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calculation scheme. Then, the conformable fractional derivatives of the Wendland’s
compactly supported functions are established for the scheme. The stability analysis
of the suggested scheme is also examined in a similar way to the classic Von-Neumann
technique for the governing equations. The efficiency and accuracy of the present
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1 Introduction

Our main intention of this current investigation is to simulate the TSFCNLS
equations

i
∂αu

∂tα
+ γ

∂βu

∂|x|β
+ ρ(|u|2 + η|v|2)u = 0, (x, t) ∈ [a, b]× [0, T ], (1.1)

i
∂αv

∂tα
+ γ

∂βv

∂|x|β
+ ρ(η|u|2 + |v|2)v = 0, (x, t) ∈ [a, b]× [0, T ], (1.2)

where 0 < α ≤ 1, 1 < β ≤ 2, i =
√
−1, γ, ρ and η are known constants. u(x, t)

and v(x, t) are complex valued functions. α and β are the fractional order of
the time and spatial derivatives, respectively. In case α = 1 and β = 2, this
system represents classical coupled nonlinear Schrödinger (CNLS) equations.
When η = 0, the system (1.1)–(1.2) reduces to single time and space fractional
nonlinear Schrödinger (TSFNLS) equation. If we choose ρ = 0, it is decoupled
and turns into the time and space fractional Schrödinger (TSFS) equation of
free particles. In the current paper, we choose the parameters η = γ = ρ = 1
in the equation system.

To investigate several physical situations especially in optics, hydrodynam-
ics, CNLS equations have been used by many researchers [5, 6, 14, 15]. For
instance, Manakov [15] used integrable or nearly integrable systems of two
CNLS equations to solve the nonlinear phenomenon about the optical solitons
that store and transfer information in polyfibrous optical media. Nonlinear
Schrödinger equations can be considered to verify the modulation instability of
gravity waves in fluids at finite or great depths in hydrodynamics. Furthermore,
numerous computational and effective analytical and numerical methods have
been proposed to investigates the nonlinear Schrödinger equation and CNLS
equation [1, 10,11,12,13,33].

In recent years, fractional partial differential equations play an important
role in physics. The growing number of investigation for the fractional NLS
and CNLS equations has attracted the researchers. That’s why these equations
have been studied and obtained important achievements. Laskin generated that
the fractional NLS via using a new path integral over Lévy-like quantum me-
chanical paths. The fractional Schrödinger equation include space fractional
derivative instead of the second-order derivative in the classical Schrödinger
equation. Space fractional NLS or CNLS can modify the shape of the wave,
while the nonlinearity and dispersion effects remain unchanged. Thus, there
are numerous works on this topic recently. Later, some physical applications
of the fractional Schrödinger equations with time-space fractional derivatives
are studied by the authors [8, 30]. Besides, the finite difference method is con-
structed for time-space fractional Schrödinger equations by Liu, Zheng and
Li [19]. Another study is done by [22]. They used a linearized Crank-Nicolson
method to obtain the numerical solution of the time-space fractional NLS equa-
tions. Also, Bhrawy et al. [3] used a Jacobi spectral collocation method for
solving fractional Schrödinger equations and coupled fractional Schrödinger
systems. Meanwhile, the papers [21, 29] used a conservative difference method
to obtain the numerical solutions of space fractional CNLS equations. The
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Crank-Nicolson difference scheme for the CNLS with the Riesz space fractional
derivative is proposed by Wang et. al. [28]. Another study is given by Mei et.
al. [31]. They used a spectral Galerkin method for the space-fractional CNLS
equations.

The main contribution of this study is to display the proposed method as an
alternative approach to solve numerically these type fractional partial differen-
tial equations. To our knowledge, TSFCNLS equations are not solved by using
the collocation method based on Wendland’s compactly supported functions.
Therefore, we use the proposed method estimates the solution of the men-
tioned equation system. Meanwhile, we recognize that Riesz space fractional
derivative has been generally used for the space fractional CNLS equations in
the literature. In this study, the conformable fractional derivative is preferred
for space fractional derivative in TSFCNLS equations. Because a relationship
between the conformable derivative and classical derivative provides ease of
implementation.

The layout of this paper is as follows: in Section 2, the most popular frac-
tional derivatives are given. The next Section 3 describes the Wendland’s
compactly supported functions and its properties. In Section 4, we firstly con-
struct a Crank-Nicolson difference scheme for the discretization of the equation
system. Secondly, the equation system is linearized. In Section 5, we construct
the implementation of the suggested method for the equation system. We in-
vestigate the stability of the current scheme in Section 6. Finally, numerical
results are illustrated in Section 7 and end the study with a short conclusion
given.

2 Preliminaries of the fractional derivatives

A fractional derivative of a function u(x, t) can be described in several ways.
Several definitions of fractional derivatives due to Riemann-Liouville, Caputo,
Grünwald-Letnikov and Conformable can be found in the literature [16,17,18,
20]. Since the applicability of the standard initial and boundary conditions
to be involved in the formulation of the problems, we consider Caputo and
Conformable derivative for the time and spatial derivatives, respectively.

