ps

)−1
.

We note that the latter infinite product is uniformly convergent on compact
subsets of the strip DF for almost all ω ∈ Ω, thus, it defines an H(DF )-
valued random element. Denote by Pζ,F the distribution of the random element
ζ(s, ω, F ), i.e., for A ∈ B(H(DF )),

Pζ,F (A) = mH {ω ∈ Ω : ζ(s, ω, F ) ∈ A} .

We will prove the following statement

Theorem 4. Suppose that the estimate (1.1) is true. Then PN,F converges
weakly to the measure Pζ,F as N →∞.

The proof of Theorem 4 consists from three limit theorems that will be
stated as separate lemmas.

For A ∈ B(Ω), define

QN (A) =
1

N
#

{
1 ≤ k ≤ N :

(
p−iγkh : p ∈ P

)
∈ A

}
.

Lemma 1. QN converges weakly to the Haar measure mH as N →∞.

The lemma is proved in [5] by using the Fourier transform method. For
this, the uniform distribution modulo 1 of the sequence {aγk : k ∈ N} with
every a ∈ R \ {0} is applied.

The next lemma deals with absolutely convergent Dirichlet series. Let θ > 1
2

be a fixed number, for m,n ∈ N, let

vn(m) = exp
{
−
(m
n

)θ }
, ζn(s, F ) =

∞∑
m=1

c(m)vn(m)

ms
.

Then it is known [8] that the latter series is absolutely convergent for σ > κ
2 .

Consider the mapping un,F : Ω → H(DF ) given by un,F (ω) = ζn(s, ω, F ),
where

ζn(s, ω, F ) =

∞∑
m=1

c(m)ω(m)vn(m)

ms
, ω(m) =

∏
pl|m, pl+1-m

ωl(p), m ∈ N.
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Obviously, the series for ζn(s, ω, F ) is also absolutely convergent for σ > κ
2 .

Therefore, the mapping un,F is continuous, hence it is (B(Ω),B(H(DF )))-
measurable. Therefore, the Haar measure mH defines the unique probability
measure Vn,F = mHu

−1
n,F on (H(DF ),B(H(DF ))), where, for A ∈ B(H(DF )),

Vn,F (A) = mHu
−1
n,F (A) = mH(u−1n,FA).

For A ∈ B(H(DF )), set

PN,n,F (A) =
1

N
#

{
1 ≤ k ≤ N : ζn(s+ iγkh, F ) ∈ A

}
.

Lemma 2. PN,n,F converges weakly to the measure Vn,F as N →∞.

Proof. By the definitions of QN and PN,n,F , we have

PN,n,F (A) =
1

N
#
{

1 ≤ k ≤ N :
(
p−iγkh : p ∈ P

)
∈ u−1n,FA

}
= QN (u−1n,FA).

Thus, PN,n,F = QNu
−1
n,F . Therefore, the lemma is a corollary of Lemma 1,

continuity of un,F and Theorem 5.1 of [2]. ut

The weak convergence of the measure Vn,F as n→∞ is very important for
the proof of Theorem 4. The following assertion is true.

Lemma 3. Vn,F converges weakly to the measure Pζ,F as n → ∞. Moreover,
the support of Pζ,F is the set

SF =

{
g ∈ H(DF ) : g(s) 6= 0 or g(s) ≡ 0

}
.

Proof. The lemma is a result of [6] and [8] because Vn,F , as n→∞, and

1

T
meas

{
τ ∈ [0, T ] : ζ(s+ iτ, F ) ∈ A

}
, A ∈ B(H(DF )),

as T →∞, have the same limit measure Pζ,F . ut

To prove Theorem 4, it remains to show that the limit measure of PN,F as
N → ∞ coincides with that of Vn,F as n → ∞. For this, some mean square
estimates will be applied. For convenience, we recall the Gallagher lemma
which connects discrete and continuous mean squares of certain functions.

