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Abstract. We consider a three-level parallelisation scheme. The second and third
levels define a classical two-level parallelisation scheme and some load balancing al-
gorithm is used to distribute tasks among processes. It is well-known that for many
applications the efficiency of parallel algorithms of these two levels starts to drop
down after some critical parallelisation degree is reached. This weakness of the two-
level template is addressed by introduction of one additional parallelisation level. As
an alternative to the basic solver some new or modified algorithms are considered on
this level. The idea of the proposed methodology is to increase the parallelisation
degree by using possibly less efficient algorithms in comparison with the basic solver.
As an example we investigate two modified Nelder-Mead methods. For the selected
application, a Schrödinger equation is solved numerically on the second level, and on
the third level the parallel Wang’s algorithm is used to solve systems of linear equa-
tions with tridiagonal matrices. A greedy workload balancing heuristic is proposed,
which is oriented to the case of a large number of available processors. The com-
plexity estimates of the computational tasks are model-based, i.e. they use empirical
computational data.
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1 Introduction

Current trends in supercomputing show that in order to accumulate high com-
puting power, computers with more, but not faster, processors are used. This
trend induces changes in the development of parallel algorithms. The impor-
tant challenge is to develop parallelisation techniques which enable exploitation
of substantially more computational resources than the standard existing meth-
ods.

This paper deals with problems that can be split into a collection of in-
dependent subproblems and this splitting step is repeated iteratively. The
solutions of subproblems define the solution of the main problem. Thus, an
additional parallelization level increases the potential parallelisation degree of
a constructed parallel algorithm.

Any multi-level parallelisation can be considered as a way to generate a
pool of tasks. After the pool of tasks is obtained, it is not important how many
parallelisation levels were used. However, often such final simplification of the
template leads to a loss of an important information and as a consequence to
degraded efficiency of the parallel algorithm. Especially this is true if different
levels of the scheme are characterised by different properties of an algorithm
that should be properly addressed.
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Figure 1. Three level parallelisation scheme.

In this paper, we consider a special case of a three level parallelisation. The
template of this approach is given in Figure 1:

• At the first level of parallelisation we assume that there exist a few parallel
alternatives Aj (see Figure 1) to the original modelling algorithm. The
first level of parallelisation becomes a part of a new parallel algorithm
and the degree of the first level parallelism can be selected dynamically
during the computations – at this level the best algorithm is selected. In
this paper as an example we consider two new parallel modifications of
the Nelder-Mead method [25].

• On the second level, a set of computational tasks V j = {vj1, v
j
2, . . . , v

j
Mj
}

(see Figure 1) with different computational complexities is defined. For
simplicity of presentation, we assume that all these tasks can be solved
in parallel. As an example we investigate the case when computation
of one value of the objective function requires to solve numerically M
partial differential equations. The computational complexities of tasks
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are non-equal because different sizes of discretisation steps must be used
for different equations in order to achieve the same accuracy for each
equation.

• The third level defines parallel algorithms to solve tasks from the second
level. As an example we use Wang’s algorithm to solve systems of linear
equations with tridiagonal matrices [39].

In this paper we propose a new three-level methodology for parallelisation
some classes of algorithms. As a representative example, we use it to solve one
applied optimisation problem. The superiority of the three level parallelisation
scheme is shown, comparing it with two level parallelisation scheme.

The necessity of the additional first level comes from the assumption of
having more computational resources than can be utilised by the two-level
parallelisation approach. It is a consequence of the efficiency saturation for
parallel algorithms when the size of the problem is fixed and the number of
processes is increased.

We have defined a set of optimization methods (or a modification of the
basic solver) which give an additional degree of parallelisation and enable the
possibility to use efficiently more processors. At the first level of the template
the optimal algorithm is selected. This part requires to find a compromise
between the increased parallelisation degree and the decreased convergence
rate of the modified parallel optimization algorithm.

This paper makes the following contributions:

1. We propose to extend the typical two level parallelisation, which is usually
accompanied by some load balancing technique, by adding one additional
level. Also, we investigate the possibility to limit the number of used
processors to sustain the parallelisation efficiency at the selected level.
This approach let us to avoid the inefficient calculations and supports
the green computing technology.

As an example two different families of parallel Nelder-Mead methods
were investigated: the family of the generalised parallel Nelder-Mead
method [22] and the parallel versions of the classical Nelder-Mead method.
In order to perform the load balancing on the second and third levels of
the proposed template, we use the complexity model of tasks which is
based on the computational data (also known as model-based), as it is
done in recent state-of-the-art works [20, 21, 30]. We demonstrate a big
potential of this new technique.

2. A parallel version of the Nelder-Mead method is proposed, which does
not change the convergence properties of the sequential optimisation algo-
rithm. We note, that there were some attempts to parallelise this optimi-
sation method before [19, 22]. However, in these papers the convergence
properties are changed and these changes are not studied comprehensively
enough. Moreover, it is questionable whether these parallel algorithms
are applicable in the case of small-dimension problems.

Our parallel algorithm leads to an increasement of the parallelisation de-
gree up to factor of three. However, the introduced changes do not affect
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the convergence of the sequential optimisation algorithm. The experi-
mental comparison of this new parallelisation algorithm with the state-
of-the-art technique [22] is provided. The obtained experimental results
show that in the case of the Rosenbrock function the convergence prop-
erties of the parallel algorithm [22] are much worse than of the classical
sequential Nelder-Mead algorithm.

The rest of this paper is organised as follows. In Section 3, the workload bal-
ancing problem is formulated, the selection of the optimal algorithm is provided
and a strategy for workload distribution is presented along with the efficient
workload distribution algorithm. In Section 4, the detailed description of three
parallelisation levels are given for the studied case.