Definition 1. The Caputo derivative Dα
∗ ut(x, t) of order α > 0 according to

t is introduced as [2]

Dα
∗ ut(x, t) =

{
1

Γ (m−α)
∫ t
0
∂mu(x,ξ)
∂ξm (t− ξ)m−α−1dξ, m− 1 < α < m,

∂mu(x,t)
∂tm , α = m, m ∈ N,

where the function Γ (.) is called a Gamma function.

This fractional derivative was introduced by the Italian mathematician Caputo
in 1967 [4]. Sun and Wu [25] proposed a useful approximation to compute this
fractional derivative to t. This approximation is given in their paper [25]. Let
us state in the following lemma.
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Definition 2. [25] Let u(x, t) ∈ C2[0, tk]. Then

|R(u(x, tk))| =
∣∣∣∣ 1

γ(1− α)

∫ tk

0

u′(x, s)

(tk − s)α
ds

− ∆t−α

γ(2− α)
[b0u(x, tk)−

k−1∑
j=1

(bk−j−1 − bk−j)u(x, tj)− bk−1u(x, t0)]

∣∣∣∣
≤ 1

γ(2− α)

[
1− α

12
+

22−α

2− α
− (1 + 2−α)

]
max

0≤t≤tk
|u′′(x, t)|∆t2−α,

where α ∈ (0, 1) ve bj = (j + 1)1−α − j1−α.

We will use the following expression for the discretization of the Caputo type
derivative.

Dα
∗ ut(xj , tn+1)=µ

[
b0u

n+1
j −

n∑
k=1

(bn−k−bn−k+1)ukj−bnu0j
]
+O((∆t)2−α) (2.1)

with bk = (k + 1)1−α − k1−α, µ = (∆t)−α

Γ (2−α) . Now, let us introduce the Con-

formable fractional derivative. The Conformable derivative of order α, 0 <
α < 1, which is based on the main limit definition of derivative, is stated in the
following definition.

Definition 3. [20] Let f : [0,∞) → R be a function. The Conformable
derivative of f order α is defined by

Tα(f)(t) = lim
ε→0

f(t+ εt1−α)− f(t)

ε

for all t > 0 and α ∈ (0, 1].

The new fractional derivative operator Tα satisfies the following properties:

Theorem 1. [20] Let α ∈ (0, 1] and f, g be α-differentiable functions for t > 0.

1. Tα(af + bg) = aTα(f) + bTα(g), ∀a, b ∈ R.

2. Tα(fg) = fTα(g) + gTα(f).

3. Tα(tp) = ptp−α, ∀p ∈ R.

4. Tα( fg ) = gTα(f)−fTα(g)
g2 .

5. Tα(c) = 0, c is an arbitrary constant.

6. If f is a differentiable function, there is a relationship between conformable
derivative and classical derivative such as Tα(f)(t) = t1−α dfdt (t).

As the equation system has a fractional derivative of order α, 1 < α < 2 in our
study, we need to use a fractional derivative definition whose order α, α ∈ (1, 2].
Khail et. al. [20] proposed the following definition and remark in their paper.
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Definition 4. [20] Let α ∈ (n, n + 1] and f be an n-times differentiable
function for t > 0. The conformable derivative of f order α is defined by

Tα(f)(t) = lim
ε→0

f (dαe−1)(t+ εt(dαe−α))− f (dαe−1)(t)
ε

,

where dαe is the smallest integer greater than or equal to α.

Remark 1. [20] If f is an (n+ 1)-times differentiable at t > 0, then

Tα(f)(t) = t(dαe−α)f (dαe)(t)

for α ∈ (n, n+ 1].

Remark 2. The truncation error of the approximation for the space derivative
by using the conformable derivative is given as

Tαuxx(xi, tn) = x2−α
uni+1 − 2uni + uni−1

(∆x2)
+O[(∆x)2α], 1 < α < 2.

3 Wendland’s compactly supported functions

In the literature, there are a lot of basis functions. In this investigation, we
use the Wendland functions, which were originally described in Wendland [32].
The Wendland functions are piecewise polynomial compactly supported. They
have minimum polynomial degree for any level of smoothness and are positive
definite because of being strictly positive Fourier transform. They are given in
the following as:

φl,k(r) = (1− r)n+pl,k(r),

with the following conditions

(1− r)n+ =

{
(1− r)n, 0 ≤ r ≤ 1,
0, r > 1,

where p is described polynomial for k ≥ 1 and l is the dimension number. This
condition displays that all the Wendland functions are equal to zero outside
[0, 1]. Also, the choice of l ensures that the obtained functions are positive
definite. In our algorithms, we use the Wendland functions (see the details
in [32]) which are defined as follows:

W4,2(r) = (1− r)6+(3 + 18r + 35r2),

W5,3(r) = (1− r)8+(1 + 8r + 25r2 + 32r3),

W6,4(r) = (1− r)10+ (5 + 50r + 210r2 + 450r3 + 429r4),

W7,5(r) = (1− r)12+ (9 + 108r + 566r2 + 1644r3 + 2697r4 + 2048r5).

