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Abstract. The article proposes a numerically approximate method for solving a
boundary value problem for an integro-differential equation with a parameter and
considers its convergence, stability, and accuracy. The integro-differential equation
with a parameter is approximated by a loaded differential equation with a parame-
ter. A new general solution to the loaded differential equation with a parameter is
introduced and its properties are described. The solvability of the boundary value
problem for the loaded differential equation with a parameter is reduced to the solv-
ability of a system of linear algebraic equations with respect to arbitrary vectors of
the introduced general solution. The coefficients and the right-hand sides of the sys-
tem are compiled through solutions of the Cauchy problems for ordinary differential
equations. Algorithms are proposed for solving the boundary value problem for the
loaded differential equation with a parameter. The relationship between the qualita-
tive properties of the initial and approximate problems is established, and estimates
of the differences between their solutions are given.
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1 Introduction

The theory of control problems for a system of ordinary differential equations
and for a system of integro-differential equations in partial derivatives, with
parameters, is rapidly developing and used in various fields of applied mathe-
matics, biophysics, biomedicine, chemistry, etc. Control problems, also called
as boundary value problems with parameters and parameter identification prob-
lems for systems of ordinary differential and integro-differential equations with
parameters, are intensively studied by many authors [3, 4, 8, 9, 17, 18, 19, 20,24,
25]. To find solutions to these problems, methods of the qualitative theory of
differential equations, variational calculus and optimization theory, the method
of upper and lower solutions, etc. were used. Note that the problems of de-
termining effective criteria for unique solvability and constructing numerical
algorithms for finding optimal solutions to control problems for systems of or-
dinary differential and integro-differential equations with parameters are still
relevant.

In this article, we extend the methods and results of [14,15] to a boundary
value problem for integro-differential equations with parameters. The solvabil-
ity conditions for boundary value problems for a system of integro-differential
equations with parameters are established. A numerically approximate method
for solving the investigated boundary value problem is constructed, and its con-
vergence, stability, and accuracy are investigated.

Consider the boundary value problem for the integro-differential equation
with a parameter

dx

dt
=A(t)x+

∫ T

0

K(t, τ)x(τ)dτ+A0(t)µ+f(t), x ∈ Rn, µ ∈ Rl, t ∈ (0, T ), (1.1)

B0µ+Bx(0) + Cx(T ) = d, d ∈ Rn+l. (1.2)

Here the (n×n) matrices A(t) and K(t, τ) are continuous on [0, T ] and [0, T ]×
[0, T ], respectively; the (n× l) matrix A0(t) is continuous on [0, T ], the n vector
f(t) is continuous on [0, T ].

Let C([0, T ], Rn) be the space of continuous functions x : [0, T ]→ Rn with
the norm ||x||1 = max

t∈[0,T ]
||x(t)|| = max

i=1,n
max
t∈[0,T ]

|xi(t)|.

Solution to problem with parameter in Equations (1.1)–(1.2) is a pair
(x∗(t), µ∗), where the function x∗(t) ∈ C([0, T ], Rn) is continuously differen-
tiable on (0, T ), the parameter µ∗ ∈ Rl, satisfies integro-differential equation
(1.1) and boundary condition (1.2). Based on the parameterization method
[16], the solvability and unique solvability criteria for problem (1.1)–(1.2) with-
out a parameter are set in [11,12,13, 16]. Algorithms for the parameterization
method for solving this problem are proposed in [14,15].

The aim of this paper is to construct approximate and numerical meth-
ods for solving the problem with parameter in (1.1)–(1.2) and to ensure their
convergence, stability, and accuracy.

Section 2 is devoted to a loaded differential equation with a parameter.
By the Simpson formula, the integral term of Equation (1.1) is replaced by
the integral sum, and problem (1.1)–(1.2) reduces to the problem for a loaded
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differential equation with parameter. A new approach to the general solution
of a loaded differential equation with a parameter is proposed. A new δm(θ)
general solution exists for all loaded linear nonhomogeneous differential equa-
tions with parameter and depends on the m+ 1 arbitrary vectors λr ∈ Rn. We
study the properties of δm(θ) general solution and obtain solvability criteria for
loaded differential equations with a parameter. The condition for the existence
of a classical general solution is also established. Numerical and approximate
methods for compilation of the δm(θ) general solution are proposed.

The employment of the δm(θ) general solution for solving the problem with
a parameter for a loaded differential equation is given in Section 3. Substituting
the expressions of the δm(θ) general solution into the boundary condition (1.2)
and the continuity conditions for solutions at loaded points, we obtain a system
of linear algebraic equations with respect to λr ∈ Rn, r = 1,m+ 1. Invertibility
of Q∗(δm(θ)), the matrix of the compiled system, is equivalent to the well-
posedness of the problem with a parameter for the loaded differential equation.
The coefficients and the right-hand sides of this system are constructed through
solutions to the Cauchy problems for ordinary differential equations on the
subintervals [θr−1, θr], r = 1,m. Algorithms for solving the problem with a
parameter for the loaded differential equation are proposed.

The interrelation between the unique solvability of the initial boundary
value problem and the unique solvability of the approximate boundary value
problem is established in Section 4. Estimates for the differences between their
solutions are given.

Section 5 presents methods for solving the problem with parameter (1.1)–
(1.2). The interval [0, T ] is divided into 2N parts with a step h > 0 : 2Nh = T.
Equation (1.1) is replaced by a loaded differential equation, and problem (1.1)–
(1.2) is approximated by a problem with a parameter for a loaded differential
equation.

The results of Section 4 and the continuity of the kernel K(t, τ) on [0, T ]×
[0, T ] give uniform convergence of approximate solutions of the problem to
the solution of problem (1.1)–(1.2) on [0, T ] as h → 0. It is shown that the
convergence is of the fourth order with respect to h if data of problem (1.1)–
(1.2) are sufficiently smooth.

For an approximate problem with a parameter, a system of linear algebraic
equations with respect to arbitrary vectors of a new general solution is com-
posed. It is shown that the conditionality number of this system increases
linearly relative to 2N if the approximate problem with the parameter is well-
posed. This property of the system guarantees its stable solution. Cauchy
problems for ordinary differential equations on subintervals are the main aux-
iliary problems in the proposed methods. If we choose an approximate method
for solving these problems, we obtain an approximate method for solving the
problem with parameter (1.1)–(1.2).