As a real world application, we consider the approximation of absorb-
ing boundary conditions of Schrödinger equation. The modified Nelder-Mead
method is used to solve local optimisation problems on the first level, on the
second level a set of partial differential equations are solved numerically, and
on the third level Wang’s algorithm is used to solve systems of linear equations
in parallel. In Section 5, the results of computational experiments are pro-
vided and the efficiency of the proposed three-level parallelisation template is
analysed. In Section 6, the comparison of different Nelder-Mead parallelisation
methods is presented. The final conclusions are done in Section 7.

2 The related works

We investigate a three-level parallelisation algorithm for optimization problems
and different parallelisation levels give different possibilities but also challenges.
The parallelisation speed-up on the first level in many cases is not linear, thus it
can reduce the efficiency of the whole parallel algorithm. But this level enables
to use much more processes and finally to solve the given problem faster than
using two-level parallelisation. In this paper, as an example on the first level
we investigate two modified Nelder-Mead methods.

In some cases the Nelder-Mead method is not the best method to solve
local optimization problems. In paper [24], it was shown that the method can
converge to a non-stationary point. However, for the most practical problems
it gives good results with the reasonable amount of computations. That is why
we use NM method as an example to test the proposed methodology. For all
studied cases it gave sufficiently good solutions. It is important to note, that
our methodology can be applied to other methods such as the Spendley Hext
and Himsworth simplex [35], Hooke-Jeeves algorithm [17], etc.

Generally, on the first level different parallel algorithms can be used, how-
ever, the proposed approach is oriented to cases when the increased degree of
parallelisation gives the speed-up at the cost of efficiency. We note that such a
situation is typical for many parallel algorithms due to Amdahl’s law.

As one more example we mention new algorithms developed to solve the
global optimisation problems. The modification of the well-known DIRECT
method [9] was presented in [36], it is called DIRECT-GL. The new modifi-
cation is based on the idea at each iteration to analyse more potential opti-
mal rectangles. This approach increases the global sensitivity of the method
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588 R. Kriauzienė, A. Bugajev and R. Čiegis

but in many cases this property is achieved at the cost of additional compu-
tations. The potential parallelisation degree of DIRECT-GL algorithm can
increase up to 2-3 times. But the results of computational experiments in [36]
show that for many benchmark problems (in [36] these cases are numbered
1,2,5,6,20,21,22,24,35,37,38,47,48,49,52) the DIRECT-GL algorithm increases
the computational costs to achieve the same accuracy of approximations as
DIRECT algorithm. Thus, the classical DIRECT algorithm and its modifica-
tion DIRECT-GL fit well into the proposed three-level parallelisation template.
Then the degree of parallelisation should be increased only if this increasement
compensates the reduced efficiency of the modified algorithm. Thus we state,
that in order to apply the proposed three level parallelisation scheme, first the
computations should be parallelised by using a classical a two-level paralleli-
sation approach. Then alternative cases of parallel algorithms with additional
degrees of parallelisation should be identified and the optimal algorithm should
be selected.

The second and the third levels define a well-investigated two-level par-
allelisation template. We note that load balancing techniques for two-level
parallelisation are widely used in applications, see, e.g., [5], [14].

The scheduling problem can be formulated representing a parallel algorithm
by a directed acyclic graph (DAG). The vertices define computational tasks,
the edges define connections/order among tasks. Then a set of partially ordered
computational tasks is scheduled onto a multiprocessors system to minimise the
computational time (or to optimise some other performance criteria). It is well
known that the scheduling problem is NP complete. Many interesting heuris-
tics are proposed to solve it, we mention greedy algorithms [6], genetic algo-
rithms [33], [34], simulated annealing and tabu search algorithms [18], [12], [13].
Such algorithms include a possibility of dynamic scheduling and allow for tasks
to arrive continuously and they can consider variable in time computational
resources.

A scheduling task can be very challenging due to specificity of a given
application problem and the necessity to parallelise it on modern parallel ar-
chitectures. As an example we mention the particle simulation which is solved
by appropriate domain decomposition techniques [11]. Another example is the
dynamic load balancing on heterogeneous clusters for parallel ant colony op-
timisation [23]. In the recent work [7] it is concentrated on the problem of
high-dimensionality of the data while solving subspace clustering problem.

In this article we focus on the scheduling problem, when all tasks in the set
are independent and can be solved in parallel. It is well known that the given
optimisation problem can be redefined as a problem to equalise the computa-
tional times of all processes. The simplest load balancing algorithm is based
on the assumption that the computation time is proportional to sizes of sub-
tasks. Then the domain decomposition algorithm is applied to guarantee that
the sizes of subtasks scheduled for each group of processors are equal [5].

The quasi-optimal distributions of tasks can be obtained using the greedy
strategy to distribute the work on demand, i.e. to apply dynamic load balancing
techniques such as work-stealing [16], self-organising process rescheduling [31].

However, the efficiency of two-level approach is limited due to a typical
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saturation of the speed up of parallel algorithms for increased numbers of pro-
cessors and fixed sizes of tasks. Exactly this situation has motivated us to
introduce an additional level of parallelisation template. In most cases the
usage of it leads to a less efficient algorithms than the initial state-of-the-art
algorithm. But the additional degree of parallelism on the second level gives a
large overall speed-up, if the number of available resources is large.

Recent developments of new architectures of parallel processors make even
more challenging the task to build accurate theoretical performance models.
The empirical data shows that for some advanced algorithms the efficiency
of parallel computations can depend non-monotonically on the size of a task.
Thus the model-based load balancing method starts to become the main tool
in developing efficient and accurate task scheduling algorithms. In our work
we build the model for prediction of computation time empirically by solving
the specialised benchmarks for a wide range of problem sizes and numbers of
processors. In fact this analysis resemblance the classical experimental strong
scalability analysis of a given parallel algorithm. We note, that these mea-
surements are always done for all processes working simultaneously in order to
reflect their actual performance during the execution of real applications (see,
also [20,21]).