For ease notation in the rest of the paper, φl,k will be used as Wl,k. Since
the Wendland functions have compact support, the interpolation matrices are
sparse and for the evaluation of the interpolants, only a few terms have to
be considered. This provides efficient algorithms for the computation [23].
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That’s why, the Wendland functions are first preferred to obtain approximate
solutions of the TSFCNLS equations. As we have already noted, Conformable
fractional is used for the space-fractional derivative of the equation system in
this paper. To our knowledge, for computing the Conformable derivative of a
function f(t), the function must be defined for all t > 0. Meanwhile, the basis
function Wl,k(r) can be scaled to have compact support on [0, δ] by replacing r
with r

δ for δ > 0. Here δ is called a scaling factor. Therefore, the calculations
are made with the Wendland’s compactly supported functions in our work.

Note that finding the optimal size of the scaling factor δ is still an unsolved
problem. In this investigation, to determine the optimal sizes of the scaling
factor δ condition number estimation of the kernel matrix is used [24]. This
procedure is based on two parts: first, we can guess scale, and then a loop is
created for a good scaling number by using a condition number estimation of
the kernel matrix.

4 Solution of the TSFCNLS equations

This section first presents the discretization of the equation system. Since
the Equations (1.1)–(1.2) include complex valued functions u and v, they are
composed in its real and imaginary parts by writing

u(x, t) = ur(x, t) + ius(x, t), v(x, t) = vr(x, t) + ivs(x, t). (4.1)

By using (4.1), we obtain following equalities

∂αu

∂tα
=
∂αur
∂tα

+ i
∂αus
∂tα

,
∂βu

∂|x|β
=
∂βur
∂|x|β

+ i
∂βus
∂|x|β

,

∂αv

∂tα
=
∂αvr
∂tα

+ i
∂αvs
∂tα

,
∂βv

∂|x|β
=
∂βvr
∂|x|β

+ i
∂βvs
∂|x|β

,

|u| =
√
u2r + u2s, |v| =

√
v2r + v2s .

Substituting these above equations into the Equations (1.1)–(1.2), we have

i(
∂αur
∂tα

+ i
∂αus
∂tα

) +
∂βur
∂|x|β

+ i
∂βus
∂|x|β

+ (u2r + u2s + (v2r + v2s))(ur + ius) =0,

i(
∂αvr
∂tα

+ i
∂αvs
∂tα

) +
∂βvr
∂|x|β

+ i
∂βvs
∂|x|β

+ ((u2r + u2s) + v2r + v2s)(vr + ivs) =0.

(4.2)

The equation system (4.2) can be considered as four partial differential equa-
tions:

−∂
αus
∂tα

+
∂βur
∂|x|β

+ (u2r + u2s + v2r + v2s)ur = 0,

∂αur
∂tα

+
∂βus
∂|x|β

+ (u2r + u2s + v2r + v2s)us = 0,

Math. Model. Anal., 26(1):94–115, 2021.
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−∂
αvs
∂tα

+
∂βvr
∂|x|β

+ (u2r + u2s + v2r + v2s)vr = 0,

∂αvr
∂tα

+
∂βvs
∂|x|β

+ (u2r + u2s + v2r + v2s)vs = 0. (4.3)

The initial and boundary conditions of these equations are given

ur(x, 0) = (u0)r(x), us(x, 0) = (u0)s(x), a ≤ x ≤ b,
vr(x, 0) = (v0)r(x), vs(x, 0) = (v0)s(x), a ≤ x ≤ b,
ur(a, t) = ur(b, t) = 0, us(a, t) = us(b, t) = 0, 0 < t ≤ T ,
vr(a, t) = vr(b, t) = 0, vs(a, t) = vs(b, t) = 0, 0 < t ≤ T.

The matrix-vector form of the equation system (4.3) can be written as follows:

∂αU(x, t)

∂tα
+A

∂βU(x, t)

∂|x|β
+ sAU(x, t) = 0, (4.4)

U(x, 0) = F (x), a ≤ x ≤ b, (4.5)

U(a, t) = U(b, t) = 0, 0 < t ≤ T, (4.6)

where

U(x, t) =


ur(x, t)
us(x, t)
vr(x, t)
vs(x, t)

 , A =


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

 , F (x) =


(u0)r(x)
(u0)s(x)
(v0)r(x)
(v0)s(x)

 ,

where s = (u2r+u
2
s)+(v2r+v2s). ∂αU(x,t)

∂tα denotes the Caputo fractional derivative
of U(x, t) with respect to t. Using the Lemma 2, we compute the approximation
of this fractional derivative as the following:

Dα
∗Ut(xj , tn+1)=a0

[
b0U

n+1
j −

n∑
k=1

(bn−k−bn−k+1)Ukj − bnU0
j

]
+O((∆t)2−α),

(4.7)
where bk = (k+1)1−α−k1−α, a0 = (∆t)−α/Γ (2− α). Let’s apply first Caputo
fractional derivative which are given Equation (2.1), and then Crank-Nicolson
method to the equation (4.4)–(4.6), we get

a0

[
b0U

n+1
i −

n∑
k=1

(bn−k − bn−k+1)Uki − bnU0
i

]
+A

1

2

(( ∂βUi
∂|x|β

)n+1

+
( ∂βUi
∂|x|β

)n)
+ s

n+ 1
2

i A
Un+1
i + Uni

2
= 0, (4.8)

where

(
∂βUi
∂|x|β

)n
denotes the n-level of discretization and

s
n+ 1

2
i = (u

n+ 1
2

r )2i + (u
n+ 1

2
s )2i + (v

n+ 1
2

r )2i + (v
n+ 1

2
s )2i , (4.9)

(u
n+ 1

2
r )i =

(un+1
r )i + (unr )i

2
, (u

n+ 1
2

s )i =
(un+1
s )i + (uns )i

2
, (4.10)
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(v
n+ 1

2
r )i =

(vn+1
r )i + (vnr )i

2
, (v

n+ 1
2

s )i =
(vn+1
s )i + (vns )i

2
. (4.11)

Substituting Equations (4.10)–(4.11) into the Equation (4.9), we obtain

s
n+ 1

2
i =

(
(un+1
r )i + (unr )i

2

)2

+

(
(un+1
s )i + (uns )i

2

)2

+

(
(vn+1
r )i + (vnr )i

2

)2

+

(
(vn+1
s )i + (vns )i

2

)2

.

In order to linearize the nonlinear terms in the mentioned equation system, we
first apply the Caputo fractional derivative to ∂αur

∂tα ,
∂αus
∂tα ,

∂αvr
∂tα ve ∂αvs

∂tα . Then
we have

un+1
r ≈a−10

[
a0

(
n∑
k=1

(bn−k − bn−k+1)ukr + bnu
0
r

)
−
(
∂βus
∂|x|β

)n
−
(
(unr )2 + (uns )2 + (vnr )2 + (vns )2

)
uns

]
,

un+1
s ≈a−10

[
a0

(
n∑
k=1

(bn−k − bn−k+1)uks + bnu
0
s

)
+

(
∂βur
∂|x|β

)n
+
(
(unr )2 + (uns )2 + (vnr )2 + (vns )2

)
unr

]
,

vn+1
r ≈a−10

[
a0

(
n∑
k=1

(bn−k − bn−k+1)vkr + bnv
0
r

)
−
(
∂βvs
∂|x|β

)n
−
(
(unr )2 + (uns )2 + (vnr )2 + (vns )2

)
vns

]
,

vn+1
s ≈a−10

[
a0

(
n∑
k=1

(bn−k − bn−k+1)vks + bnv
0
s

)
+

(
∂βvr
∂|x|β

)n
+
(
(unr )2 + (uns )2 + (vnr )2 + (vns )2

)
vnr

]
.

As in [7], we suppose that

u?r ≈a−10

[
a0

(
n∑
k=1

(bn−k − bn−k+1)ukr + bnu
0
r

)
−
(
∂βus
∂|x|β

)n
−
(
(unr )2 + (uns )2 + (vnr )2 + (vns )2

)
uns

]
,

u?s ≈a−10

[
a0

(
n∑
k=1

(bn−k − bn−k+1)uks + bnu
0
s

)
+

(
∂βur
∂|x|β

)n
+
(
(unr )2 + (uns )2 + (vnr )2 + (vns )2

)
unr

]
,

Math. Model. Anal., 26(1):94–115, 2021.
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v?r ≈ a−10

[
a0

(
n∑
k=1

(bn−k − bn−k+1)vkr + bnv
0
r

)
−
(
∂βvs
∂|x|β

)n
−
(
(unr )2 + (uns )2 + (vnr )2 + (vns )2

)
vns

]
,

v?s ≈ a−10

[
a0

(
n∑
k=1

(bn−k − bn−k+1)vks + bnv
0
s

)
+

(
∂βvr
∂|x|β

)n
+
(
(unr )2 + (uns )2 + (vnr )2 + (vns )2

)
vnr

]
,

sni =

(
(u?r)i + (unr )i

2

)2

+

(
(u?s)i + (uns )i

2

)2

+

(
(v?r )i + (vnr )i

2

)2

+

(
(v?s )i + (vns )i

2

)2

(4.12)

and substituting Equation (4.12) into Equation (4.8), we get a following linear
equation as

a0

[
b0U

n+1
i −

n∑
k=1

(bn−k − bn−k+1)Uki − bnU0
i

]
+A

1

2

(( ∂βUi
∂|x|β

)n+1

+
( ∂βUi
∂|x|β

)n)
+ sni A

Un+1
i + Uni

2
= 0. (4.13)

5 Governing of the proposed method to the TSFCNLS
equations

This part illustrates the application of Wendland’s compactly supported func-
tion to TSFCNLS equations which are given in Equations (1.1)–(1.2). Now, we
approximate U(xi, t

n) and fractional derivative with respect to space variables
at each time step can be expressed as:

Uni =

N∑
j=1

λnj φj(xi),

(
∂βU

∂|x|β

)n
i

=

N∑
j=1

λnj Tβ(φj(xi)), (5.1)

where Tβ is a conformable fractional operator with respect to the variable x.
Substituting the Equations (5.1)into the Equation (4.13) and rearrange, we get

a0

N∑
j=1

λn+1
j φj(xi) +

1

2
A

N∑
j=1

λn+1
j Tβ(φj(xi)) +

sni
2
A

N∑
j=1

λn+1
j φj(xi)

=

N∑
k=1

(bn−k − bn−k+1)

N∑
j=1

λnj φj(xi) + bn

N∑
j=1

λ0j φj(xi)

− 1

2
A

N∑
j=1

λnj Tβ(φj(xi))−
sni
2
A

N∑
j=1

λnj φj(xi), i = 2, 3, . . . , N − 1

(5.2)
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and

N∑
j=1

λn+1
j φj(xi) = 0, i = 1, N, (5.3)


A1 B1

B2 A2
0

0 A1 B1

B2 A2


︸ ︷︷ ︸

A


λn+1
ur
λn+1
us
λn+1
vr
λn+1
vs

 =


G1

G2

G3

G4

 , (5.4)

where Ak and Bk are both N ×N matrices and

[Ak Bk] =

φ1 · · · φN
Ck

φ1 · · · φN

φ1 · · · φN
Dk

φ1 · · · φN

 , k = 1, 2.

The first and last row of these matrices consist entirely of φ functions, the N−2
rows consist (N − 2)× (N − 2) matrices Ck and Dk. For k = 1, 2, the matrices
Ck and Dk are given as:

C1=a0φj(xi), D1=
1

2
Dβ
x(φj(xi))+

sni
2
φj(xi), j=1, . . . , N, i=2, . . . N − 1,

C2 = −1

2
Dβ
x(φjxi))−

sni
2
φj(xi), D2 = a0φj(xi)

and Gk = [0 Hk 0]
T
, where for k = 1, 2, 3, 4, Hk are given as follows:

H1 =− 1

2
(λus)

n
j Tβ(φj(xi))− a0

n∑
k=1

(bn−k − bn−k+1)(λur )
n
j φj(xi)

− sni
2

(λus)
n
j φj(xi)− bn(λur )

0
jφj(xi),

H2 =
1

2
(λur )

n
j Tβ(φj(xi)) + a0

n∑
k=1

(bn−k − bn−k+1)(λus)
n
j φj(xi)

+
sni
2

(λur )
n
j φj(xi) + bn(λus)

0
jφj(xi),

H3 =− 1

2
(λvs)

n
j Tβ(φj(xi))− a0

n∑
k=1

(bn−k − bn−k+1)(λvr )
n
j φj(xi)

− sni
2

(λvs)
n
j φj(xi)− bn(λvr )

0
jφj(xi),

H4 =
1

2
(λvr )

n
j Tβ(φj(xi)) + a0

n∑
k=1

(bn−k − bn−k+1)(λvs)
n
j φj(xi)

+
sni
2

(λvr )
n
j φj(xi) + bn(λvs)

0
jφj(xi), j = 1, . . . , N, i = 2, . . . , N − 1.

At time level t0 = 0 the value of U0 can be computed from initial condition
Equation (4.5). For the values of Un at every time step tn, firstly, numerical
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values of λn+1
j are obtained each collocation points by solving the algebraic

system of equations (5.4) at each time step and then substituting these values
into the equation (5.1). In our computations, we use MATLAB program. The
algorithm of the method is introduced in the following:

1. Let’s choose the N collocation points from the domain [a, b].

2. ∆x and ∆t are determined.

3. Choose n := 0.

4. The initial value of λn is obtained by using the initial condition (4.5).
Then substituting this value in the Equation (5.1), the value of U0 can
be computed.

5. Iterate n := n+ 1.

6. λn+1 is calculated by using the system (5.2).

7. The approximate value of Un+1 can be computed by using the Equa-
tion (5.1).

8. By calculating |un+1| =
√

(un+1
r )2 + (un+1

s )2 and

|vn+1| =
√

(vn+1
r )2 + (vn+1

s )2, the envelope solutions of u and v at the

time step (n+ 1).

9. Iteration is continued until n∆t = T .

6 Von-Neumann stability technique

The stability analysis of the present scheme is examined by using a technique
similar to the traditional Von-Neumann analysis method. Since this stability
technique applies only linear differential equations, nonlinear term s in Equa-
tion (4.4) is changed by a constant q. The Equation (4.4) can be written as:

∂αU(x, t)

∂tα
+A

∂βU(x, t)

∂|x|β
+ qAU(x, t) = 0. (6.1)

Here ∂α

∂tα represents Caputo type derivative according to t, (4.7) is rearranged
and we get

∂αU(x, t)

∂tα
=a0[Un+1

i −Uni ] +a0b1U
n
i +a0

n−1∑
k=1

(bk+1− bk)Un−ki −a0bnU0
i , (6.2)

where a0 = (∆t)−α

Γ (2−α) , bk = (k + 1)1−α − k1−α, b∗k = bk+1 − bk, k = 1, 2, . . . , n− 1.