Lemma 4. Let T0 and T > δ > 0 be real numbers, and T 6= ∅ be a finite set
in the interval [T0 + δ

2 , T0 + T − δ
2 ]. Define

Nδ(x) =
∑

t∈T , |t−x|<δ

1

and let S(t) be a complex-valued continuous function on [T0, T0 + T ] having a
continuous derivative on (T0, T0 + T ). Then

∑
t∈T

N−1δ (t)|S(t)|2 ≤ 1

δ

∫ T0+T

T0

|S(t)|2dt+

(∫ T0+T

T0

|S(t)|2dt

∫ T0+T

T0

|S′(t)|2dt

) 1
2

.

Math. Model. Anal., 26(1):82–93, 2021.
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The proof of the lemma can be found in [15, Lemma 1.4].
Now, we recall a metric in the space H(DF ). For g1, g2 ∈ H(DF ), let

ρ(g1, g2) =

∞∑
l=1

2−l
sup
s∈Kl

|g1(s)− g2(s)|

1 + sup
s∈Kl

|g1(s)− g2(s)|
,

where {Kl : l ∈ N} is a sequence of compact subsets of the strip DF such that

DF =
∞⋃
l=1

Kl, Kl ⊂ Kl+1 for all l ∈ N, and if K is a compact subset of DF ,

then K ⊂ Kl for some l ∈ N. Then ρ is a metric on H(DF ) that induces the
topology of uniform convergence on compacta.

Lemma 5. Suppose that the estimate (1.1) is true. Then the equality

lim
n→∞

lim sup
N→∞

1

N

N∑
k=1

ρ (ζ(s+ iγkh, F ), ζn(s+ iγkh, F )) = 0

holds.

Proof. We start with some remarks on the mean squares of the function
ζ(s, F ). It is well known that, for fixed σ, κ

2 < σ < κ+1
2 , the bound∫ T

0

|ζ(σ + it, F )|2dt�σ T

is true. Hence, it follows for the same σ that, for τ ∈ R,∫ T

0

|ζ(σ + iτ + it, F )|2dt�σ T (1 + |τ |). (2.1)

Moreover, the Cauchy integral formula together with (2.1) leads to∫ T

0

|ζ ′(σ + iτ + it, F )|2dt�σ T (1 + |τ |). (2.2)

Now, we apply Lemma 4. It is known that γk ∼ 2πk
log k as k → ∞. There-

fore, γk 6 ck
log k with some c > 0 for all k > 2. In Lemma 4, we take

T = {γ1h, . . . , γNh}, δ = h
(

log N
c logN

)−1
, T0 = γ1h− δ

2 and T = γNh−T0+ δ
2 .

Then, in view of (1.1), we find that

N∑
k=1

Nδ(γkh) =

N∑
k=1

∑
γl6 cN

h logN

|γk−γl|< δ
h

1 =
∑
0<γl,

∑
γk6 cN

h logN

|γl−γk|< δ
h

1�h N.

Thus, applying Lemma 4 for the function ζ(σ+ iτ + iγkh, F ), and, taking into
account the estimates (2.1) and (2.2), we obtain

N∑
k=1

|ζ(σ + iτ + iγkh, F )| =
N∑
k=1

(
Nδ(γkh)N−1δ (γkh)

) 1
2

|ζ(σ + iτ + iγkh, F )|
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≤

(
N∑
k=1

Nδ(γkh)

N∑
k=1

N−1δ (γkh)|ζ(σ + iτ + iγkh, F )|2
)1/2

�h N
1
2

(
logN

∫ γNh−γ1h+δ

γ1h− δ2
|ζ(σ + iτ + it, F )|2dt

+

(∫ γNh−γ1h+δ

γ1h− δ2
|ζ(σ + iτ + it, F )|2dt

∫ γNh−γ1h+δ

γ1h− δ2
|ζ ′(σ + iτ + it, F )|2dt

) 1
2
) 1

2

�h N
1
2

(
logN

∫ c(h)N
logN

0

|ζ(σ + iτ + it, F )|2dt

+

(∫ c(h)N
logN

0

|ζ(σ + iτ + it, F )|2dt

∫ c(h)N
logN

0

|ζ ′(σ + iτ + it, F )|2dt

) 1
2
) 1

2

�h N
1
2

(
logN

c(h)N

logN
(1 + |τ |)

