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Abstract. The nonhomogeneous boundary value problem for the stationary Navier-
Stokes equations in 2D symmetric multiply connected domain with a cusp point on
the boundary is studied. It is assumed that there is a source or sink in the cusp
point. A symmetric solenoidal extension of the boundary value satisfying the Leray-
Hopf inequality is constructed. Using this extension, the nonhomogeneous boundary
value problem is reduced to homogeneous one and the existence of at least one weak
symmetric solution is proved. No restrictions are assumed on the size of fluxes of the
boundary value.
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1 Introduction

Mathematically a point source is a singularity from which flux or flow is em-
anating. Although such singularities do not exist in the observable universe,
mathematical point sources/sinks are often used as approximations to reality
in physics and other fields. Point sources/sinks are often used as simple mod-
els for driving flow through a gap in a wall. In oceanography, point sources
are used to model the influx of fluid from channels and holes. Another exam-
ple: a nuclear explosion can be treated as a thermal point source in large-scale
atmospheric simulations.

�
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This paper is devoted to the famous problem for stationary Navier-Stokes
equations in the domain with multiply connected boundary. In fact, this prob-
lem arose in the pioneering Leray work (1933). Up to now, this problem is not
solved for the general three dimensional case. But it has the positive solution
for two dimensional (plane and axially symmetric) flows (see [7] and references
there).

In this paper we consider the stationary Navier-Stokes equations with the
nonhomogeneous boundary condition

−ν∆u + (u · ∇)u +∇p = 0 in Ω,

div u = 0 in Ω,

u = a on ∂Ω \ {O}
(1.1)

in a two-dimensional multiply connected symmetric1 cusp domain Ω = Ω0∪G,
where O = (0, 0) is a cusp point, Ω0 = {x ∈ Ω : x2 > H} and G = {x ∈ R2 :
|x1| ≤ ϕ(x2), 0 < x2 ≤ H} with the function ϕ = ϕ(x2) satisfying the Lipschitz
condition

|ϕ(t1)− ϕ(t2)| ≤ L|t1 − t2|, t1, t2 ≤ H, L − Lipschitz constant.

Moreover, ϕ(t) > 0 for t > 0 and ϕ(t) → 0, ϕ′(t) → 0 as t → 0. The domain
Ω0 has the form Ω0 = G0 \∪Ni=1Gi, where G0 and Gi, i = 1, ..., N , are bounded
simply connected domains such that Gi ⊂ G0 and Gi1 ∩Gi2 = ∅. Each bound-
ary Γi = ∂Gi, i = 1, ..., N, intersects the x2 - axis at two points. The boundary
∂Ω is composed of the inner boundaries Γ1, ..., ΓN and the outer boundary
∂Ω \ ∪Ni=1Γi = Γ, i.e., the outer boundary Γ encloses the inner boundaries
Γ1, ..., ΓN (see Figure 1).

Figure 1. The domain Ω.

In (1.1) the vector-valued function u = u(x) is the unknown velocity field,
the scalar function p = p(x) is the pressure of the fluid, ν > 0 is the constant
viscosity of the fluid, while the vector-valued function a = a(x) denotes the
given boundary value.

1 Domain Ω is symmetric with respect to the x2-axis (see (2.1)).
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We assume that the support of the boundary value a ∈ W 1/2,2(∂Ω) is
separated from the cusp point O = (0, 0), i.e.,

suppa ⊂ Λ ∪
(
∪Ni=1 Γi

)
,

where Λ ⊂ Γ ∩ ∂Ω0 is a connected set. Let

F (out) =

∫
Λ

a · n dS, F
(inn)
i =

∫
Γi

a · n dS, i = 1, ..., N,

be the fluxes of the boundary value a over the outer and the inner boundaries,
respectively. Here n is a unit vector of the outward normal to ∂Ω. Since the
fluid is incompressible, the total flux has to be zero (the necessary compatibility
condition) and we have:∫

σ(R)

u · n dS = −
(
F (inn) + F (out)

)
, 0 < R < H,

where F (inn) =
∑N
i=1 F

(inn)
i and σ(R) =

(
− ϕ(R), ϕ(R)

)
is a cross section of

G by the straight line parallel to the x1-axis.
Since, the velocity u has a nonzero flux in the cusp point, it has to be

singular: u(x) ∼ 1/meas(σ(r)) = c/ϕ(r) → +∞ as r → 0. Moreover, the
velocity u has infinite Dirichlet integral

∫
Ω
|∇u|2dx = +∞ (infinite dissipation

of energy). Therefore, it is necessary to look for the solution in a class of
functions with infinite Dirichlet integral. Notice that the above formulated
problem has similarities with boundary value problems for the Navier–Stokes
equations in domains with paraboloidal outlets to infinity (the paraboloidal
outlet to infinity in 2D has the form {x ∈ R2 : |x1| ≤ ϕ(x2), x2 ∈ (H,+∞)},
where limt→+∞ ϕ(t) = +∞). Thus, the structure of such outlet is similar to the
structure of the cusp point with the difference that ”singularity” is at infinity.