By substituting Equation (6.2) into Equation (6.1) and then Crank-Nicolson
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method is applied to Equation (6.1), we get

a0[Un+1
i − Uni ] + a0b1U

n
i + a0

n−1∑
k=1

b∗kU
n−k
i − a0bnU0

i

+A
1

2

(( ∂βU
∂|x|β

)n+1

i
+
( ∂βU
∂|x|β

)n
i

)
+
q

2
A[Un+1

i + Uni ] = 0. (6.3)

We have after applying collocation method based on Wendland’s compactly
supported functions Equation (6.3)

a0

N∑
j=1

λn+1
j φj(xi)− a0(1− b1)

N∑
j=1

λnj φj(xi) + a0

n−1∑
k=1

b∗k

N∑
j=1

λn−kj φj(xi)

− a0bn
N∑
j=1

λ0j φj(xi) +
A

2

N∑
j=1

λn+1
j Tβ(φj(xi)) +

A

2

N∑
j=1

λnj Tβ(φj(xi))

+
q

2
A

[ N∑
j=1

λn+1
j φj(xi) +

N∑
j=1

λnj φj(xi)

]
= 0. (6.4)

As in the von Neumann stability analysis method, suppose that

N∑
j=1

λnj φj(xi) = ξnΥeiθx, (6.5)

where i2 = −1, θ ∈ R, Υ ∈ R4×1 and ξ ∈ R4×4 is the amplification matrix.
Substituting (6.5) into (6.4), we have the following expression:

a0ξ
n+1Υeiθx − a0(1− b1)ξnΥeiθx + a0

n−1∑
k=1

b∗kξ
n−kΥeiθx − a0bnξ0Υeiθx

+
A

2
ξn+1ΥTβ(eiθx) +

A

2
ξnΥTβ(eiθx) +

q

2
A[ξn+1Υeiθx + ξnΥeiθx] = 0.

After some manipulations we get

ξ =

[
a0I + wA

]−1[
a0(1− b1)I − a0

n−1∑
k=1

b∗kξ
−k + a0bnξ

−n − wA
]
, (6.6)

where I is the unit matrix and

a0I + wA =


a0 −w 0 0
w a0 0 0
0 0 a0 −w
0 0 w a0

 , w =
(q − θ2x2−β)

2
,

a0I − wA =


a0 w 0 0
−w a0 0 0
0 0 a0 w
0 0 −w a0

 .
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The necessary condition is |λj | ≤ 1, j = 1, 2, 3, 4, where λj are the eigenvalues
of the amplification matrix ξ. We consider the time independent limit value
ξ = I as in [26], then

a0

n−1∑
k=1

b∗kξ
−k − a0bnξ−n = −a0(21−α − 1)I = −a0b1.

So, Equation (6.6) can be written as

ξ =
[
a0I + wA

]−1[
a0I − wA

]
.

The eigenvalues of the amplification matrix ξ are |λ1,3| = 1 and |λ2,4| = 1, so
the scheme is unconditionally stable.

7 Numerical results

In this section, two test problems are used for TSFCNLS equations to indi-
cate the efficiency of the proposed method. In order to examine the temporal
convergence order, we use the following formula

Order =
log (||error(∆t1)||/||error(∆t2)||)

log (∆t1/∆t2)
.

7.1 Test Problem I

In this section, we present some numerical results. Let’s consider an initial and
boundary value problem in the form

∂αU(x, t)

∂tα
+A

∂βU(x, t)

∂|x|β
+ sAU(x, t) = 0,

U(x, 0) = G(x), a ≤ x ≤ b,
U(−30, t) = U(60, t) = 0, 0 < t ≤ T,

where

G(x) =


√

0.2sech
(√

0.2x
)

cos (0.5x)√
0.2sech

(√
0.2x

)
sin (0.5x)

−
√

0.2sech
(√

0.2x
)

cos (0.5x)

−
√

0.2sech
(√

0.2x
)

sin (0.5x)

 .

When α = 1 and β = 2, the exact solution of this problem which is derived
in [27] is given by

U(x, t) =


√

0.2sech
(√

0.2(x− t)
)

cos (0.5x− 0.05t)√
0.2sech

(√
0.2(x− t)

)
sin (0.5x− 0.05t)

−
√

0.2sech
(√

0.2(x− t)
)

cos (0.5x− 0.05t)

−
√

0.2sech
(√

0.2(x− t)
)

sin (0.5x− 0.05t)

 .

On the contrary, the numerical outcomes and exact solutions are compatible
for classical order, in case of α ∈ (0, 1) and β ∈ (1, 2), there are no exact
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solutions in the literature. For this reason, an error estimates method in [9] is
used and the computed numerical solutions for a very small time and space step
size ∆t, ∆x are accepted as reference solutions. These reference solutions are
obtained by taking the time and space step size ∆t = 0.00125, ∆x = 0.09375,
and then the error estimates are obtained different choices of ∆t, ∆x and
the fractional derivative orders α and β. Since numerical results of v(x, t)
is similar to numerical results of u(x, t), the results of u(x, t) are only given
in this paper. First, the discrete conservation laws of the suggested scheme
are discussed. Table 1 illustrates the invariants of u(x, t) for different choices
Wendland functions with α = 1, β = 2 and T = 1. The analytical values of
invariants are calculated as 0.8944271909 and 0.3279382901.