) 1
2

+N
1
2

(
c(h)N

logN
(1 + |τ |)

) 1
2

�h N(1 + |τ |) 1
2 �h N(1 + |τ |). (2.3)

Here c(h) is a certain positive constant depending of h.

Let the number θ is the same as in the definition of vn(m), and

ln(s) =
s

θ
Γ
(s
θ

)
ns,

where Γ (s) denotes the Euler gamma-function. Then we have [6]

ζn(s, F ) =
1

2πi

∫ θ+i∞

θ−i∞
ζ(s+ z, F )ln(z)

dz

z
.

Hence, taking θ1 > 0, we obtain

ζn(s, F )− ζ(s, F ) =
1

2πi

∫ −θ1+i∞
−θ1−i∞

ζ(s+ z, F )ln(z)
dz

z
. (2.4)

We take an arbitrary fixed compact subset K of the strip DF , denote the points
of K by s = σ+ iv, fix ε > 0 such κ

2 + 2ε 6 σ 6 κ+1
2 − ε for s ∈ K, and choose

θ1 = σ − ε − κ
2 and θ = κ

2 + ε. Then the representation (2.4) shows that, for
s ∈ K,

ζ(s+iγkh, F )−ζn(s+iγkh, F )�
∞∫
−∞

∣∣ζ(s+iγkh−θ1+iτ, F )
∣∣ |ln(−θ1 + iτ)|
| − θ1 + iτ |

dτ.

Hence, after a shift τ + v → τ , we have

ζ(s+ iγkh, F )− ζn(s+ iγkh, F )�
∫ ∞
−∞

∣∣∣ζ (κ
2

+ ε+ i(τ + γkh), F
) ∣∣∣

×
|ln(κ2 + ε− s+ iτ)|
|κ2 + ε− s+ iτ |

dτ.

Math. Model. Anal., 26(1):82–93, 2021.
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Therefore,

1

N

N∑
k=1

sup
s∈K
|ζ(s+ iγkh, F )− ζn(s+ iγkh, F )|

�
∫ ∞
−∞

(
1

N

N∑
k=1

∣∣∣∣ζ (κ2 +ε+i(τ+γkh), F
) ∣∣∣∣ sup

s∈K

|ln(κ2+ε−s+iτ)|
|κ2 + ε− s+ iτ |

)
dτ. (2.5)

It is well known that, uniformly in σ1 6 σ 6 σ2 with arbitrary σ1 < σ2,

Γ (σ + iτ)� exp{−c|τ |}, c > 0.

Thus, taking into account the definition of the function ln(s), we find that, for
s ∈ K,

ln(κ2 + ε− s+ iτ)
κ
2 + ε− s+ iτ

� n−ε exp
{
− c|τ − v|

θ

}
�K n−ε exp{−c|τ |}.

Therefore, by (2.5) and (2.3),

1

N

N∑
k=1

sup
s∈K
|ζ(s+ iγkh, F )− ζn(s+ iγkh, F )|

�K,h n
−ε
∫ ∞
−∞

(1 + |τ |) exp{−c|τ |}dτ �K,h n
−ε.

This shows that, for every compact set K ⊂ DF ,

lim
n→∞

lim sup
N→∞

1

N

N∑
k=1

sup
s∈K

∣∣ζ(s+ iγkh, F )− ζn(s+ iγkh, F )
∣∣ = 0,

and the assertion of the lemma follows from the definition of the metric ρ. ut

Now, we are in position to prove Theorem 4.
Proof of Theorem 4. Let ξN be a random variable on a certain probability

space (Ω̂,A, µ) with the distribution

µ{ξN = γkh} =
1

N
, k = 1, ..., N.