In multiply connected domains with outlets to infinity the solvability of non-
homogeneous boundary value problem for the stationary Navier-Stokes equa-
tions is proved either assuming the smallness condition of the fluxes over the in-
ner boundaries (see, for instance, [3,5,12,13]) or under the certain symmetry as-
sumptions on the domain and the boundary value (see, for instance, [1,6,10,11]).
In [9, 14] O.A. Ladyzhenskaya and V.A. Solonnikov proposed a method (so
called Saint-Venant’s estimates method) which allowed to prove the existence
of solutions having infinite Dirichlet integral in domains with outlets to infinity.
In the present paper we use these ideas in the case of a source or sink in the
cusp point and prove the existence of a solution to problem (1.1) for arbitrarily
large fluxes F (inn) and F (out). The most important part in this prove is to con-
struct the vector field which satisfies so called Leray-Hopf’s inequalities (see
(3.4)).

2 Main notation and auxiliary results

We will use the letter “c” for a generic constant which numerical value or
dependence on parameters is unessential to our considerations; ”c” may have
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different values in a single computation. Vector valued functions are denoted
by bold letters while function spaces for scalar and vector valued functions are
denoted in the same way.

Let D be a domain in Rn. C∞(D) denotes the set of all infinitely differ-
entiable functions defined on Ω and C∞0 (D) is the subset of all functions from
C∞(D) with compact supports in D. For given non-negative integers k and
q > 1, Lq(D) and W k,q(D) denote the usual Lebesgue and Sobolev spaces;
W k−1/q,q(∂D) is the trace space on ∂Ω of functions from W k,q(D). J∞0 (D) is
the set of all solenoidal (div u = 0) vector fields u from C∞0 (D).

We say that Ω is a symmetric domain with respect to the x2-axis if the
following condition is valid:

(x1, x2) ∈ Ω ⇔ (−x1, x2) ∈ Ω. (2.1)

The vector function u =
(
u1, u2

)
defined in Ω is called symmetric with respect

to the x2-axis if u1 is an odd function in x1 and u2 is an even function in x1,
i.e.,

u1(x1, x2) = −u1(−x1, x2), u2(x1, x2) = u2(−x1, x2). (2.2)

For any set V (Ω) consisting of functions defined in the symmetric domain Ω
(satisfying (2.1)), we denote by VS(Ω) the subspace of symmetric functions
(satisfying (2.2)) from V (Ω).

Let Ω be a domain with a cusp point defined in Introduction. Let us
introduce a family of domains Ωk with Lipschitz boundaries:

Ωk = Ωk−1 ∪ {x ∈ R2 : |x1| ≤ ϕ(x2), x2 ∈ (hk, hk−1)} = Ωk−1 ∪ ωk,

where

h0 = H, hk = hk−1 −
ϕ(hk−1)

2L
, k = 1, 2, . . . .

We write u ∈W l,q
loc(Ω) if u ∈W l,q(Ωk) for ∀k.

Let M be a closed set in R2. By ∆M(x) we denote Stein’s regularized
distance from the point x to the set M. Notice that ∆M(x) is an infinitely
differentiable function in R2 \M and the following inequalities

a1dM(x) ≤ ∆M(x) ≤ a2dM(x), |Dα∆M(x)| ≤ a3d1−|α|M (x),

hold, where dM(x) = dist(x,M) is the distance from x to M. The positive
constants a1, a2 and a3 are independent of M (see [16], Chapter VI, Sections
1 and 2, 167-171, Theorem 2).

We shall use the well known results which are formulated in the lemmas
below.

Lemma 1. Let D ⊂ R2 be a bounded domain with Lipschitz boundary ∂D,
L ⊆ ∂D, meas(L) > 0. Then for any w ∈W 1,2(D) with w|L = 0 the following
inequality ∫

D

|w(x)|2dx
d2L(x)

≤ c
∫
D

|∇w|2dx (2.3)

holds (see [8], Chapter V, Section 4, 129-130).
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Lemma 2. Let D ⊂ R2 be a bounded domain with Lipschitz boundary ∂D,
L ⊆ ∂D, meas(L) > 0. Assume that the vector field h ∈ W 1/2,2(∂D) satisfies
the conditions

∫
L h · n dS = 0, supph ⊆ L. Then h can be extended inside D

in the form

A(x, ε) =
(∂(χ(x, ε)E(x))

∂x2
,−∂(χ(x, ε)E(x))

∂x1

)
,

where E ∈ W 2,2(D), (∂E(x)
∂x2

,−∂E(x)
∂x1

)|∂D = h and χ = χ(x, ε) is Hopf’s type
cut-off function, i.e., χ is smooth, χ(x, ε) = 1 on L, suppχ is contained in a
small neighborhood of L and

|∇χ(x, ε)| ≤ εc

dL(x)
.