Numerical methods for solving Cauchy problems give numerical methods
for solving the problem with parameter (1.1)–(1.2).
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2 Approximate loaded linear differential equation with
parameter: new general solution and its properties

Replacing the integral term of Equation (1.1) by a suitable integral sum, we
obtain the loaded differential equation with parameter

dx

dt
= A(t)x+

m+1∑
j=1

Kj(t)x(θj−1) +A0(t)µ+ f(t), (2.1)

where t ∈ (0, T ), x ∈ Rn, µ ∈ Rl, the (n × n) matrices Kj(t), j = 1,m+ 1,
are continuous on [0, T ] and 0 = θ0 < θ1 < ... < θm−1 < θm = T .

Solution to Equation (2.1) is a pair (x∗(t), µ∗), where the function x∗(t) ∈
C([0, T ], Rn) is continuously differentiable on (0, T ), the parameter µ∗ ∈ Rl

satisfies the equation for all t ∈ (0, T ).
Equation (2.1) is also referred to as a differential boundary equation. Loa-

ded differential equations frequently are used in the applied mathematics. Par-
ticularly, in [21]– [22], they are used to describe the problems of long-term fore-
casting and control of groundwater level in the soil moisture. Various problems
for these equations and methods for solving them are studied in [1,2,5,6,18,23].
The Fredholm integro-differential equation with a parameter has several fea-
tures that should be considered when methods for research and solving prob-
lems with Equation (1.1) are created. The existence of an unsolvable Fredholm
integro-differential equation with a parameter is one of such features. Another
feature is that the Cauchy problem for Equation (1.1) can be unsolvable, al-
though the problem with parameters for this equation has a unique solution.
These features are also the characteristics of loaded differential equations with
a parameter.

Suppose (x(t, c), µ(c)) is a solution to Equation (2.1) for all c ∈ Rn, and each
solution (x̃(t), µ(c)) of Equation (2.1) coincides with the function (x(t, c), µ(c))
for a unique c = c̃. Then the pair (x(t, c), µ(c)) is said to be the classical
general solution of the loaded linear differential equation with parameter (2.1)
if it exists for all f(t) ∈ C([0, T ], Rn). General solution is one of the main
tools for research and solving problems for differential and integro-differential
equations. Since there are unsolvable loaded linear differential equations, the
classical general solution also exists not for all equations (2.1). Therefore, we
propose a new concept for the general solution of a loaded differential equation
with a parameter.

Let C([0, T ], θ, Rnm) denote the space of function systems x[t] = (x1(t),
x2(t), . . . , xm(t)), where xr : [θr−1, θr) → Rn are continuous and have finite
left-side limits lim

t→θr−0
xr(t) for all r = 1,m, with norm

‖x[·] ‖2 = max
r=1,m

sup
t∈[θr−1,θr)

‖xr(t)‖.

Let (x(t), µ) be the solution of the loaded differential equation with parame-
ter (2.1), and xr(t) be the restriction of the function x(t) to the sub-interval
[θr−1, θr), i.e. xr(t) = x(t), t ∈ [θr−1, θr), r = 1,m. Then the pair (x[t], µ),
where the function system x[t] = (x1(t), x2(t), . . . , xm(t)) belongs to
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C([0, T ], θ, Rnm), µ ∈ Rl and satisfies the system of loaded differential equa-
tions with parameter:

dxr
dt

= A(t)xr +

m∑
j=1

Kj(t)xj(θj−1) +Km+1(t)x(θm) +A0(t)µ+ f(t), (2.2)

where t ∈ (θr−1, θr), r = 1,m, x(θm) is the value of function x(t) at the end-
point of interval: t = θm = T.
A triple (x̃[t], x̃(θm), µ) with x̃[t] = (x̃1(t), x̃2(t), ..., x̃m(t)) ∈ C([0, T ], θ, Rnm),
and x̃(θm) ∈ Rn, and µ ∈ Rl that satisfies Equation (2.2) is called a solution
to Equation (2.2).

We introduce the parameters λr = xr(θr−1), r = 1,m, and λm+1 = x(θm),
and λm+2 = µ. We also introduce an unknown functions ur : [θr−1, θr)→ Rn,
r = 1,m. By substituting ur(t) = xr(t) − λr at every rth interval [θr−1, θr),
we obtain a system of ordinary differential equations with parameters

dur
dt

= A(t)(ur +λr)+

m+1∑
j=1

Kj(t)λj +A0(t)λm+2 +f(t), t ∈ (θr−1, θr), (2.3)

and the initial conditions

ur(θr−1) = 0, r = 1,m. (2.4)

For any fixed λ̂ = (λ̂1, λ̂2, . . . , λ̂m+1, λ̂m+2) ∈ Rn(m+1)+l and r = 1,m, the

Cauchy problem (2.3)–(2.4) has a unique solution ur(t, λ̂) on the subinterval

[θr−1, θr), and the function system u[t, λ̂] = (u1(t, λ̂), u2(t, λ̂), . . . , um(t, λ̂)) be-

longs to C([0, T ], θ, Rnm). The function system u[t, λ̂] is called the solution to

the Cauchy problem (2.3)–(2.4) with λ = λ̂. The system of loaded differential
equations with parameter (2.2) is equivalent to Cauchy problem with parame-
ters (2.3)–(2.4) in the following sense.

Let the triple (x̃[t] = (x̃1(t), x̃2(t), ..., x̃m(t)), x̃(θm), µ̃) be a solution of

Equation (2.2). Choose the parameters λ̃r = x̃r(θr−1), r = 1,m, and λ̃m+1 =

x̃(θm), and λ̃m+2 = µ̃. Then the function system u[t, λ̃] = (u1(t, λ̃), u2(t, λ̃), . . . ,

um(t, λ̃)), where ur(t, λ̃) = x̃r(t) − λ̃r, r = 1,m, is a solution to the Cauchy

problem (2.3)–(2.4) with λ = λ̃ = (λ̃1, λ̃2, ..., λ̃m+1, λ̃m+2) ∈ Rn(m+1)+l. And
vice versa, if the function system u[t, λ∗] = (u1(t, λ∗), u2(t, λ∗), . . . , um(t, λ∗)) ∈
C([0, T ], θ, Rnm) is a solution to the Cauchy problem (2.3)–(2.4) with λ = λ∗ =
(λ∗1, λ

∗
2, ..., λ

∗
m+1, λ

∗
m+2) ∈ Rn(m+1)+l, then the triple (x∗[t] = (x∗1(t), x∗2(t), . . . ,

x∗m(t)), x∗(θm), µ∗) with x∗r(t) = λ∗r + ur(t, λ
∗), r = 1,m, and x∗(θm) = λ∗m+1,

and µ∗ = λ∗m+2 is a solution of Equation (2.2).
Next, a new concept of a general solution of a loaded differential equation

with a parameter is introduced.