Here we mention two interesting papers, where the model-based task schedul-
ing algorithms are considered. In [21], it is concentrated on multicore co-
processors Xeon Phi, where the empirical computation time curves are used
to find optimal parameters for a workload distribution. The obtained model
predicts non-monotonic dependence of computation speed on the sizes of prob-
lems. The authors call their approach ”load imbalancing”, however, it can be
considered as an advanced balancing which adapts the scheduling algorithm to
the specificity of Xeon Phi processors. Obviously in this case the assumption
that computation time is proportional to the task size is not valid. In a simi-
lar research [20], computations were performed on non-uniform memory access
(NUMA) parallel platform with various shared on-chip resources such as Last
Level Cache. Again the model-based approach enables to take into account the
specific properties of the algorithm and processors. The matrix multiplication
and Fast Fourier Transform are used as benchmark problems. It is interesting to
note that, according to the presented results, the globally optimal solutions may
not load-balance the sizes of sub-tasks. The authors pay a special attention to
the energy efficiency of calculations. We note, that there are some papers that
are specifically dedicated to load balancing of energy efficiency [27]. In our work
we formulate some restrictions that are connected to energy efficiency as well –
we do not use additional available computational resources if the parallelisation
efficiency drops below some specific level. The other work [30] is dedicated to
model-based optimisation on hybrid heterogeneous systems composed of CPUs
and accelerators. In that research authors investigate the problem of commu-
nications costs due to uneven workload distribution between accelerators and
CPUs. They propose to generalise the τ -Lop [29] model for heterogeneous
computations.

In this work we are also interested to address some green computing (GC)
challenges. In a broader sense GC is the practices and procedures of designing,
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manufacturing, using of computing resources in an environment friendly way
while maintaining overall computing performance and finally disposing in a way
that reduces their environmental impact [32]. The research in green computing
is done in many areas [26]: Energy Consumption; E-Waste Recycling; Data
Center Consolidation and Optimization; Virtualization; IT Products and Eco-
labeling. One of approaches for optimisation of energy consumption on the
software level is the autotuning software, which is able to optimise its own
execution parameters with respect to a specific objective function (usually, it is
execution time) [4]. Well known examples of autotuning software are: FFTW
[10] (fast Fourier transformations); ATLAS [41], PHiPAC [2] (dense matrix
computations); OSKI [38], SPARSITY [15] (sparse matrix computations).

Usually, the goal for any autotuning software is to achieve the same result
with the same resources, however, reducing the computation time – in terms
of parallelisation it means to increase the parallelisation efficiency. Another
way to decrease the power consumption is to increase the efficiency by avoiding
inefficient calculations; this may slightly increase the execution time, however
will give a reasonable increase of parallel efficiency, which leads to the energy
savings. We propose to control the efficiency of the parallel algorithm on the
load balancing stage of the parallelisation template. In many cases this strategy
reduces the amount of computational resources used in computations. This
analysis is done a priori, meaning that the user knows how many cores should be
used for solving a specific parallel task even before starting real computations.

3 Workload balancing problem

In this section, we formulate the workload balancing problem for the two level
parallelisation. Also we present a greedy scheduling algorithm to distribute the
processes among tasks. Next, we introduce the additional level – the first and
second levels of the two level parallelisation technique become the second and
the third levels, accordingly and the first level is a new parallelisation level. On
the first level the selection of the optimal algorithm is performed.

First, we will present two level parallelisation template. Assume that we
solve a given problem by using the basic method A. The solution process
consists of K blocks of tasks (a simple DAG)

A = {V1 ≺ V2 ≺ . . . ≺ VK}, (3.1)

and all blocks must be solved sequentially one after another. Each block con-
sists of M tasks

Vk = {v1(Xk), v2(Xk), . . . , vM (Xk)}, k = 1, . . . ,K,

where Xk defines a set of parameters for the Vk block and all M tasks can
be solved independently. Vk defines the first level of two level parallelisation
scheme. Each task vm can be solved by some parallel algorithm – this is the
second level of the scheme.

The complexities of tasks vm are different, however, they are known in ad-
vance and do not depend on k. For each task vm the prediction of computation
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time tm(p), p ≤ P , m = 1, . . . ,M is given – it is based on the modelling results,
P is the number of processors in a parallel system. We assume that up to Pm
processes the computation time monotonically decreases:

tm(p2) < tm(p1), for p1 < p2 ≤ Pm.

For Pm the predicted computation time function tm(p) reaches the minimum
value:

tm(p) ≥ tm(Pm), p > Pm. (3.2)

Such a model of computation time tm(p) is typical for algorithms with
limited scalability such as Wang’s algorithm. In Figure 2 we present speed-ups
of this algorithm for different sizes of linear systems. It is important to mention
that the provided results include some additional costs for computation of the
objective function along with Wang’s algorithm computational costs. These
additional calculations slightly increase the overall parallelisation scalability,
thus the provided figure represents the optimistic scenario for general Wang’s
algorithm and the realistic scenario for actual computations, that were done in
presented computational experiments. The detailed specification of processors
is presented in Section 4.

Figure 2. The speed-ups of Wang’s parallel algorithm for different number of processes p
and sizes J of systems. The detailed specification of processors is presented in Section 4.