The constant c is independent of ε > 0 (see [8], Chapter V, Section 4, 127-128).

3 Solvability of problem (1.1)

Definition 1. A symmetric weak solution of problem (1.1) is a solenoidal vec-
tor field u ∈ W 1,2

loc, S(Ω) satisfying the nonhomogenous boundary condition

u
∣∣
∂Ω\{O} = a and the integral identity

ν

∫
Ω

∇u : ∇ηdx−
∫
Ω

(u · ∇)η · udx = 0, ∀η ∈ J∞0, S(Ω). (3.1)

Let us reduce the nonhomogeneous boundary conditions to homogeneous ones.
To do this, we need to construct a suitable extension A of the boundary value
a. Since we are looking for the symmetric solution, A has to be symmetric.
Moreover, it has to be solenoidal and to satisfy the condition A|∂Ω = a. When
A is constructed we can look for the solution u of problem (1.1) in the form

u(x) = A(x, ε) + v(x), (3.2)

where v ∈W 1,2
loc, S(Ω) is a new unknown solenoidal velocity field which satisfies

the homogeneous boundary condition v = 0 on ∂Ω \ {O}.
Putting (3.2) into (3.1) we get the integral identity for v :

ν

∫
Ω

∇v : ∇ηdx−
∫
Ω

((A + v) · ∇)η · vdx−
∫
Ω

(v · ∇)η ·Adx

=

∫
Ω

(A · ∇)η ·Adx− ν
∫
Ω

∇A : ∇ηdx, ∀η ∈ J∞0, S(Ω).

(3.3)

The existence of v satisfying (3.3) could be proved using the ideas proposed by
O.A. Ladyzenskaya and V.A Solonnikov ( [9,14]). Actually, in order to get the
desirable a priori estimates, the important step is to construct the extension A
satisfying so called Leray-Hopf’s inequalities:∣∣∣ ∫

Ωk

(
w · ∇

)
w ·Adx

∣∣∣ ≤ ε∫
Ωk

∣∣∇w∣∣2dx,∣∣∣ ∫
ωk

(
w · ∇

)
w ·Adx

∣∣∣ ≤ ε∫
ωk

∣∣∇w∣∣2dx, (3.4)

Math. Model. Anal., 26(1):55–71, 2021.
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for any solenoidal w ∈W 1,2
loc, S(Ω), w = 0 on ∂Ω \ {O}.

As soon as we have a suitable extension A of the boundary value a, the
method of Saint-Venant’s estimates can be applied and the existence of the
solution can be proved. The detailed existence proof for a simply connected
cusp domain can be found in [4]. This proof remains valid for the problem
considering in this paper. Therefore, we just formulate the existence theorem.

Theorem 1. Suppose that Ω ⊂ R2 is a multiply connected symmetric with
respect to the x2-axis cusp domain and each Γi, i = 1, ..., N, and Γ intersect
the x2-axis (see Figure 1). Assume that the boundary value a is a symmetric
vector field in W 1/2,2(∂Ω) such that the support of a is separated from the cusp
point O. Then problem (1.1) admits at least one weak solution u = A+v which
satisfies the following estimate∫

Ωk

|∇u|2dx ≤ c
(
‖a‖2W 1/2,2(∂Ω) + ‖a‖4W 1/2,2(∂Ω)

)∫ H

hk

dx2
ϕ3(x2)

,

where the constant c is independent of k.

4 Construction of the extension

The extension A of the boundary value a will be constructed as the sum

A = B(inn) + B(out),

where B(inn) extends the boundary value a from the inner boundaries ∪Ni=1Γi
and B(out) extends the modified boundary value from the outer boundary Γ.

Indeed, in order to construct B(inn), we “remove” the fluxes F
(inn)
i , i = 1, ..., N,

to the outer boundary Γ. After this step we have the flux
∑N
i=1 F

(inn)
i +F (out)

on Γ. Then by “removing” it to the cusp point and extending the modified
boundary value from Γ into Ω we construct the extension B(out). The vector
fields B(inn) and B(out) are constructed to satisfy Leray-Hopf’s inequalities
which allow to obtain a priori estimates of the solutions for arbitrarily large

fluxes F
(inn)
i , i = 1, ..., N, and F (out).

Notice that the symmetry assumption is crucial for the construction of
B(inn), satisfying Leray-Hopf’s inequalities. In general case Leray-Hopf’s in-
equalities cannot be true for the vector field B(inn). Indeed, if the fluxes over
connected components of the boundary do not vanish, there is a counterexample
(see [17]) showing that in general bounded domains Leray-Hopf’s inequalities
can be false whatever the choice of the solenoidal extension is taken. However,
such extension is possible for symmetric bounded domains (see [2]).

4.1 Construction of the extension B(inn)

In order to construct B(inn) satisfying the Leray-Hopf inequalities, we follow
the idea of Fujita [2] for bounded symmetric domain.