Table 1. Invariants of u(x, t) for the order α = 1, β = 2 and h = 0.5 at T = 1.

∆t Method Q1 E

0.05
W7,5 0.8944271909 0.3279383088
W6,4 0.8944271910 0.3279564459
W5,3 0.8944271909 0.3279559107
W4,2 0.8944271902 0.3279535015

0.025
W7,5 0.8944271909 0.3279382928
W6,4 0.8944271910 0.3279564299
W5,3 0.8944271909 0.3279558946
W4,2 0.8944271903 0.3279534813

0.002
W7,5 0.8944271909 0.3279382900
W6,4 0.8944271912 0.3279564270
W5,3 0.8944271910 0.3279558916
W4,2 0.8944271859 0.3279534775

0.001
W7,5 0.8944271909 0.3279382900
W6,4 0.8944271919 0.3279564205
W5,3 0.8944271908 0.3279558917
W4,2 0.8944271918 0.3279534766

It is easy to find that physical invariants are preserved at very high accuracy.
Also, the values of mass and energy for different selected of α and β are depicted
at T = 1 in Table 2. We can see that the scheme preserves the discrete
masses. On the other hand, Table 3 indicates the changes in amplitudes and
peak positions for different values of α and β. It is seen that the changes
of amplitudes are 0.1787%, 0.8048% and 3.35% for the values of order α =
1, 0.95, 0.75 and β = 2, 1.95, 1.75 respectively. It has to be noted that when α
and β become smaller, the motion of the wave falls back and the amplitudes
increase quickly but the peak position of the wave shifts to left. This situation
is expected due to the use of the fractional Schrödinger equations in physics to
adapt the shape of a wave without the switch of the nonlinearity and dispersion
effects. Table 4 illustrates the error norms in the sense of L∞ for different
selections of α and β. It is observed that the maximal value of the error norm
is about 10−2 and minimal value is about 10−4.
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Table 2. Invariants of u(x, t) for ∆t = 0.0025 and ∆x = 0.1875 at T = 1.

α β Method Q1 E

0.95 1.95 W7,5 0.8916078982 0.3281095225
0.75 1.75 W7,5 0.8819936354 0.3289972526
0.5 1.5 W7,5 0.8443161696 0.3545455650

0.95 1.95 W6,4 0.8916152385 0.3280376854
0.75 1.75 W6,4 0.8732308719 0.3396555225
0.5 1.5 W6,4 0.8684238067 0.3442519822

0.95 1.95 W5,3 0.8916322303 0.3278732743
0.75 1.75 W5,3 0.8773524005 0.3376706021
0.5 1.5 W5,3 0.8494702687 0.3539490453

0.95 1.95 W4,2 0.8915784180 0.3279309998
0.75 1.75 W4,2 0.8196553801 0.3057709802
0.5 1.5 W4,2 0.8604262533 0.3150653665

Table 3. Comparison of amplitudes and peak positions for different values of αand β.

α β Amplitude Peak position

1 2 0.4473 10
0.95 1.95 0.4465 0.9375
0.75 1.75 0.4437 0.9375
0.5 1.5 0.4323 0.75

Table 4. Error norms of u(x, t) at T = 1.

L∞

Method ∆t ∆x α = 0.95 α = 0.75 α = 0.5
β = 1.95 β = 1.75 β = 1.5

W7,5 0.0025 0.1875 5.3825e-04 3.5173e-02 8.1746e-02
W7,5 0.005 0.375 4.2433e-04 3.1130e-02 6.6818e-02
W7,5 0.01 0.75 8.9507e-04 3.3228e-02 9.1596e-02

W6,4 0.0025 0.1875 7.0680e-04 4.1437e-03 2.7094e-02
W6,4 0.005 0.375 4.6371e-04 2.9743e-02 6.1673e-02
W6,4 0.01 0.75 1.0175e-03 3.3541e-02 8.9075e-02

W5,3 0.0025 0.1875 9.0576e-04 1.1900e-02 3.2791e-02
W5,3 0.005 0.375 3.1630e-03 7.1781e-03 2.5694e-02
W5,3 0.01 0.75 4.3963e-03 6.0707e-03 3.1181e-02

W4,2 0.0025 0.1875 7.5779e-04 2.0949e-02 8.0602e-02
W4,2 0.005 0.375 2.1694e-03 3.7093e-02 8.1285e-02
W4,2 0.01 0.75 2.4759e-03 3.9972e-02 8.8492e-02

This means that the accuracy of the method is very reliable. Errors, con-
vergence orders for the scheme is listed in Table 5 for different α with β = 1.5.
The numerical results indicate that the order of temporal convergence is about
O(∆t2−α), 0 < α < 1. In Figure 1, the kernel matrix is presented.
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Table 5. The errors against ∆t, order of L∞ norm for different α and β = 1.5.