Denote by Xn,F the H(DF )-valued random element with the distribution Vn,F ,
where Vn,F is the limit measure in Lemma 2, and, on the probability space

(Ω̂,A, µ), define the H(DF )-valued random element

XN,n,F = XN,n,F (s) = ζn(s+ iξN , F ).

Then, in view of Lemma 2,

XN,n,F
D−→

N→∞
Xn,F . (2.6)
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By Lemma 2, the measure Vn,F is weakly convergent to Pζ,F as n→∞. Thus,

Xn,F
D−→

n→∞
Pζ,F . (2.7)

On the above probability space, define one moreH(DF )-valued random element

YN,F = YN,F (s) = ζ(s+ iξN , F ).

Then, applying Lemma 5, we find that, for every ε > 0,

lim
n→∞

lim sup
N→∞

µ
{
ρ(YN,F , XN,n,F ) ≥ ε

}
≤ lim
n→∞

lim sup
N→∞

1

Nε

N∑
k=1

ρ
(
ζ(s+ iγkh, F ), ζn(s+ iγkh, F )

)
= 0.

This equality together with (2.6) and (2.7) shows that all hypotheses of Theo-
rem 4.2 in [2] are satisfied. Therefore, we have

YN,F
D−→

N→∞
Pζ,F ,

in other words, PN,F converges weakly to Pζ,F as N → ∞. The theorem is
proved.

3 Proof of Theorem 3

The proof of Theorem 3 is quite standard, and is based on Theorem 4 and the
Mergelyan theorem on the approximation of analytic functions by polynomials
[14].

Proof of Theorem 3. By the mentioned Mergelyan theorem, there exists a
polynomial pε(s) such that

sup
s∈K

∣∣∣f(s)− epε(s)
∣∣∣ < ε

2
. (3.1)

Define the set

Gε =

{
g ∈ H(DF ) : sup

s∈K
|g(s)− epε(s)| < ε

2

}
.

Clearly, epε(s) ∈ S. Therefore, in virtue of Lemma 3, the set Gε is an open
neighbourhood of an element of the support of the measure Pζ,F . Hence, by a
property of the support,

Pζ,F (Gε) > 0, (3.2)

and Theorem 4 together with the equivalent of weak convergence of probability
measures in terms of open sets [2, Theorem 2.1] implies

lim inf
N→∞

PN,F (Gε) ≥ Pζ,F (Gε) > 0.
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This, the definitions of PN,F and Gε, and (3.1) prove the first assertion of the
theorem.

For the proof of the second assertion of the theorem, define the set

Ĝε =

{
g ∈ H(DF ) : sup

s∈K
|g(s)− f(s)| < ε

}
.

Then the boundary ∂Ĝε lies in the set{
g ∈ H(DF ) : sup

s∈K
|g(s)− f(s)| = ε

}
,

therefore, ∂Gε1
⋂
∂Gε2 = ∅ for different positive ε1 and ε2. This remark

implies that the set Ĝε is a continuity set of the measure Pζ,F , i.e., Pζ,F (∂Ĝε) =
0, for all but at most countably many ε > 0. Therefore, Theorem 4 together
with the equivalent of weak convergence of probability measures in terms of
continuity sets [2, Theorem 2.1] gives the equality

lim
N→∞

PN,F (Ĝε) = Pζ,F (Ĝε) (3.3)

for all but at most countably many ε > 0. The definitions of the sets Gε and
Ĝε, and inequality (3.1) imply the inclusion Gε ⊂ Ĝε. Hence, in view of (3.2),
we have Pζ,F (Ĝε) > 0. The latter inequality, the definitions of PN,F and Ĝε,
and (3.3) prove the second assertion of the theorem. The theorem is proved.
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