We start with the construction of some auxiliary functions. Let 0 < κ < 1/2
be a parameter. Then we introduce non-negative functions βκ(t) : R→ R with
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the following properties:

βκ(t) ∈ C∞0 (−∞,+∞), βκ(−t) = βκ(t), ∀t ∈ R, βκ(t) ≤ 1

t
for 0 < t < +∞,

βκ(t) =

{
0, |t| ≥ 1,

1/t, κ ≤ |t| ≤ 1/2.

Define yκ =
∫ +∞
−∞ βκ(t)dt. Due to the properties of βκ(t), we see that

yκ =

∫ +∞

−∞
βκ(t)dt =

∫ 1

−1
βκ(t)dt ≥ 2

∫ 1
2

κ

1

t
dt→ +∞ as κ→ +0.

Let δ be a small positive number. Define a smooth non-negative function

s(t) = s(t, δ, κ) =
1

yκδ
β
( t
δ

)
.

Obviously, s(t) ∈ C∞0 (−∞,+∞) and supp s ⊆ [−δ, δ].
Moreover, ∫ +∞

−∞
s(t)dt =

∫ δ

−δ
s(t)dt = 1.

Indeed,∫ +∞

−∞
s(t)dt =

∫ +∞

−∞

1

yκδ
β
( t
δ

)
dt =

1

yκδ
δ

∫ +∞

−∞
βκ

( t
δ

)
d
(
t
1

δ

)
=

1

yκ
yκ = 1.

Furthermore,

0 ≤ s(t) ≤ 1

yκδ

δ

|t|
=

1

yκ|t|
, for t 6= 0.

Therefore, we have that

limκ→+0 supt |t|s(t, δ, κ) = 0.

Let us choose a small number δ so that the straight line x1 = δ cuts each
of Γi, i = 1, ..., N at only two points. For each Γi, i = 1, ..., N, the x2-axis
intersects Γi at the point (0, Xi) and (0, X∗i ), where Xi > X∗i . For i = 1, ..., N
we define the thin strips: Υi = [−δ, δ]× [Xi−µi, X0 +µ0], where µi and µ0 are
small positive numbers and (0, X0) is the point where the outer boundary Γ
intersects the x2-axis. Notice that the points (0, Xi − µi) and (0, X0 + µ0) are
outside the domain Ω and (0, Xi − µi) lies in Gi, i = 1, ..., N (see Figure 2).

In every strip Υi ∩Ω, i = 1, ..., N, we define the vector field b
(inn)
i by the

formula

b
(inn)
i (x) =

(
0,−F (inn)

i s(x1)
)
.

Notice that b
(inn)
i defined on Υi ∩ Ω can be extended by zero into the whole

domain Ω. It is possible because the bottom of each Υi is outside the domain

Math. Model. Anal., 26(1):55–71, 2021.
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Figure 2. The strip Υi.

Ω (inside Gi). For the sake of simplicity we keep the same notation b
(inn)
i for

the extension and set

b
(inn)
i (x) =

{(
0,−F (inn)

i s(x1)
)

in Υi ∩Ω,
(0, 0) in Ω \ Υi.

Let us take a part of Υi ∩Ω which we denote by Υ̃i, i.e., the boundary of Υ̃i is
the union of Γi ∩ Υi, [−δ, δ]× (Xi + µ) and the lines x1 = δ, x1 = −δ. Here µ

is a small positive number. Then since the vector field b
(inn)
i is solenoidal, we

obtain

0 =

∫
Υ̃i

div b
(inn)
i dx =

∫
∂Υ̃i

b
(inn)
i · n dS

=

∫
Γi∩Υi

b
(inn)
i · n dS +

∫
[−δ,δ]×(Xi+µ)

b
(inn)
i · e1 dS

=

∫
Γi

b
(inn)
i · n dS +

∫ δ

−δ

(
0,−F (inn)

i s(x1)
)
·
(
0, 1
)T
dx1

=

∫
Γi

b
(inn)
i · n dS − F (inn)

i

∫ δ

−δ
s(x1) dx1 =

∫
Γi

b
(inn)
i · n dS − F (inn)

i .

Notice that the vector n denotes the unit outward normal to ∂Ω on Γi, while
the vector e1 denotes the unit normal to ∂Υ̃i on [−δ, δ] × (Xi + µ), vectors n
and e1 have opposite directions. Therefore,∫

Γi

b
(inn)
i · n dS = F

(inn)
i .

Moreover, ∫
Γj

b
(inn)
i · n dS =

{
F

(inn)
i , j = i,

0, j 6= i, j = 1, ..., N.
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Notice that for j > i vector field b
(inn)
i vanishes on Γj (by construction) and

for j < i the flux of b
(inn)
i across Γj cancel each other.

Let us set

b(inn)(x) =
∑N
i=1 b

(inn)
i (x).

The vector field b(inn) is symmetric and solenoidal. Moreover, for i = 1, ..., N
we have∫

Γi

(a− b(inn)) · ndS =

∫
Γi

(a− b
(inn)
i ) · ndS = F

(inn)
i − F (inn)

i = 0. (4.1)

Here we have used that b
(inn)
i vanishes on Γj for i 6= j.