In our specific case this data was derived from a simple benchmark im-
plementing Wang’s algorithm. This benchmark performs computations using
different numbers note, that nodes were artificially loaded with calculations to
imitate the real situation. For example, with the number of processes p = 4
there were 32 tasks that were solved by 128 processes at the same time. Thus
this benchmark must be run once, using all processes available. of processes
and different problem complexity parameters J . It is important to

From Figure 2 it follows that the computation time monotonically decrease
till some critical number of processes and therefore the efficient usage of pro-
cesses is limited to this number of processes. Even for large size systems, when
the number of equations is J = 16000, the maximum number of processes Pm
does not exceed 80. This analysis justifies our motivation to use the multi-level
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approach in order to solve the given applied problem efficiently and to use as
many available processors as possible.

In the two-level parallelisation scheme for each block of tasks Vk we select
the number of processes such that the overall solution time is minimised:

arg min
(p1,...,pM )∈Q

max
1≤m≤M

tm(pm),

where a set of feasible processors distributions Q is defined as

Q = {(p1, . . . , pM ) : p1 + . . .+ pM ≤ P}.

Remark 1. In the case when we solve only few large size tasks and the remaining
tasks are much smaller and the number of processes P is not very big, the
optimal scheduling is obtained when a few smaller tasks are combined into one
group ṽm. Then sub-task ṽm consists of tasks vl1 , . . . , vln . The computation
time for this combined task is predicted by the model:

t̃m(pm) =

n∑
i=1

tli(p̃li), p̃li = min (pm, Pli) .

In this work we are interested to solve the scheduling problem, when the number
of processes is large, so the aggregation step is not used.

Next, we propose a simple greedy partitioning algorithm, which is described
in Algorithm 1.

Algorithm 1. The algorithm for distribution of P processes between M tasks

1: Set p[m] = 1, for m = 1, . . . ,M
2: P = P −M
3: Compute tm(p[m]), for m = 1, . . . ,M
4: stop = 0
5: while P > 0 & stop == 0 do
6: find j such that tj(p[j]) = max

1≤m≤M
tm(p[m])

7: if p[j] == Pj then
8: stop = 1
9: else

10: p[j] = p[j] + 1
11: P = P − 1
12: end if
13: end while

It aims to find a near-optimal distribution of M tasks of different sizes
between homogeneous P processes by using the model-based complexity model
tm(p) (similar ideas are also used in [20]). We assume that P ≥ M . The
interesting feature of the presented algorithm is that for a given number of
processes P the number of active processes can be taken less than P to minimise
the overall execution time of the parallel algorithm.
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The algorithm starts from the initial distribution when one process is as-
signed for each task and the predictions of parallel execution times are calcu-
lated using the selected performance model. Then, the greedy iterative proce-
dure is applied to distribute the remaining processes. At each iteration, one
additional process is assigned to the task which has the largest predicted com-
putation time. Then its parallel execution time is updated. Iterations are
repeated until all processes are distributed or the number of processes for some
task reaches the limit Pm.

Note, that before tm(p) has reached the minimum, value starts to decrease
slowly, thus the parallelisation efficiency drops. Therefore, it may be wise to
restrict the number of processes by taking into account the efficieny value.

We define the maximum number of processes P̃k for which the efficiency
condition is still satisfied

Ep(Vk) ≥ Emin, for p ≤ P̃m, (3.3)

where Ep(Vk) = Sp(Vk)/p ir Sp(Vk) = tk(1)/tk(p), Emin ∈ [0, 1] is a given effi-
ciency lower bound. Estimate (3.3) is used to modify the limit of the maximum
number of processes (3.2) that can be used to solve the j-th task

Pm = min (Pm, P̃m).

Therefore, in the presented technique Pm includes two restrictions:

• The number of processes cannot exceed the number after which the speed-
up drops down (see Figure 2).

• The number of processes is limited by efficiency requirement (3.3), which
states: the number of processes per block of tasks Vk is not allowed to
be increased if the efficiency of the parallel algorithm on the third level
reaches the critical value Emin.

In fact the second level of the two-level scheme can be used alone, however,
it is limited due to Amdahl’s law [1], i.e. the efficiency begin to drop as the
number of processes increases for a fixed size of problem. Two-level approach
let us to solve this issue up to some point.

Exactly this situation has motivated us to introduce an additional level of
parallelisation template.

In the new three-level parallelisation scheme, the second and third levels
represent the two-level scheme described above. Additionally, we add a new
first level of the template. We assume that there exist parallel alternative
algorithms Aj :

Aj = {V j1 ≺ V
j
2 ≺ . . . ≺ V

j
Kj
}, j = 1, . . . , J.

Each block V jk consists of Mj independent tasks

V jk = {vj1(Xk), vj2(Xk), . . . , vjMj
(Xk)}, k = 1, . . . ,K.

The numbers of blocks of tasks Kj , the numbers of tasks per block Mj , the
sizes of tasks |vjm| may be different for different j.

Math. Model. Anal., 25(4):584–607, 2020.



594 R. Kriauzienė, A. Bugajev and R. Čiegis

Next, we select the optimal algorithm according to the number of resources
available. We denote

TP (Aj) = TP (V j)Kj

the total solution time for algorithm Aj . The block of tasks V j is solved by
using the heuristic proposed above. Then the optimal algorithm is defined as

arg min
1≤j≤J

TP (Aj).

The usage of j > 1 may lead to a less efficient algorithm than the initial basic
algorithm. But the additional degree of parallelism gives a large overall speed-
up.