α ∆t L∞ Order

0.01 1.4104e-04 -
0.95 0.005 6.4341e-05 1.1322

0.0025 2.2533e-05 1.5136
0.01 2.7592e-04 -

0.75 0.005 1.2206e-04 1.1766
0.0025 4.1641e-05 1.5515
0.01 1.5036e-04 -

0.5 0.005 6.4817e-05 1.2139
0.0025 2.1663e-05 1.5811

Figure 1. The kernel matrix.

Figures 2–7 display the numerical simulations of the wave for the orders α
and ∆t.

Figure 2. Numerical simulation of
|u(x, t)| for α = 0.95, β = 1.95.

Figure 3. Contour of the numerical
solution for α = 0.95, β = 1.95.

Figure 4. Numerical simulation of
|u(x, t)| for α = 0.75, β = 1.75.

Figure 5. Contour of the numerical
solution for α = 0.75, β = 1.75.

Math. Model. Anal., 26(1):94–115, 2021.



110 B. Karaman

Figure 6. Numerical simulation of
|u(x, t)| for α = 0.5, β = 1.5.

Figure 7. Contour of the numerical
solution for α = 0.5, β = 1.5.

7.2 Test Problem II

In this test problem, we take the initial conditions for interaction of two waves
in the form

u(x, 0) = sech (x+ 5) e(3ix), v(x, 0) = sech (x− 5) e(−3ix).

Firstly, we solve this problem on [−20, 20] × [0, 4] for α = 1, 0.95, 0.75, β =
2, 1.95, 1.75, 1.5, respectively. In this example, we focus on the effect on the
collision of two solitons brought by fractional-order α, β. The collision of two
waves are given in Figures 8–25 for different values of α and β.

Figure 8. Interaction of two waves for
α = 1, β = 2.

Figure 9. Contour for interaction of
two waves with α = 1, β = 2.

Figure 10. Interaction of two waves
for α = 1, β = 1.95.

Figure 11. Contour for interaction of
two waves with α = 1, β = 1.95.
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Figure 12. Interaction of two waves
for α = 1, β = 1.75.

Figure 13. Contour for interaction of
two waves with α = 1, β = 1.75.

Figure 14. Interaction of two waves
for α = 1, β = 1.5.

Figure 15. Contour for interaction of
two waves with α = 1, β = 1.5.

Figure 16. Interaction of two waves
for α = 0.95, β = 2.

Figure 17. Contour for interaction of
two waves with α = 0.95, β = 2.

Figure 18. Interaction of two waves
for α = .75, β = 2.

Figure 19. Contour for interaction of
two waves with α = 0.75, β = 2.
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Figure 20. Interaction of two waves
for α = 0.5, β = 2.

Figure 21. Contour for interaction of
two waves with α = 0.5, β = 2.

Figure 22. Interaction of two waves
for α = 0.95 and β = 1.95.

Figure 23. Contour for interaction of
two waves with α = 0.95 and β = 1.95.

Figure 24. Interaction of two waves
for α = 0.75 and β = 1.75.

Figure 25. Contour for interaction of
two waves with α = 0.75 and β = 1.75.

When α = 1 and β = 2, the system is completely integrable and so the
collision of the soliton waves is elastic. In the rest of the values of α and β, we
can conclude that the shape of the solitons will change more quickly as α, β
increases and the waveforms become similar to the case of α = 1 and β = 2.
Also, it is observed that the waves go out after collision in Figures 16–25.

It should be noted that the collision will occur earlier with the growing of α
and β. We would also like to say that the time fractional order α greatly affects
the collision. In addition, the authors in [28] have emphasized that the collision
of the solitons are not elastic any more for the values α = η = 1 and β 6= 2. It is
reverified by Figures 12,14,16,18. Finally, the invariants of numerical solution
of u(x, t) are listed in Table 6.
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Table 6. Invariants of u(x, t) for ∆t = 0.02 ve ∆x = 0.1.

T α β Q1 E

5 0.95 1.95 1.9830e-06 3.2206e-05
5 0.75 1.75 2.5466e-06 3.0368e-06

8 Conclusions

We have proposed a method based on Wendland’s compactly supported func-
tions to solve numerically the TSFCNLS equations. Caputo and Comformable
fractional derivative are used for the time and space fractional derivative, re-
spectively. Numerical outcomes are presented Tables 1–6 and Figures 1–25 for
different choices of α and β. We would also like to say that the approxima-
tion solutions are in the ideal agreement exact solution in case of α = 1 and
β = 2. Another point that is worthy of being emphasized is that when αandβ
tends to 1 and 2, respectively, the numerical solutions of the mentioned equa-
tion are convergent to the solutions of the coupled NLS. Besides, the stability
analysis of the scheme is examined by a similar procedure to the classic von
Neumann analysis. It is seen that the proposed method is unconditionally sta-
ble. Some of the major advantages of the numerical technique are geometrical
flexibility, high-order computational accuracy. As a final remark, we would like
to mention that the suggested method is an efficient alternative way to solve
these type fractional differential equations because of the very simple and easy
implementation of the scheme.
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