Since condition (4.1) is valid, according to Lemma 2, there exists a solenoidal

extension b
(inn)
0 of (a − b(inn))|∪N

i=1Γi
such that the support of b

(inn)
0 is con-

tained in a small neighborhood of ∪Ni=1Γi, b
(inn)
0 |∪N

i=1Γi
= (a − b(inn))|∪N

i=1Γi

and b
(inn)
0 satisfies the Leray-Hopf inequality:∣∣∣ ∫

Ωk

(w · ∇)w · b(inn)
0 dx

∣∣∣ ≤ cε ∫
Ωk

|∇w|2dx,

where w ∈W 1,2
loc,S(Ω) is a solenoidal function with w|∂Ω = 0.

Notice that b
(inn)
0 is not necessary symmetric. However, since the bound-

ary value (a−b(inn))|∪N
i=1Γi

is symmetric, b
(inn)
0 =

(
b
(inn)
0,1 , b

(inn)
0,2

)
can be sym-

metrized. We define b̃
(inn)
0 = (̃b

(inn)
0,1 , b̃

(inn)
0,2 ) by the formula

b̃
(inn)
0,1 (x) =

1

2

(
b
(inn)
0,1 (x1, x2)− b(inn)0,1 (−x1, x2)

)
, x ∈ Ω,

b
(inn)
0,2 (x) =

1

2

(
b
(inn)
0,2 (x1, x2) + b

(inn)
0,2 (−x1, x2)

)
, x ∈ Ω.

(4.2)

Finally we define

B(inn) = b(inn) + b̃
(inn)
0 .

B(inn) is a symmetric extension of the boundary value a from ∪Ni=1Γi.
It remains to prove that B(inn) satisfies the Leray-Hopf inequalities.

Lemma 3. Let a ∈ W 1/2,2(∂Ω) be a symmetric vector-valued function. Then
for ∀ε > 0 there exists a symmetric solenoidal extension B(inn) in Ω satisfying
the Leray-Hopf inequality, i.e., for every symmetric solenoidal w ∈ W 1,2

loc (Ω)
with w|∂Ω = 0 the following estimate∣∣∣∣∫

Ωk

(w · ∇)w ·B(inn)dx

∣∣∣∣ ≤ cε ∫
Ωk

|∇w|2dx (4.3)

holds.
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Proof. Indeed, it is enough to prove that each b
(inn)
i , i = 1, ..., N, satisfies

(4.3). To do this we use the identity

(u · ∇)u =
1

2
∇|u|2 +

(
∂u2
∂x1
− ∂u1
∂x2

)
(−u2, u1). (4.4)

Let w = (w1, w2) ∈W 1,2
loc (Ω), w|∂Ω = 0, be a symmetric and solenoidal vector

field. Then due to (4.4) we obtain 2:∣∣∣ ∫
Ωk

(w · ∇)w · b(inn)
i dx

∣∣∣ = |F (inn)
i |

∫
Υi∩Ω

∣∣∣∣∂w2

∂x1
− ∂w1

∂x2

∣∣∣∣ |w1||s(x1)|dx

= |F (inn)
i |

∫
Υi∩Ω

∣∣∣∣∂w2

∂x1
− ∂w1

∂x2

∣∣∣∣ |w1|
1

|x1|
|x1||s(x1)|dx

≤ |F (inn)
i | sup

x1

(
|x1|s(x1)

) ∫
Υi∩Ω

∣∣∣∣∂w2

∂x1
− ∂w1

∂x2

∣∣∣∣ |w1|
|x1|

dx

≤ |F (inn)
i | sup

x1

(
|x1|s(x1)

)(∫
Υi∩Ω

∣∣∣∣∂w2

∂x1
− ∂w1

∂x2

∣∣∣∣2 dx
)1/2(∫

Υi∩Ω

|w1|2

|x1|2
dx

)1/2

.

Notice that ∫
Υi∩Ω

∣∣∣∣∂w2

∂x1
− ∂w1

∂x2

∣∣∣∣2 dx ≤ 2

∫
Ωk

|∇w|2dx.

By Hardy’s type inequality, since the component w1 vanishes on x1 = 0 (due
to the symmetry), we get∫

Υi∩Ω

|w1|2

|x1|2
dx ≤ c

∫
Υi∩Ω

|∇w|2dx ≤ c
∫
Ωk

|∇w|2dx.

Therefore,∣∣∣ ∫
Ωk

(w · ∇)w · b(inn)
i dx

∣∣∣ ≤ c|F (inn)
i | sup

x1

(
|x1|s(x1)

) ∫
Ωk

|∇w|2dx.

Since supx1
(|x1|s(x1, δ, κ)) → 0 as κ → +0, we can choose κ so small that

supx1
(|x1|s(x1, δ, κ)) is less than the given ε. Therefore,∣∣∣ ∫

Ωk

(w · ∇)w · b(inn)
i dx

∣∣∣ ≤ cε|F (inn)
i |

∫
Ωk

|∇w|2dx.