Definition 1. Let u[t, λ] = (u1(t, λ), u2(t, λ), . . . , um(t, λ)) be a solution to the
Cauchy problem (2.3)–(2.4) with λ = (λ1, λ2, . . . , λm+1, λm+2) ∈ Rn(m+1)+l.
Then the pair (x(δm(θ), λ, t), µ(δm(θ), λ)), where the function x(δm(θ), λ, t) and
the parameter µ(δm(θ), λ) are given by the equalities

x(δm(θ), λ, t) = λr + ur(t, λ) for t ∈ [θr−1, θr), r = 1,m,
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and x(δm(θ), λ, T ) = λm+1, µ(δm(θ), λ) = λm+2 is called a δm(θ) general solu-
tion for a loaded differential equation with parameter (2.1).

As follows from Definition 1, the δm(θ) general solution depends on the m+ 2
arbitrary vectors λr ∈ Rn, r = 1,m+ 1, λm+2 ∈ Rl, and satisfies the loaded
differential equation with parameter (2.1) for all t ∈ (0, T )\{θp, p = 1,m− 1}.

Let Xr(t) be the fundamental matrix of the ordinary differential equation

dx

dt
= A(t)x, t ∈ [θr−1, θr], r = 1,m.

Then the unique solution to the Cauchy problem (2.3)–(2.4) can be written as

ur(t, λ) = Xr(t)

∫ t

θr−1

X−1r (τ)(A(τ) +Kr(τ))dτλr

+

m+1∑
j=1
j 6=r

Xr(t)

∫ t

θr−1

X−1r (τ)Kj(τ)dτλj +Xr(t)

∫ t

θr−1

X−1r (τ)A0(τ)dτλm+2

+Xr(t)

∫ t

θr−1

X−1r (τ)f(τ)dτ, t ∈ [θr−1, θr), r = 1,m. (2.5)

Therefore, from (2.5) we obtain the following representation of the δm(θ) gen-
eral solution:

x(δm(θ), λ, t) =

m+1∑
j=1

αrj(δm(θ), t)λj + α0
r(δm(θ), t)λm+2 + βr(δm(θ), t),

t ∈ [θr−1, θr), r = 1,m, (2.6)

x(δm(θ), λ, T ) = λm+1, (2.7)

µ(δm(θ), λ) = λm+2, (2.8)

with

αrr(δm(θ), t) = I +Xr(t)

∫ t

θr−1

X−1r (τ)(A(τ) +Kr(τ))dτ,

t ∈ [θr−1, θr), r = 1,m, (2.9)

αrj(δm(θ), t) = Xr(t)

∫ t

θr−1

X−1r (τ)Kj(τ)dτ,

t ∈ [θr−1, θr), j = 1,m+ 1, j 6= r, (2.10)

α0
r(δm(θ), t) = Xr(t)

∫ t

θr−1

X−1r (τ)A0(τ)dτ, t ∈ [θr−1, θr), r = 1,m, (2.11)

βr(δm(θ), t) = Xr(t)

∫ t

θr−1

X−1r (τ)f(τ)dτ, t ∈ [θr−1, θr), r = 1,m, (2.12)

where I is the identity matrix of dimension n.
The (n × n) matrices αrj(δm(θ), t), r = 1,m, j = 1,m+ 1, the (n × l)

matrices α0
r(δm(θ), t), r = 1,m, and n vectors βr(δm(θ), t), r = 1,m, are

called the coefficients and right sides of δm(θ) general solution, respectively.
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Theorem 1. Let a pair (x̃(t), µ̃), where the function x̃(t) is piecewise continu-
ous on [0, T ] with possible discontinuity points t = θr, r = 1,m and the parame-
ter µ̃ ∈ Rl, be given, and the pair (x(δm(θ), λ, t), µ(δm(θ), λ)) be the δm(θ) gen-
eral solution to Equation (2.1). Suppose that the function x̃(t) has a continu-
ous derivative and satisfies Equation (2.1) for all t ∈ (0, T )\{θp, p = 1,m− 1}.
Then there is a unique λ̃ = (λ̃1, λ̃2 . . . , λ̃m+1, λ̃m+2) ∈ Rn(m+1)+l such that the

equality x(δm(θ), λ̃, t) = x̃(t) holds for all t ∈ [0, T ] and µ(δm(θ), λ) = µ̃.

Proof. Let a pair (x̃(t), µ̃), where the function x̃(t) is piecewise continuous on
[0, T ], the parameter µ̃ ∈ Rl, be given, and x̃[t] = (x̃1(t), x̃2(t), ..., x̃m(t)) be
a function system of restrictions of the function x̃(t) to [θr−1, θr), r = 1,m.
Under the conditions of the Theorem, the triple (x̃[t], x̃(θm), µ̃) is a solution

to Equations (2.2). Assign the parameter λ̃ = (λ̃1, λ̃2 . . . , λ̃m+1, λ̃m+2) ∈
Rn(m+1)+l with λ̃r = x̃r(θr−1), r = 1,m, and λ̃m+1 = x̃(θm), and λ̃m+2 = µ̃,
for the pair (x̃(t), µ̃).

We solve Cauchy problem (2.3)–(2.4) with λ = λ̃ and find u[t, λ̃] = (u1(t, λ̃),

u2(t, λ̃), ..., um(t, λ̃)). Then, due to the relations between the solution of Equa-
tion (2.2) and the solution of the Cauchy problem (2.3)–(2.4), we obtain:

x̃(t) =x̃r(t) = λ̃r + ur(t, λ̃) = x(δm(θ), λ̃, t), t ∈ [θr−1, θr), r = 1,m,

x̃(T ) =x̃(θm) = λ̃m+1 = x(δm(θ), λ̃, T ), µ̃ = λ̃m+2 = µ(δm(θ), λ̃).

To show that λ̃ is unique, suppose that λ∗ = (λ∗1, . . . , λ
∗
m+1, λ

∗
m+2) ∈ Rn(m+1)+l

is another parameter such that x̃(t) = x(δm(θ), λ∗, t) for all t ∈ [0, T ], and
µ̃ = µ(δm(θ), λ∗).