4 Application of the three-level parallelisation scheme

First, we briefly present the problem which is used to test our methodology.
We solve an initial-boundary value Schrödinger problem formulated in a finite
space domain [3]:

i
∂u

∂t
+
∂2u

∂x2
= 0, x ∈ (A,B), t ∈ (0, T ],

u(x, 0) = u0(x), x ∈ [A,B],

Llu(A) = 0, Lru(B) = 0, t ∈ (0, T ],

(4.1)

where operators Ll, Lr define the nonlocal/transparent boundary conditions.
Let ωh and ωτ be discrete uniform grids with space and time steps h, τ :

ωh =
{
xj : x0 = A, xJ = B, xk = xk−1 + h, k = 1, . . . , J

}
,

ωτ = {tn : tn = nτ, n = 0, . . . , N, Nτ = T}. (4.2)

Let Unj be a numerical approximation of the exact solution unj = u(xj , t
n)

at the grid points (xj , t
n) ∈ ωh × ωτ . For functions defined on the grid we

introduce the forward and backward difference quotients with respect to x

∂xU
n
j = (Unj+1 − Unj )/h, ∂x̄U

n
j = (Unj − Unj−1)/h

and similarly the backward difference quotient and the averaging operator with
respect to t

∂t̄U
n
j = (Unj − Un−1

j )/τ, Un−0.5
j = 0.5

(
Unj + Un−1

j

)
.

We approximate the differential equation (4.1) by the Crank-Nicolson finite
difference scheme [28]

i∂t̄U
n
j + ∂x∂x̄U

n−0.5
j = 0, xj ∈ ωh, n > 0. (4.3)

A very interesting approach to construct the approximate local artificial bound-
ary conditions is based on approximation of the transparent boundary condition

∂nu+ e−i
π
4D

1/2
t u = 0
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by rational functions. The discrete boundary conditions can be written as:

∂nu = −e−iπ4
(( l∑

k=0

ak

)
u−

l∑
k=1

akdkϕk

)
, x = a, b,

where ∂nu is the normal derivative, ϕk are solutions of the initial value problem
for ODEs [3]:

dϕk(x, t)

dt
+ dkϕk(x, t) = u (x, t) , x = A,B, k = 1, . . . , l.

Our aim is to find optimal values of parameters {a0, a1, . . . al, d1, a2, . . . dl},
when the following minimisation problem is solved

Ec∞ = min
{ak,dk}

, Ek(ak, dk) = max
1≤m≤M̃

em(Xk),

em = max
j∈[0,Jm], n∈[0,Nm]

∣∣u(xj,m, t
n
m)− Unj,m

∣∣, (4.4)

and M̃ specially selected benchmark PDEs are solved.
In all examples we use l = 3, i.e., the dimensionality of the optimization

problem (4.4) is equal to 7. Here discrete approximations of PDEs represent
the tasks vm in (3.1). To solve vm we must find solutions of N systems of linear
equation with tridiagonal matrix [3]. According to our three-level parallelisa-
tion scheme, the calculation of a single value Ek in minimisation problem (4.4)
defines the block of tasks Vk.

The systems of linear equations with tridiagonal matrices are solved using
Wang’s algorithm. It is well known that if the size of a system is J and p
processes are used then the computation time can be estimated as

TWp = 17
J

p
+ 8p+ Tc1(p), (4.5)

where Tc1(p) defines communication costs. The time to compute a value of the
objective function f for the specified equation can be estimated as

TOp = c1
J

p
+ Tc2(p). (4.6)

In this work instead of theoretical complexity models (4.5) and (4.6) we use
tm(p), m = 1, . . . ,M , based on empirical computations for a selected set of
benchmark problems (so called model-based estimates). Such an approach
takes into account all specific details of the parallel algorithm and the computer
system.

It is interesting to note that the complexity of computational task vm de-
pends on both parameters: the number of linear equations Jm of the system
and the number of integration in time steps Nm. The computation time Tmp
is equal to Nmtm(p), but the scalability of the parallel algorithm depends on
Jm only, since the integration in time is done sequentially step by step.

Next, we present an example with M = 4, where four different benchmark
PDE problems (4.1) with explicit solutions [37,42] are defined as:
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1.

u(t, x)=
exp (−iπ/4)√

4t− i
exp

(
ix2−6x−36t

4t− i

)
, (4.7)

x ∈ [−5, 5], t ∈ [0, 0.8]. The problem is approximated on the uniform grid
J ×N = 8000× 4000.

2.

u(t, x)=
1

+
√

1+it/α
exp

(
ik(x− x(0) − kt) − (x−x(0)−2kt)2

4(α+ it)

)
, (4.8)

where k = 100, α = 1/120, x(0) = 0.8, x ∈ [0, 1.5], t ∈ [0, 0.04]. We use
the uniform discretisation grid J ×N = 12000× 4000.

3. The solution is defined by (4.7), x ∈ [−10, 10], t ∈ [0, 2]. We use the
uniform discretisation grid J ×N = 16000× 10000.

4. The solution is defined by (4.8), where k = 100, α = 1/120, x(0) = 0.8.
x ∈ [0, 2], t ∈ [0, 0.08]. We use the uniform discretisation grid J × N =
16000× 8000.

Next, we consider the problem (4.4) as a local optimisation problem, which
can be solved using an iterative algorithm with a given initial starting point.
As a local optimiser Nelder-Mead (see Figure 3 [40]) algorithm is used [25].
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XR
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Expansion
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X2
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X1

X2

X1'

X2'
Shrinking

Figure 3. One possible step of the Nelder-Mead algorithm applied to a problem in
R2 [40], here Xi is vertices, XM – centroid of two worst vertices.

We propose a family of modifications of the original Nelder-Mead algorithm
in order to increase the parallelisation degree of it.

Let N be the number of parameters being optimized. Then the simplex has
N + 1 vertices, each of them is represented by a set of parameters written into
N -dimensional vectors Xi, i = 1, . . . , N+1 (N+1 N -dimensional vectors total).
We denote X = [X1, X2, . . . , XN+1], f(X) is the objective function, ε defines
the stopping criteria. Then Nelder–Mead method is defined by Algorithm 2.