Notice that the integral over ωk is equal to zero since b
(inn)
i = 0 in ωk. ut

4.2 Construction of the extension B(out)

After the construction of the extension B(inn) of the boundary value a from
the inner boundaries Γ1, ..., ΓN , we need to construct an extension B(out) which
extends the modified boundary value a− b(inn) from Γ .

2 Since b
(inn)
i is solenoidal, it is L2 - orthogonal to the first term of the right hand side of

(4.4).
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Let us define Ω+ = {x ∈ Ω : x1 > 0}, Γ+ = {x ∈ Γ : x1 > 0},
Λ+ = {x ∈ Λ : x1 > 0}, G+ = {x ∈ G : x1 > 0}, Ω+

0 = {x ∈ Ω0 : x1 > 0}.
We start with the construction of the vector field b

(out)
+ in the domain Ω+.

Take any point x+ ∈ Λ+ and introduce a smooth simple curve γ+ = l+ ∪ γ+0 ,
where l+ = {x1 = 0 : 0 ≤ x2 ≤ H} and γ+0 ⊂ Ω

+
0 connects the line l+ with the

point x+. The curve γ+ does not intersect any inner boundary Γ1, ..., ΓN (see
Fig.3).

Figure 3. The curve γ+.

We define a cut-off function ξ+ by the formula:

ξ+(x, ε) = Ψ

(
ε ln

∆γ+(x)

∆∂Ω+\Λ+(x)

)
,

where Ψ is a smooth function:

Ψ(t) =

{
0, t ≤ 0,

1, t ≥ 1.

Lemma 4. The function ξ+(x, ε) vanishes at those points x ∈ Ω+ \{O} where
∆γ+(x) ≤ ∆∂Ω+\Λ+(x), while the curve γ+ \ {O} is contained in this set.

The function ξ+(x, ε) = 1 at points x ∈ Ω+ \ {O} where ∆∂Ω+\Λ+(x) ≤
e−1/ε∆γ+(x). Moreover, the following inequalities∣∣∣∣∂ξ+(x, ε)

∂xk

∣∣∣∣ ≤ cε

∆∂Ω+\Λ+(x)
,

∣∣∣∣∂2ξ+(x, ε)

∂xk∂xl

∣∣∣∣ ≤ cε

∆2
∂Ω+\Λ+(x)

(4.5)

hold with the constant c independent of ε.
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Proof. The first statement follows directly from the definition of the function
Ψ(t). Estimates (4.5) follow by direct computations using the properties of the
regularized distance and the fact that supp∇ξ+ is contained in the set where
∆∂Ω+\Λ+(x) ≤ ∆γ+(x) (see for details the proof of Lemma 2 in [15]). ut

Since the curve γ+ divides Ω+ into two parts, we define ξ̃+(x, ε) = ξ+(x, ε)
for points laying on the right hand side of the curve γ+ and ξ+(x, ε) = 0 for
points laying on the left hand side of the curve γ+. Then we introduce the

vector field b
(out)
+ in the domain Ω+:

b
(out)
+ (x, ε) = −F

(inn) + F (out)

2

(
∂ξ̃+(x, ε)

∂x2
,−∂ξ̃

+(x, ε)

∂x1

)
. (4.6)

Lemma 5. The vector field b
(out)
+ is solenoidal, infinitely differentiable in Ω+\

{O}, vanishes near ∂Ω+ \ {Λ+ ∪ {O}} and on the curve γ+ \ {O}. Moreover,∫
Λ+

b
(out)
+ · n dS =

F (inn) + F (out)

2

and the following estimates

|b(out)
+ (x, ε)| ≤ cε|F (inn) + F (out)|

d∂Ω+\Λ+(x)
, x ∈ Ω+ \ {O}, (4.7)

|b(out)
+ (x, ε)| ≤ c(ε)|F (inn)+F (out)|

ϕ(x2)
, (4.8)

|∇b(out)
+ (x, ε)| ≤ c(ε)|F (inn)+F (out)|

ϕ2(x2)
, x ∈ G+ \ {O},

|b(out)
+ (x, ε)|+ |∇b(out)

+ (x, ε)| ≤ c(ε)|F (inn) + F (out)|, x ∈ Ω+
0 (4.9)

hold with the constant c in (4.7) independent of ε.