Then, according to Definition 1, we have x̃(t) = x̃r(t) = λ∗r + ur(t, λ
∗)

for t ∈ [θr−1, θr), r = 1,m, x̃(T ) = λ∗m+1, µ̃ = λ∗m+2, where the function
system u[t, λ∗] = (u1(t, λ∗), u2(t, λ∗), . . . , um(t, λ∗)) is a solution to the Cauchy
problem (2.3)–(2.4) with λ = λ∗ ∈ Rn(m+1)+l. Now, using the initial conditions

(2.4) and the way of choosing λ̃ ∈ Rn(m+1)+l, we get λ̃r = x̃r(θr−1) = λ∗r +

ur(θr−1, λ
∗) = λ∗r , r = 1,m, and λ̃m+1 = x̃(θm) = x̃(T ) = λ∗m+1, and λ̃m+2 =

µ̃ = λ∗m+2. Theorem 1 is proved. ut

Corollary 1. Let a pair (x∗(t), µ∗) be a solution to Equation (2.1), and a pair
(x(δm(θ), λ, t), µ(δm(θ), λ)) be a δm(θ) general solution to Equation (2.1). Then
there exists a unique λ∗ = (λ∗1, λ

∗
2, . . . , λ

∗
m+1, λ

∗
m+2) ∈ Rn(m+1)+l such that the

equality x(δm(θ), λ∗, t) = x∗(t) holds for all t ∈ [0, T ] and µ(δm(θ), λ) = µ∗.

If a pair (x(t), µ) is a solution of Equation (2.1), and x[t] = (x1(t), x2(t), . . . ,
xm(t)) is a function system consisting of restrictions of the function x(t) to the
sub-intervals [θr−1, θr), r = 1,m, then the following equations hold:

lim
t→θp−0

xp(t) = xp+1(θp), p = 1,m− 1, (2.13)

lim
t→T−0

xm(t) = x(θm). (2.14)

These equations are called continuity conditions for solution of Equation (2.1).
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Theorem 2. Let the triple (x[t], x(θm), µ) with x[t] = (x1(t), x2(t), ..., xm(t))
∈ C([0, T ], θ, Rnm) and x(θm) ∈ Rn, and µ ∈ Rl satisfy Equation (2.2) and
continuity conditions (2.13)–(2.14). Then the pair (x∗(t), µ∗), where the func-
tion x∗(t), given by the equalities x∗(t) = xr(t) for t ∈ [θr−1, θr), r = 1,m,
and x∗(T ) = x(θm), and µ∗ = µ, is a solution of the loaded differential equation
with parameter (2.1).

Proof. Equations (2.13) and (2.14) yield the continuity of the function x∗(t)
on [0, T ]. Since the triple (x[t], x(θm), µ) satisfies Equation (2.4), the pair
(x∗(t), µ∗), where the function x∗(t) has a continuous derivative and satisfies
Equation (2.1) for all t ∈ (0, T )\{θp, p = 1,m− 1}, and µ = µ∗. The existence
and continuity of ẋ∗(t) at the points t = θp, p = 1,m− 1, follow from the
following relations:

lim
t→θp−0

ẋ∗(t) = A(θp)x
∗(θp) +

m+1∑
j=1

Kj(θp)x
∗(θj−1) +A0(θp)µ

∗ + f(θp)

= lim
t→θp+0

ẋ∗(t), p = 1,m− 1. (2.15)

Relations (2.15) mean that the pair (x∗(t), µ∗) satisfies the loaded differential
equation with parameter on the interior loaded points of [0, T ]. Theorem 2 is
proved. ut

It is clear that the boundary value problem might be considered only for solv-
able loaded differential equations with a parameter. Thus, we apply the δm(θ)
general solution to establish the solvability criteria for Equation (2.1). Sub-
stituting the appropriate expressions from (2.6) and (2.7) into the continuity
conditions (2.13) and (2.14), we obtain the system of mn linear algebraic equa-
tions with respect to the m + 2 unknown vectors λj ∈ Rn, j = 1,m+ 1,
λm+2 ∈ Rl

m+1∑
j=1
j 6=r+1

αrj(δm(θ), θr)λj−(I − αrr+1(δm(θ), θr))λr+1 + α0
r(δm(θ), θr)λm+2

=− βr(δm(θ), θr), r = 1,m. (2.16)

Let D∗(δm(θ)) denote the nm × (n(m + 1) + l) matrix corresponding to the
left-hand side of (2.16). We rewrite (2.16) in the form:

D∗(δm(θ))λ = −β∗(δm(θ), f), (2.17)

where β∗(δm(θ), f)=
(
β1(δm(θ), θ1), β2(δm(θ), θ2), . . . , βm(δm(θ), θm)

)
∈Rnm.

Theorems 1, 2 and well-known statements of linear algebra lead to the
following assertion.

Theorem 3. A loaded linear differential equation with parameter (2.1) is solv-
able if and only if the vector β∗(δm(θ), f) is orthogonal to the kernel of the
transposed matrix (D∗(δm(θ)))′, i.e. iff the equality(

β∗(δm(θ), f), η
)

= 0
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is valid for ∀η ∈ Ker(D∗(δm(θ)))′, where (·, ·) is the inner product in Rnm.

Equation (2.17) and properties of the general solution allow us to obtain the
following statement on the existence of a classical general solution to Equa-
tion (2.1).

Theorem 4. A loaded linear differential equation with parameter (2.1) has a
classical general solution if rank D∗(δm(θ)) = mn.

Proof. Consider the system of mn linear algebraic equations (2.17). By as-
sumption, the matrix D∗(δm(θ)) has mn linearly independent columns. We
denote by D∗0(δm(θ)) the mn×mn matrix consisting of these columns, and by
D∗∗(δm(θ)) denote the mn×(n+ l) matrix consisting of the remaining columns.
We rewrite system (2.17) in the form:

D∗0(δm(θ))λ0 +D∗∗(δm(θ))λ∗ = −β∗(δm(θ), f), (2.18)

where λ0 ∈ Rnm and λ∗ ∈ Rn+l are the vectors composed of the coordinates
of the vector λ ∈ Rn(m+1)+l corresponding to our decomposition of matrix
D∗(δm(θ)). Since the matrix D∗0(δm(θ)) : Rnm → Rnm is invertible, the vector
λ0 ∈ Rnm is uniquely determined by (2.18):

λ0 = (D∗0(δm(θ)))−1(−β∗(δm(θ), f)−D∗∗(δm(θ))λ∗). (2.19)

Let us take λ∗ as an arbitrary vector c ∈ Rn+l, and by (2.19) we define all ele-
ments of the vector λ = (λ1, λ2, . . . , λm+1, λm+2) ∈ Rn(m+1)+l through c. Sub-
stituting the corresponding expressions of λr, r = 1,m+ 2, into the right-hand
side of (2.6), (2.7), and (2.8) we obtain the function x̃(c, t) = x(δm(θ), λ(c), t)
defined on [0, T ] and µ̃(c) = µ(δm(θ), λ(c)). It follows from Theorems 1, 2, and
3 that the pair (x̃(c, t), µ̃(c)) is a classical general solution to Equation (2.1).
Theorem 4 is proved. ut

Formulas (2.9)–(2.12), which determine the coefficients and the right-hand sides
of the δm(θ) general solution, contain the fundamental matricesXr(t), r = 1,m.
As a rule, the construction of fundamental matrices for systems of ordinary dif-
ferential equations with variable coefficients fails. Therefore, below we propose
numerical and approximate methods for constructing a δm(θ) general solution.
To do this, we consider the Cauchy problems for ordinary differential equations
on sub-intervals:

dv

dt
= A(t)v + P (t), v(θr−1) = 0, t ∈ [θr−1, θr], r = 1,m, (2.20)

where P (t) is a square matrix or a vector of dimension n continuous on [0, T ].