Algorithm 2. The Nelder–Mead method

1: simplexSolve(f,X, ε):
2: Begin
3: F̄ = sum({f(Xi), i = 1, . . . , N + 1})/(N + 1)
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4: E = sum({
(
f(Xi)− F̄

)2
, i = 1, . . . , N + 1})/(N + 1)

5: if E < ε then
6: return X
7: end if
8: sort X in such way that f(X1) ≤ f(X2) ≤ · · · ≤ f(XN+1)
9: x0 = sum([X1, X2, . . . , XN ])/N

10: XR = x0 + α(x0 −XN+1)
11: if f(X1) ≤ f(XR) < f(XN ) then
12: Xn+1 = XR

13: goto 2
14: end if
15: if f(X1) > f(XR)) then
16: XE = x0 + γ(XR − x0)
17: if f(XE) < f(XR)) then
18: XN+1 = XE

19: else
20: XN+1 = XR

21: end if
22: goto 2
23: end if
24: XC = x0 + ρ(xN+1 − x0)
25: if f(XC) < f(xN+1)) then
26: XN+1 = XC

27: goto 2
28: end if
29: Xi = X1 + σ(Xi −X1),∀i ∈ {2, . . . , N + 1}
30: goto 2
31: End

At each iteration the following four different scenarios can be obtained:

• Reflection – compute the value fR of the objective function at the point
XR = x0 + α(x0 − xN ), i.e. f(x1) ≤ fR ≤ f(xN+1). Depending on the
value fR this can be the end of the iteration.

• Expansion – depending on the fR (fR < f(x1)), an additional computa-
tion of the objective function at the point XE = x0 + γ(xR−x0) is done,
meaning the total computation of two objective function values: fR, fE .

• Contraction – depending on the fR (fR ≥ f(x1)), an additional compu-
tation of the objective function at point XC = x0 +ρ(xN+1−x0) is done,
meaning the total computation of two objective function values: fR, fC .

• Compression – compute m objective function values, as well as fR and
fC i.e. Xi = X1 +σ(Xi−X1),∀i ∈ {2, . . . , N +1}. Here m is the number
of simplex dimensions.

The first three scenarios require to compute one or two values of the ob-
jective function from the set: fR, fE , fC . We can neglect the last scenario,
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because it occurs very rarely. For the first three scenarios we propose to com-
pute two or three points simultaneously. Algorithmically this means that we
change the order of computations, which let us to parallelise the Nelder-Mead
method. In most cases only two of three points will be used. Therefore, some
redundant calculations will be performed, however, this modification gives an
additional parallelisation of computations.

Thus, two modifications of the sequential (A1) Nelder-Mead method are de-
fined. For A2 we compute in parallel two values of the objective function fR, fE
and for A3 we compute in parallel all three values fR, fE , fC . As a test case
we assume that the first scenario is relatively rare, the extension step is done
with probability 2/3 and contraction steps occurs with probability 1/3. Then
we get that the algorithmic efficiency of the proposed parallel modifications are
equal to γ2 = 0.75 and γ3 = 2/3, respectively. We note, that these values can
be estimated more precisely for specific applications, and one example is given
for the computational experiments with the Rosenbrock objective function in
Section 6.

5 Experimental results

In this section we present results of the parallel scalability experiments. All
numerical tests in this work were performed on the computer cluster “HPC
Sauletekis” at the High Performance Computing Center of Vilnius University,
Faculty of Physics. We have used up to 8 nodes with Intel R© Xeon R© processors
E5-2670 with 16 cores (2.60 GHz) and 128 GB of RAM per node. Computa-
tional nodes are interconnected via the InfiniBand network.

Parallel algorithms are implemented using MPI with C++ language. The
Nelder-Mead method itself is performed on the main process because it takes
the negligibly small part of calculations, the main process also serves as a
master which distributes the tasks, i.e. simplex points, which are calculated
by different groups of processes simultaneously. Each group of processes is
implemented as MPI communicator and solves the Schrödinger problem using
Wang’s algorithm.

Our main goal is to investigate the efficiency of the proposed three level
template of workload distribution between processes. First, we have selected
three specific benchmarks with different discretizations (4.2), when M = 4
discrete approximations of PDEs (4.3) are solved numerically to compute one
value of the objective function. The sizes (Jm ×Nm), m = 1, . . . , 4 of discrete
problems are given in Table 1.

Table 1. Benchmarks with different sizes Jm ×Nm of the discrete problem (4.3).

Benchmark 1 Benchmark 2 Benchmark 3

Eq. Sizes Sizes Sizes

1 8000 × 40000 8000 × 20000 8000 × 10000
2 4000 × 20000 4000 × 20000 2000 × 20000
3 2000 × 20000 4000 × 10000 2000 × 10000
4 2000 × 10000 2000 × 10000 1000 × 20000
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In the first benchmark the size of one task v1 is much bigger than sizes of
the remaining three tasks. In the second benchmark two changes are done.
They make this set of tasks more suited for parallelisation on large number
of processes: the size of task v1 is reduced twice by taking a smaller number
of time steps N1; the size of task v3 remains the same, but the number of
points J3 is increased twice, therefore the scalability of Wang’s algorithm is
improved for this task. In the third benchmark the relative sizes of tasks vm
are more homogeneous than in the first benchmark, but this result is achieved
by reducing the number of space grid points J2, J4, therefore the scalability of
Wang’s algorithm is decreased for these two tasks, especially for v4.