Proof. The first statement follows directly from the definition of the vector

field b
(out)
+ and Lemma 4. Since divb

(out)
+ = 0 and due to properties of ξ̃+, we

have∫
Λ+

b
(out)
+ · n dS = −

∫
σ+(R)

b
(out)
+ · n dS

= −
∫ ϕ(R)

0

(
− F (inn) + F (out)

2

)(∂ξ̃+(x, ε)

∂x2
,−∂ξ̃

+(x, ε)

∂x1

)
·
(

0
−1

)
dx

=
F (inn) + F (out)

2

∫ ϕ(R)

0

∂ξ̃+(x, ε)

∂x1
dx1

=
F (inn) + F (out)

2

(
ξ̃+(ϕ(R), R, ε)− ξ̃+(0, R, ε)

)
=
F (inn) + F (out)

2
.
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Using estimates (4.5) and definition (4.6), we derive

|b(out)
+ (x, ε)| ≤ |F (inn) + F (out)|

((∂ξ̃+
∂x2

)2
+
(∂ξ̃+
∂x1

)2)1/2

≤ cε|F (inn) + F (out)|
∆∂Ω+\Λ+(x)

≤ cε|F (inn) + F (out)|
d∂Ω+\Λ+(x)

(4.10)

and

|∇b(out)
+ (x, ε)| ≤ |F (inn) + F (out)|

(( ∂2ξ̃+

∂x1∂x2

)2
+
(
− ∂2ξ̃+

∂x2∂x1

)2)1/2

≤ cε|F (inn) + F (out)|
∆2
∂Ω+\Λ+(x)

≤ cε|F (inn) + F (out)|
d2∂Ω+\Λ+(x)

.

(4.11)

Since for points x ∈ suppb
(out)
+ we have e−1/ε∆γ+(x) ≤ ∆∂Ω+\Λ+(x) ≤ ∆γ+(x),

we obtain (using the properties of the regularized distance)

c1ϕ(x2) ≤ d∂Ω+\Λ+(x) ≤ c2ϕ(x2), (4.12)

where c1 and c2 are positive constants. Finally, the estimates (4.8) and (4.9)
follow from (4.10), (4.11) and (4.12) (see [4] for details). ut

Lemma 6. For any solenoidal w ∈W 1,2
loc (Ω+) with w|∂Ω+\{O} = 0 the follow-

ing inequalities∣∣∣∣∣
∫
Ω+

k

(w · ∇)w · b(out)
+ dx

∣∣∣∣∣ ≤ εc|F (inn) + F (out)|
∫
Ω+

k

|∇w|2dx,

∣∣∣∣∣
∫
ω+

k

(w · ∇)w · b(out)
+ dx

∣∣∣∣∣ ≤ εc|F (inn) + F (out)|
∫
ω+

k

|∇w|2dx,

hold, where Ω+
k = {x ∈ Ωk : x1 > 0}, ω+

k = {x ∈ ωk : x1 > 0}. The constant c
is independent of ε and k.

Proof. Applying the Hölder inequality and estimates (4.7), (2.3) we obtain∣∣∣∣∣
∫
Ω+

k

(w · ∇)w · b(out)
+ dx

∣∣∣∣∣ ≤
(∫

Ω+
k

|∇w|2dx

)1/2(∫
Ω+

k

|w · b(out)
+ |2dx

)1/2

≤

(∫
Ω+

k

|∇w|2dx

)1/2(∫
Ω+

k

|w|2
(
cε|F (inn) + F (out)|

d∂Ω+\Λ+(x)

)2

dx

)1/2

≤ cε|F (inn) + F (out)|
∫
Ω+

k

|∇w|2dx.

The same argument proves the Leray-Hopf inequality in ω+
k . ut
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Notice that Lemma 6 is also valid for the domains Ω−k and ω−k , where Ω−k =
{x ∈ Ω : x1 < 0}, ω−k = {x ∈ Ω : x1 < 0}.

Let us extend the vector field b
(out)
+ =

(
b
(out)
+,1 , b

(out)
+,2

)
into the domain Ω− =

{x ∈ Ω : x1 < 0} and define:

b(out)(x, ε) =


(
b
(out)
+,1 (x1, x2, ε), b

(out)
+,2 (x1, x2, ε)

)
, x ∈ Ω+,(

− b(out)+,1 (−x1, x2, ε), b(out)+,2 (−x1, x2, ε)
)
, x ∈ Ω−.

Then b(out) is symmetric, solenoidal, satisfies the Leray-Hopf inequalities and∫
Λ

b(out) · n dS = F (inn) + F (out).

On ∂Ω we define a vector field

h(x, ε) =
(
a(x)− b(inn) − b(out)

)∣∣∣
Λ
, h(x, ε)

∣∣∣
∂Ω\Λ

= 0.

Then, by construction,∫
Λ

h · n dS =

∫
Λ

a · n dS −
∫
Λ

b(inn) · n dS −
∫
Λ

b(out) · n dS = F (out)

−
∫
Λ

b(inn) · n dS − (F (inn) + F (out)) = −
∫
Λ

b(inn) · n dS − F (inn).