Denote by ar(P, t) the unique solution to the Cauchy problem (2.20). It is
clear that

ar(P, t) = Xr(t)

∫ t

θr−1

X−1r (τ)P (τ)dτ, t ∈ [θr−1, θr], r = 1,m. (2.21)
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Now, taking into account (2.21), we can determine the coefficients and the
right-hand sides of the δm(θ) general solution from the equations:

αrr(δm(θ), t) =I + ar(A+Kr, t), t ∈[θr−1, θr], r =1,m, (2.22)

αrj(δm(θ), t) =ar(Kj , t), t ∈[θr−1, θr], r 6= j, j =1,m+ 1, (2.23)

α0
r(δm(θ), t) =ar(A0, t), t ∈[θr−1, θr), r =1,m, (2.24)

βr(δm(θ), t) =ar(f, t), t ∈[θr−1, θr], r =1,m. (2.25)

In the following numerical method for constructing the δm(θ) general solution,
we use the fourth-order Runge-Kutta method to solve the Cauchy problems for
ordinary differential equations on sub-intervals. Divide each interval [θr−1, θr]
into Nr parts with step hr = (θr − θr−1)/Nr, r = 1,m. Suppose that the
variable t̂ takes only discrete values: t̂ = θr−1, t̂ = θr−1 + hr, ..., t̂ = θr−1 +
(Nr − 1)hr, t̂ = θr, r = 1,m, and denote by {θr−1, θr} the set of such values of
t̂.

Step 1. Solve the Cauchy problems

dv

dt
= A(t)v + [A(t) +Kr(t)], v(θr−1) = 0, t ∈ [θr−1, θr], (2.26)

and find ahr
r (A+Kr, t̂), t̂ ∈ {θr−1, θr}, r = 1,m.

Step 2. Solve the Cauchy problems

dv

dt
=A(t)v +Kj(t), v(θr−1) = 0, t ∈ [θr−1, θr], j 6= r, r = 1,m, j = 1,m+1,

(2.27)
and determine ahr

r (Kj , t̂), t̂ ∈ {θr−1, θr}.
Step 3. Solve the Cauchy problems

dv

dt
= A(t)v +A0(t), v(θr−1) = 0, t ∈ [θr−1, θr], (2.28)

and find ahr
r (A0, t̂), t̂ ∈ {θr−1, θr}, r = 1,m.

Step 4. Solve the Cauchy problems

dv

dt
= A(t)v + f(t), v(θr−1) = 0, t ∈ [θr−1, θr], (2.29)

and find ahr
r (f, t̂), t̂ ∈ {θr−1, θr}, r = 1,m.

Then in accordance with (2.22)–(2.25), the numerical δm(θ) general solution
of Equation (2.1) is defined as follows:

xhr (δm(θ), t̂, λ) = [I + ahr
r (A+Kr, t̂)]λr +

m+1∑
j=1,j 6=r

ahr
r (Kj , t̂)λj

+ ahr
r (A0, t̂)λm+2 + ahr

r (f, t̂), t̂ ∈ {θr−1, θr}\{θr}, r = 1,m,

xhm(δm(θ), T, λ) = λm+1, µ(δm(θ), λ) = λm+2.

Using the Lagrange polynomial [9] with functions ωr,i(t) = ω1
r,i(t)/ω

2
r,i

ω1
r,i(t) = (t− tr−1,0)(t− tr−1,1) . . . (t− tr−1,i−1)(t− tr−1,i+1)...(t− tr−1,Nr ),
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ω2
r,i=(tr−1,i−tr−1,0)(tr−1,i−tr−1,1) . . . (tr−1,i − tr−1,i−1)(tr−1,i − tr−1,i+1)

× . . . (tr−1,i − tr−1,Nr
),

where tr,i = θr−1+ihr, r = 1,m, i = 0, 1, . . . , Nr, we get an approximate δm(θ)
general solution of Equation (2.1). We determine the approximate coefficients
and right-hand sides by the equalities:

ãhr
r (A+Kr, t) =

Nr∑
i=0

ahr
r (A+Kr, tr−1,i)ωr,i(t),

ãhr
r (Kj , t) =

Nr∑
i=0

ahr
r (Kj , tr−1,i)ωr,i(t), j 6= r,

ãhr
r (A0, t) =

Nr∑
i=0

ahr
r (A0, tr−1,i)ωr,i(t), ãhr

r (f, t) =

Nr∑
i=0

ahr
r (f, tr−1,i)ωr,i(t),

r = 1,m, j = 1,m+ 1, t ∈ [θr−1, θr].

Then, the approximate δm(θ) general solution of Equation (2.1) has the
form:

x̃h(δm(θ), t, λ) =
[
I + ãhr

r (A+Kr, t)]λr +

m+1∑
j=1,j 6=r

ãhr
r (Kj , t)λj

+ ãhr
r (A0, t)λm+2 + ãhr

r (f, t), t ∈ [θr−1, θr), r = 1,m,

x̃h(δm(θ), T, λ) = λm+1, µ(δm(θ), λ) = λm+2.

Similarly, solving the Cauchy problems for ordinary differential equations
(2.27)–(2.29) by an approximate method, we obtain an approximate δm(θ) gen-
eral solution of Equation (2.1). The accuracy of the coefficients and the right-
hand sides of the numerical and approximate δm(θ) general solutions depends
on the accuracy of the method used to solve Cauchy problems for ordinary
differential equations (2.20).