First, we exclude the efficiency condition from the load balancing algorithm
by taking Emin = 0 in (3.3). The distribution of processors between tasks are
presented in Tables 2–4. We also provide the actual computation time Tp along
with TMp that were predicted by the theoretical complexity model. As we can
see from Table 2 the model and experimental times are close to each other and
still experimental times are smaller than the model predictions. This result
is expected since model times (see Figure 2) were based on benchmarks, that
imitate a pessimistic scenario when all nodes were artificially loaded during
experiments. The prediction accuracy depends on many parameters such as
cluster architecture, network loads during computations.

For comparison purposes we also provide the results obtained by using the
two-level parallelisation template. K = 1, then the first level of the three-level
template is not used.

It is important to note, that in Tables 2-5 we present the CPU time needed
to compute one useful point (4.4), i.e., the actual time is divided by γk k, which
represents the usefulness of computations. Optimal algorithm Ak is selected
automatically using the approach that was described above.

As it follows from Table 2, the usage of the first level with k = 3 and
P = 128 processes increases the potential speed-up from 38.75 to 60.44. If
P = 128 and k = 1 then only 70 processes are used. However the result is very
similar to the case when P = 64 processes are used, which means that these
additional resources are used very inefficiently.
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Figure 4. Experimental model times for Benchmark 1 with p = 16(left) and
p = 64(right).

In the Figure 4 the Gantt charts show theoretical model time tm(p), that is
needed to obtain the solutions of different equations. The workload distribution
becomes closer to uniform as the number of processes is increased.
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Table 2. The results for Benchmark 1. Tp is the CPU time in seconds required to compute
one useful point (4.4).

p 16 32 64

k = 1

Eq. 1 10 22 50
Eq. 2 3 5 8
Eq. 3 2 3 4
Eq. 4 1 2 2

Total number of p 16 32 64

Model TMp 11.145 5.784 3.614
Tp 11.003 5.394 3.608

Speed-up 12.679 25.862 38.664

p 96 128 128

k = 2 k = 3 K = 1

Eq. 1 34 29 56
Eq. 2 8 7 8
Eq. 3 4 4 4
Eq. 4 2 2 2

Total number of p 96 126 70

Model TMp 2.742 2.272 3.605
Tp 2.719 2.308 3.600

Speed-up 51.307 60.444 38.75

Table 3. The results for Benchmark 2. Tp is the CPU time in seconds required to compute
one useful point (4.4).

p 16 32 64 96 128 128

k = 1 k = 2 K = 1

Eq. 1 9 18 37 26 37 56
Eq. 2 4 8 15 12 15 18
Eq. 3 2 4 8 7 8 8
Eq. 4 1 2 4 3 4 4

Total number of p 16 32 64 96 128 86

Model time 6.59 3.36 2.01 1.65 1.34 1.8
Tp 6.69 3.37 1.98 1.62 1.33 1.86

Speed-up 13.6 27.03 46.03 56.24 68.25 49.03

5.1 The control of efficiency

The reduction of the energy consumption is an important goal, especially when
increasment of computation speed-up are small for additional processes. The
presented results indicate that in some cases there is a highly inefficient usage
of computational resources.

For the purposes of controlling the efficiency of calculations the condition
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Table 4. The results for Benchmark 3. Tp is the CPU time in seconds required to compute
one useful point (4.4).

p 16 32 64 96 128 128

k = 1 k = 2 K = 1

Eq. 1 8 16 32 24 32 56
Eq. 2 4 8 16 12 16 31
Eq. 3 2 4 8 6 8 8
Eq. 4 2 4 8 6 8 9

Total number of p 16 32 64 96 128 104

Model time 3.33 1.76 1.05 0.87 0.7 0.9
Tp 3.38 1.76 1.06 0.86 0.7 0.95

Speed-up 14.33 27.55 45.96 56.72 69.08 51.23

(3.3) was introduced in Algorithm 1. This condition guarantees that the effi-
ciency of the numerical solution of each block of tasks will be at least Emin.
It is important to note, that we are not attempting to generate optimal map-
pings of processors – we have developed an heuristic that provides the quality
of distribution of tasks, that is sufficient for the most practical purposes. The
quality of the algorithm is improved when more processors are available.

Next, a more detailed analysis of the Benchmark 1 is provided. In Table 5
the results for Emin > 0 are presented. Comparing the results in Table 5 with
the results in Table 2 we see that for K = 1 and Emin = 0.6 the number of
processes for the first equation is decreased by 14, however, the computation
times are almost the same as it was in the case of Emin = 0. Also, for K = 3 the
efficiency requirement begins to limit the number of processes for Emin = 0.75
and it decreases further with Emin = 0.8.

However, even then a three level approach with K = 3 is superior to the
standard two-level approach in terms of the final speed-up. The results in
Table 5 indicate that even for the efficiency limitation Emin = 0.75 the proposed
three-level approach lets to maintain a big number of parallel processes active,
this number is equal to (26 + 7 + 4 + 2) × 3 = 117. The speed-up is 56 and
the efficiency of the parallel algorithm is 56/117 ≈ 0.48. The last column in
Table 5 with K = 1 presents the results for the two-level approach (without
the first level). A straightforward two-level parallelisation approach would
have the limited parallelisation possibility especially for problems of the size
J = 2000. For such small subproblems it would be possible to utilise only up
to 32 processes (Figure 2), the speed-up would be quite limited as well.

Note, that all previous results represents the analysis based on a single
Nelder-Mead iteration. Next, we solve the actual real-world optimisation prob-
lem (4.4). The maximum number of processes P = 128 the load balancing
algorithm has selected k = 1. The number of Nelder-Mead method iterations
was fixed to 1000. The parallel and sequentional versions gave the same re-
sults the minimum value of the error EC∞ = 0.0806. The sequentional version
of computations took 180286 seconds, the parallel version computations took
2232 seconds. Thus, a speed-up factor of 81.8 was achieved. The selection of

Math. Model. Anal., 25(4):584–607, 2020.