(4.13)

Since b(inn) is solenoidal, we obtain

0 =

∫
Υ̃

div b(inn)dx =

∫
∂Υ̃

b(inn) · n dS

=

∫
Γ∩Υi

b(inn) · n dS +

∫
[−δ,δ]×(X0−µ)

b(inn) · e1 dS

=

∫
Λ

b(inn) · n dS +

∫ δ

−δ

(
0,−F (inn)s(x1)

)
·
(
0,−1

)T
dx1

=

∫
Λ

b(inn) · n dS + F (inn)

∫ δ

−δ
s(x1) dx1 =

∫
Λ

b(inn) · n dS + F (inn),

where Υ̃ is a part of Υi ∩ Ω, i.e., the boundary of Υ̃ is the union of Γ ∩ Υi,
[−δ, δ]× (X0 − µ) and the lines x1 = δ, x1 = −δ.

Notice that the vector n denotes the unit outward normal to ∂Ω on Γ , while
the vector e1 denotes the unit normal to ∂Υ̃ on [−δ, δ] × (X0 − µ), vectors n
and e1 have the opposite directions. Therefore,∫

Λ

b(inn) · n dS = −F (inn). (4.14)

From (4.13) and (4.14) we have that∫
Λ

h · n dS = −
∫
Λ

b(inn) · n dS − F (inn) = 0.
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Because of
∫
Λ
h · n dS = 0, according to Lemma 2, there exists an extension

b
(out)
0 of h such that suppb

(out)
0 (x, ε) is contained in a small neighborhood of

Λ, divb
(out)
0 = 0 and b

(out)
0 (x, ε)|Λ = h(x, ε). Moreover, b

(out)
0 satisfies the

Leray-Hopf inequality∣∣∣∣∫
Ω0

(w · ∇)w · b(out)
0 dx

∣∣∣∣ ≤ εc|F (inn) + F (out)|
∫
Ω0

|∇w|2dx. (4.15)

However, b
(out)
0 is not necessary symmetric, but since the boundary value h

is symmetric, vector field b
(out)
0 can be symmetrized as in (4.2). Denote the

symmetrized vector field by b̃
(out)
0 = (̃b

(out)
0,1 , b̃

(out)
0,2 ). Finally, we put

B(out)(x, ε) = b(out)(x, ε) + b̃
(out)
0 (x, ε).

Lemma 7. The vector field B(out) ∈ W 1,2
loc (Ω) is symmetric and solenoidal in

Ω \ {O}, B(out)|Λ = a|Λ −b(inn)|Λ, B(out)|∂Ω\(Λ∪{O}) = 0. For any solenoidal

symmetric vector field w ∈W 1,2
loc (Ω) with w|∂Ω = 0 the following inequalities∣∣∣∣∫

Ωk

(w · ∇)w ·B(out)dx

∣∣∣∣ ≤εc|F (inn) + F (out)|
∫
Ωk

|∇w|2dx, (4.16)∣∣∣∣∫
ωk

(w · ∇)w ·B(out)dx

∣∣∣∣ ≤εc|F (inn) + F (out)|
∫
ωk

|∇w|2dx (4.17)

hold with the constant c independent of ε and k. Moreover,

|B(out)(x, ε)|+ |∇B(out)(x, ε)| ≤ c(ε)|F (inn) + F (out)|, x ∈ Ω0, (4.18)

|B(out)(x, ε)| ≤ c(ε)|F (inn) + F (out)|
ϕ(x2)

, (4.19)

|∇B(out)(x, ε)| ≤ c(ε)|F (inn) + F (out)|
ϕ2(x2)

, x ∈ G \ {O}

‖∇B(out)‖2L2(Ωk)
≤ c‖a‖2W 1/2,2(∂Ω)

∫ H

hk

dx2
ϕ3(x2)

, (4.20)

‖B(out)‖4L4(Ωk)
≤ c‖a‖4W 1/2,2(∂Ω)

∫ H

hk

dx2
ϕ3(x2)

, (4.21)

where the constants in (4.20) and (4.21) are independent of k.

Proof. Estimates (4.18), (4.19), (4.16), (4.17) follow from Lemma 5, Lemma 6
and the inequality (4.15). According to the fact that

|F (inn) + F (out)| ≤ c ||a||2W 1/2,2(∂Ω),

we derive estimate (4.20):

‖∇B(out)‖2L2(Ωk)
≤
∫
Ω0

|∇B(out)|2dx+

∫
Ωk\Ω0

|∇B(out)|2dx

≤
∫
Ω0

c|F (inn) + F (out)|2dx+

∫
Ωk\Ω0

c|F (inn) + F (out)|2dx
ϕ4(x2)
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= c|F (inn) + F (out)|2
(

meas(Ω0) +

∫ H

hk

dx2
ϕ4(x2)

∫ ϕ(x2)

−ϕ(x2)

dx1

)
≤ c|F (inn) + F (out)|2

(
1 +

∫ H

hk

dx2
ϕ3(x2)

)
≤ c||a||2W 1/2,2(∂Ω)

∫ H

hk

dx2
ϕ3(x2)

.

Analogously we get the estimate (4.21). ut

According to Lemma 3 and Lemma 7, the constructed vector field

A = B(inn) + B(out)

has all the necessary properties that insure the validity of Theorem 1 formulated
in Section 3.
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