3 Algorithms for solving a problem with a parameter for
a loaded differential equation

The δm(θ) general solution allows us to reduce the solvability of problem (2.1),
(1.2) to the solvability of a system of linear algebraic equations with respect to
λr ∈ Rn, r = 1,m+ 2. Substituting the appropriate expressions of the δm(θ)
general solution into the boundary condition (1.2) and the continuity conditions
(2.13) and (2.14), we obtain the system of linear algebraic equations:

B0λm+2 +Bλ1 + Cλm+1 = d, d ∈ Rn+l, (3.1)

m+1∑
j=1,j 6=r+1

αrj(δm(θ), θr)λj−[I−αrr+1(δm(θ), θr)]λr+1+α0
r(δm(θ), θr)λm+2

= −βr(δm(θ), θr), r = 1,m. (3.2)
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Denote by Q∗(δm(θ)) : Rn(m+1)+l → Rn(m+1)+l the matrix corresponding to
the left-hand side of system (3.1)–(3.2) and rewrite the system as follows:

Q∗(δm(θ))λ = −F∗(δm(θ)), λ ∈ Rn(m+1)+l, (3.3)

where F∗(δm(θ)) = (−d, β1(δm(θ), θ1), . . . , βm(δm(θ), θm)) ∈ Rn(m+1)+l.
Using the properties of the δm(θ) general solution, it is easy to prove that

the solvability of the problem with parameter (2.1), (1.2) is equivalent to the
solvability of system (3.3).

Definition 2. A problem with parameter (2.1), (1.2) is called well-posed if
for any pair (f(t), d) with f(t) ∈ C([0, T ], Rn) and d ∈ Rn+l, it has a unique
solution (x∗(t), µ∗), and the inequality

max(‖x∗‖1, ‖µ∗‖) ≤ χmax
(
‖f‖1, ‖d‖

)
holds, where χ is a constant independent of f(t) and d.

The number χ is called the constant of the well-posedness of the problem with
parameter (2.1), (1.2).

From the well-known statements of linear algebra the following two state-
ments follow.

Theorem 5. The problem with parameter (2.1), (1.2) is solvable if and only
if the vector F∗(δm(θ)) is orthogonal to the kernel of the transposed matrix
(Q∗(δm(θ)))

′
, i.e. iff the equality (F∗(δm(θ)), ζ) = 0 holds for

∀ζ ∈ Ker(Q∗(δm(θ)))
′
, where (·, ·) is the inner product in Rn(m+1)+l.

Theorem 6. The problem with parameter (2.1), (1.2) is well-posed if and only
if the matrix Q∗(δm(θ)) is invertible.

To solve the problem with parameter (2.1), (1.2), we propose

Algorithm A:
I. Construct a δm(θ) general solution (x(δm(θ), t, λ), µ(δm(θ), λ)) using the

formulas (2.9)–(2.12);
II. Form Equation (3.3) by substituting the corresponding expressions of

the δm(θ) general solution into the boundary and continuity conditions;
III. Solve Equation (3.3) and find λ∗r , r = 1,m+ 2;
IV. Substitute λ∗r , r = 1,m+ 2, into the general solution and obtain a

solution to problem (2.1), (1.2).
Theorems 5 and 6 allow us to establish the solvability of the boundary

value problem (2.1), (1.2). If the problem is solvable, then using Algorithm A
we will find its solution. Moreover, the δm(θ) general solution and estimate
||[Q∗(δm(θ))]−1|| allow us to determine the constant of the well-posedness of
problem (2.1), (1.2). Suppose that the matrix Q∗(δm(θ)) is invertible, and
there exists a constant κ(δm(θ)) such that

‖[Q∗(δm(θ))]−1‖ ≤ κ(δm(θ)). (3.4)

In this case, Equation (3.3) has a unique solution

λ∗ = −[Q∗(δm(θ))]−1F∗(δm(θ)),
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and the pair (x∗(t), µ∗), where the function x∗(t) = x(δm(θ), λ∗, t) and the
parameter µ∗ = µ(δm(θ), λ∗), is the unique solution to the problem with pa-
rameter (2.1), (1.2). Equalities (2.9)–(2.12) and the relations

Xr(t)

∫ t

θr−1

X−1r (τ)P (τ)dτ =

∫ t

θr−1

P (τ1)dτ1 +

∫ t

θr−1

A(τ1)

∫ τ1

θr−1

P (τ2)dτ2dτ1

+

∫ t

θr−1

A(τ1)

∫ τ1

θr−1

A(τ2)

∫ τ2

θr−1

P (τ3)dτ3dτ2dτ1 + ...

(see (14) in [11], p.1152) lead to the estimates:

sup
t∈[θr−1,θr)

‖αrr(δm(θ), t)‖ ≤
[
1 +

∫ θr

θr−1

‖Kr(τ)‖dτ
]

exp
{∫ θr

θr−1

‖A(τ)‖dτ
}
− 1,

r = 1,m, (3.5)

sup
t∈[θr−1,θr)

‖αrj(δm(θ), t)‖ ≤
∫ θr

θr−1

‖Kj(τ)‖dτ exp
{∫ θr

θr−1

‖A(τ)‖dτ
}
,

j 6= r, j = 1,m+ 1, r = 1,m,

sup
t∈[θr−1,θr)

‖α0
r(δm(θ), t)‖ ≤

∫ θr

θr−1

‖A0(τ)‖dτ exp
{∫ θr

θr−1

‖A(τ)‖dτ
}
, r = 1,m,

sup
t∈[θr−1,θr)

‖βr(δm(θ), t)‖ ≤
∫ θr

θr−1

‖f(τ)‖dτ exp
{∫ θr

θr−1

‖A(τ)‖dτ
}
, r = 1,m. (3.6)

The right-hand side of Equation (3.3) can now be estimated as follows:

‖F∗(δm(θ))‖ ≤ max
(
1, b0

)
max

(
‖f‖1, ‖d‖

)
(3.7)

b0 = max
r=1,m

(θr − θr−1) exp
{∫ θr

θr−1

‖A(τ)‖dτ
}
.

Inequalities (3.4), (3.5)–(3.6) and (3.7) lead to the estimate:

‖x∗‖1 ≤ max
r=1,m

[(
1 +

m+1∑
j=1

∫ θr

θr−1

‖Kj(τ)‖dτ +

∫ θr

θr−1

‖A0(τ)‖dτ
)

× exp
{∫ θr

θr−1

‖A(τ)‖dτ
}
− 1
]
‖λ∗‖+ max

r=1,m

[ ∫ θr

θr−1

‖f(τ)‖dτ exp
{∫ θr

θr−1

‖A(τ)‖dτ
}]

≤ max
(
1, b0

)[
(c0 − 1 + k0c0 + l0c0)κ(δm(θ)) + 1

]
max

(
||f ||1, ‖d‖

)
,

(3.8)

‖µ∗‖ ≤ κ(δm(θ)) max
(
1, b0

)
max

(
||f ||1, ||d||

)
, (3.9)

where c0 = max
r=1,m

exp
{∫ θr

θr−1
||A(τ)||dτ

}
, k0 =

m+1∑
j=1

max
r=1,m

∫ θr
θr−1
||Kj(τ)||dτ ,

l0 = max
r=1,m

∫ θr
θr−1
||A0(τ)||dτ .
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From (3.8) and (3.9), we have

max(‖x∗‖1, ‖µ∗‖) ≤ χmax
(
‖f‖1, ‖d‖

)
,

where χ = max
(
1, b0

)
max

[
(c0 − 1 + k0c0 + l0c0)κ(δm(θ)) + 1, κ(δm(θ))

]
.