602 R. Kriauzienė, A. Bugajev and R. Čiegis

Table 5. The results for Benchmark 1 with Emin > 0. Tp is the CPU time in seconds
required to compute one useful point (4.4).

p 128

Emin 0.75 0.8 0.6
k = 3 k = 3 K = 1

Eq. 1 26 19 42
Eq. 2 7 5 8
Eq. 3 4 3 4
Eq. 4 2 1 2

Total number of p 117 84 56

Model TMp 2.45 3.17 3.84
Tp 2.49 3.08 3.76

Speed-up 56.03 45.37 37.11

k = 1 indicates that the number of processes can be greatly increased – the
algorithm has selected k = 1 automatically for a given number of processes.

6 The comparison of different Nelder-Mead
parallelisation methods

Here we present the analysis of the convergence properties of different modifica-
tions of the Nelder-Mead method. As it was mentioned before, the convergence
rate of the selected algorithm directly affects the parallelisation efficiency, which
is represented by γk, where k is the parallelisation degree. In this section we
measure γk by measuring the experimental parallel efficiency of algorithms.

The detailed analysis of convergence behaviour for different objective func-
tions is out of the scope of this research. However, the objective function from
the previous sections is suitable for a narrow class of applications. Thus, to
perform a comparison of different parallel versions of Nelder-Mead method we
minimise the Rosenbrock objective function that is widely used by researchers
in the field of optimisation theory [8, 36].

We show that in the case of the Rosenbrock function the real experimental
γk values are different than were assumed to be in the experiments of the
previous sections. The reason is that the significant number of iterations require
to compute only one point FR.

We compare the results of our parallel modification of the Nelder-Mead
method with the state-of-art technique proposed in [22]. As a benchmark we
use the Rosenbrock function

f(x1, . . . , xd) =

d−1∑
i=1

100(xi+1 − x2
i )

2 + (1− xi)2,

which makes the optimisation problem challenging. It should be noted that the
parallel algorithm [22] can achieve the parallelisation degree K that is equal to
the optimisation problem dimension d. Thus potentially this algorithm is well
suited for parallel computers with a big number of processes.
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Table 6. The γk values for direct Nelder-Mead parallelisation.

k d = 3 d = 6 d = 7

2 0.603 0.604 0.606
3 0.584 0.517 0.502

In the Table 6 we compare three cases d = 3, 6, 7: d = 3 – the minimum,
that is needed for parallelilsation with both methods, d = 7 – the case that was
studied in previous section, d = 6 – to show the tendency for smaller d. We
provide results obtained when the Rosenbrock function of different dimensions
d = 3, 6, 7 was minimized by using our parallel modification of the Nelder-Mead
method. The values of the efficiency coefficients γk are presented. They show
that this parallel algorithm is quite stable and it is well-suited to be used in
the three-level template solver for small dimension objective functions.

Table 7. The γk values for the parallel Nelder-Mead algorithm from (Lee and Wiswall,
2007).

k d = 3 d = 6 d = 7

2 0.668 0.685 0.714
3 – 0.436 0.454
4 – 0.023 0.104
5 – 0.001 0.002
6 – – 0.001

Table 7 presents results obtained by using the state-of-the-art parallel Nelder-
Mead algorithm from [22]. It follows, that in all investigated cases the paral-
lelisation degree is very limited, since the convergence drops significantly when
the parallelisation degree is increased. This method is mainly targeted to solve
problems when the dimension of the objective function is big (e.g. problems in
financial mathematics, when d ≈ 100).

7 Conclusions

In this paper, we introduced a three-level parallelisation template which utilises
a new model-based load balancing technique which is based on experimental
data. This technique was tested for three benchmarks. The experimental
results confirmed the good accuracy of the new time prediction model.

Comparing the three-level template to the classical two-level scheme, the
proposed scheme looks more promising for development of efficient parallel al-
gorithms in the case when a big number is computational resources is available.

The possibilities of the three-level parallelisation template are demonstrated
for solving local optimization problems. On the first level a well-known Nelder-
Mead algorithm was used as a basic algorithm. We also proposed a family
of parallel versions of this method, which increases the parallelisation degree
up to the factor of three. The proposed load balancing algorithm chooses the
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optimal version of the parallel Nelder-Mead algorithm. It dynamically increases
the parallelisation degree on the first level when the speed-up of the second and
third levels begins to saturate.

For the considered test problem on the second level M PDEs were solved
numerically and on the third parallelisation level Wang’s algorithm was used
to solve systems of linear equations. It is shown that there exists a limit for
the speed-up that can be achieved due to limitations of Wang’s algorithm. The
proposed approach extends the parallelisation degree allowing to achieve an
additional speed-up.

The proposed load balancing algorithm limits the size of computational
resources to preserve the efficiency requirement which can be controlled by
selecting the parameter Emin.

Despite the fact that we introduce the three-level scheme which can be
seen as a general approach, it is suitable only if some specific properties are
fulfiled. One of the requirements is that two-level parallelisation should be
accompanied with some algorithm on higher level that has alternatives with
different paralellisation degrees. The the new scheme uses these algorithms to
extend the parallelisation degree of the total algorithm.

Additionally to the studied application case, some of other possible appli-
cations were mentioned in this paper, however, we do not pretend to prove the
usefulness of this technique in other cases. It depends on specific properties of
such problems and application of this new three level scheme is not an easy
and straightforward task. These topics are a subject of further research, thus,
it is out of scope of the current article.
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