Thus, the problem with parameter (2.1), (1.2) is well-posed with constant χ.
As was noted in Section 2, for Equation (2.1) with the variable matrix A(t),

in most cases, the construction of the δm(θ) general solution in the explicit form
fails. Therefore, we propose another way to solve problem (2.1), (1.2). This
method is based on compilation of a system of linear algebraic equations (3.1)–
(3.2) and does not require the construction of the δm(θ) general solution. Using
relations (2.22)–(2.25), we solve problem (2.1), (1.2) using the following

Algorithm B:

Step 1. Solve the Cauchy problems for ordinary differential equations

dv

dt
=A(t)v + [A(t) +Kr(t)], v(θr−1) = 0, t ∈ [θr−1, θr], r = 1,m,

dv

dt
=A(t)v+Kj(t), v(θr−1) = 0, t ∈ [θr−1, θr], j 6= r, r = 1,m, j = 1,m+1,

dv

dt
=A(t)v +A0(t), v(θr−1) = 0, t ∈ [θr−1, θr], r = 1,m,

dv

dt
=A(t)v + f(t), v(θr−1) = 0, t ∈ [θr−1, θr], r = 1,m,

and find ar(A+Kr, θr), ar(Kj , θr), ar(A0, θr) and ar(f, θr).

Step 2. Form a system of linear algebraic equations

B0λm+2 +Bλ1 + Cλm+1 = d, (3.10)[
I + ap(A+Kp, θp)

]
λp −

[
I − ap(Kp+1, θp)

]
λp+1

+

m+1∑
j=1

j 6=p,j 6=p+1

ap(Kj , θp)λj + ap(A0, θp)λm+2=− ap(f, θp), p = 1,m. (3.11)

Step 3. Solve system (3.10)–(3.11) and find λ∗ = (λ∗1, λ
∗
2, ..., λ

∗
m+1, λ

∗
m+2) ∈

Rn(m+1)+l. Note that the elements of λ∗ are the values of the function x∗(t) at
the loaded points of [0, T ]: λ∗r = x∗(θr−1), r = 1,m+ 1, and λ∗m+2 = µ∗. Here
the pair (x∗(t), µ∗) is a solution to problem (2.1), (1.2).

Step 4. Compose the function F∗(t) =
m+1∑
j=1

Kj(t)λ
∗
j + A0(t)λ∗m+2 + f(t).

Solve Cauchy problems for ordinary differential equations

dx

dt
= A(t)x+ F∗(t), x[θr−1] = λ∗r , t ∈ [θr−1, θr]

and determine the values of the solution x∗(t) at the remaining points of
[θr−1, θr], r = 1,m.
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In Algorithm B, Cauchy problems for ordinary differential equations on
subintervals are the main auxiliary problems. Using approximate methods
for solving these problems leads to approximate methods for solving problem
(2.1), (1.2). Numerical methods used for solving Cauchy problems for ordinary
differential equations lead to numerical methods for solving the problem (2.1),
(1.2).

4 Interrelation between problems with parameter (1.1)–
(1.2) and (2.1), (1.2)

Let us return to the consideration of the problem with parameter (1.1)–(1.2).

Definition 3. A problem with parameter (1.1)–(1.2) is called well-posed if for
any pair (f(t), d) with f(t) ∈ C([0, T ], Rn) and d ∈ Rn+l, it has a unique so-
lution (x∗(t), µ∗), and the inequality max(||x∗||1, ||µ∗||) ≤ γ ·max

(
||f ||1, ||d||

)
,

where γ is a constant, independent of f(t) and d, holds.

The number γ is called the constant of the well-posedness of the problem with
parameter (1.1)–(1.2).

Consider the following problem with parameter for the loaded differential
equation:

dy

dt
= A(t)y+

N∑
j=1

2jh∫
2(j−1)h

K(t, τ)dτ
{1

6
y[2(j − 1)h] +

4

6
y[(2j − 1)h] +

1

6
y[2jh]

}
+A0(t)ν + f(t), t ∈ (0, T ), y ∈ Rn, (4.1)

B0ν +By(0) + Cy(T ) = d, d ∈ Rn+l. (4.2)

Set α = max
t∈[0,T ]

‖A(t)‖, β = max
(t,τ)∈[0,T ]×[0,T ]

‖K(t, τ)‖, and α0 = max
t∈[0,T ]

‖A0(t)‖.

The following two statements provide a connection between the original
problem with the parameter for the integro-differential equation (1.1)–(1.2)
and the approximating problem with the parameter for the loaded differential
equation (4.1)–(4.2).

Theorem 7. Suppose that the problem with parameter (1.1)–(1.2) is well-posed
with the constant γ, and let the inequality

q1(h) =
2

3
βTh

[
(α+ βT + α0)γ + 1

]
< 1

be true. Then the problem with parameter (4.1)–(4.2) is well-posed with the
constant χ = 3γ/

(
3− 2βTh[(α+ βT + α0)γ + 1]

)
, and

max
(
‖y∗−x∗‖1, ‖ν∗−µ∗‖

)
≤

2βTγ
[
(α+ βT + α0)γ + 1

]
h

3−2βTh[(α+βT + α0)γ + 1]
max

(
‖f‖1, ‖d‖

)
,

where (y∗(t), ν∗) and (x∗(t), µ∗) are solutions to problems with parameter (4.1)–
(4.2) and (1.1)–(1.2), respectively.
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Theorem 8. Let the problem with parameter (2.1), (1.2) be well-posed with
constant χ, and the inequality q2(h) = 2

3βTh
[
(α+ βT +α0)χ+ 1

]
< 1 be true.

Then the control problem (1.1)–(1.2) is well-posed with the constant
γ = 3χ/

(
3− 2βTh[(α+ βT + α0)χ+ 1]

)
, and

max
(
‖x∗−y∗‖1, ‖µ∗−ν∗‖

)
≤

2βTχ
[
(α+ βT + α0)χ+ 1

]
h

3−2βTh[(α+βT+α0)χ+1]
max

(
‖f‖1, ‖d‖

)
,

where (x∗(t), µ∗) and (y∗(t), ν∗) are solutions to problems with parameter (1.1)–
(1.2) and (4.1)–(4.2), respectively.

Now let us approximate the problem with parameter (1.1)–(1.2) by the
problem with parameter:

dz

dt
=A(t)z+

h

3

N∑
j=1

{
K(t, 2(j−1)h)z[2(j − 1)h] + 4K(t, (2j − 1)h)z[(2j − 1)h]

+K(t, 2jh)z[2jh]
}

+A0(t)υ + f(t), t ∈ (0, T ), z ∈ Rn, (4.3)

B0υ +Bz(0) + Cz(T ) = d, d ∈ Rn. (4.4)

Assume that ω(K, 2h, t) = max
τ ′,τ ′′∈[0,T ]
|τ ′−τ ′′|<2h

‖K(t, τ ′) − K(t, τ ′′)‖ and ω0(K, 2h) =

max
t∈[0,T ]

ω(K, 2h, t).

Theorem 9. Suppose that a problem with parameter (1.1)–(1.2) is well-posed
with a constant γ. Then there exists a number h0 > 0 such that for all h ∈
(0, h0]: 2Nh = T problem (4.3)–(4.4) is well-posed with constant χ0 = 4γ, and

max
(
‖z∗ − x∗‖1, ‖υ∗ − µ∗‖

)
≤ γT

{4

3
β
[
(α+βT+α0)γ+1

]
h+8γω0(K, 2h)

}
max

(
‖f‖1, ‖d‖

)
, (4.5)

where (z∗(t), υ∗) and (x∗(t), µ∗) are solutions to problems with parameter (4.3)–
(4.4) and (1.1)–(1.2), respectively.

Theorem 10. Suppose that there are numbers h0 > 0 and χ0 > 0 such that
the problem with parameter (4.3)–(4.4) is well-posed with the constant χ0 for
all h ∈ (0, h0]: 2Nh = T. Then the problem with parameter (1.1)–(1.2) is
well-posed with the constant γ = 4χ0, and

max
(
‖x∗ − z∗‖1, ‖µ∗ − υ∗‖

)
≤ 2χ0T

{4

3
β
[
2χ0(α+βT+α0)+1

]
h+χ0ω0(K, 2h)

}
max

(
‖f‖1, ‖d‖

)
, (4.6)

where (x∗(t), µ∗) and (z∗(t), υ∗) are solutions to problems with parameter (1.1)–
(1.2) and (4.3)–(4.4), respectively.

Taking into account the properties of problem (1.1)–(1.2), the proofs of Theo-
rems 7–10 are similar to the proofs of Theorems 4.1–4.4 in [15].
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5 A numerical method for solving the problem with
parameter (1.1)–(1.2)

The methods proposed in this Section are based on approximating the prob-
lem with parameter (1.1)–(1.2) by problems with the parameter for loaded
differential equations and on the Algorithm B presented in Section 4.

Take h > 0 : 2Nh = T and introduce the notation: K̃j(t) = 4h
3 K(t, (j−1)h)

for even j and K̃j(t) = 2h
3 K(t, (j−1)h) for odd j, where j = 2, 3, ..., 2N, and

K̃1(t) = h
3K(t, 0), K̃2N+1(t) = h

3K(t, T ). Then the approximating problem
with parameter (4.3), (4.4) can be written as follows:

dz

dt
=A(t)z+

2N+1∑
j=1

K̃j(t)z[(j−1)h]+A0(t)υ+f(t), t ∈ (0, T ), z ∈ Rn, υ ∈ Rl,

(5.1)

B0υ +Bz(0) + Cz(T ) = d, d ∈ Rn+l. (5.2)

The loaded differential equation (5.1) is the Equation (2.1) with m = 2N ,
θj−1 = (j − 1)h, j = 1, 2N + 1. Denote by δ2N (h) the new general solution to
Equation (5.1).

The results of Section 2 establish the relationship between the well-posed-
nesses of problems with parameter (1.1)–(1.2) and (5.1)–(5.2). Since the uni-
form continuity of K(t, τ) on [0, T ]×[0, T ] leads to lim

h→0
ω0(K, 2h) = 0, estimates

(4.5) and (4.6) yield uniform convergence of the solution of the approximat-
ing problem with parameter (5.1)–(5.2) to the solution of the original problem
with parameter (1.1)–(1.2) on [0, T ] as h → 0. In theorems of Section 4,
we only need the continuity of A(t), A0(t), and f(t) on [0, T ] and K(t, τ) on
[0, T ]× [0, T ], respectively. In the following statement, with greater smoothness
of these data, the accuracy of approximating the solution of the problem with
parameter (1.1)–(1.2) by the solution of the problem with parameter (5.1)–(5.2)
is obtained.

Theorem 11. Suppose the following conditions are met: a) problem (1.1)–
(1.2) is well-posed with constant γ; b) the matrices A(t), A0(t) and the vector

f(t) have continuous derivatives A(k)(t), A
(k)
0 (t) and f (k)(t), k = 1, 3, on [0, T ];

c) the matrix K(t, τ) has continuous partial derivatives K
(k,i)
t,τ (t, τ), k = 1, 3,

i = 1, 4, on [0, T ] × [0, T ]. Then, there exists h0 > 0 such that for all h ∈
(0, h0] : 2Nh = T , the problem with parameter (5.1)–(5.2) has a unique solution
(z∗(t), υ∗), and

max
(
‖z∗−x∗‖1, ‖υ∗−µ∗‖

)
≤ 4γT

180
max

(t,τ)∈[0,T ]×[0,T ]

∥∥∥ ∂4
∂τ4

[K(t, τ)x∗(τ)]
∥∥∥h4,

(5.3)
where (x∗(t), µ∗) is the unique solution to the problem with parameter (1.1)–
(1.2).

We construct the δ2N (h) general solution to the loaded differential equation
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with parameter (5.1):

z(δ2N (h), t, λ) =
[
I + ar(A+ K̃r, t)

]
λr +

2N+1∑
j=1,j 6=r

ar(K̃j , t)λj + ar(f, t),

t ∈ [(r − 1)h, rh), r = 1, 2N,

z(δ2N (h), T, λ) = λ2N+1, υ(δ2N (h), λ) = λ2N+2.

Substituting the corresponding expressions of z(δ2N (h), t, λ) and υ(δ2N (h), λ)
into the boundary condition (5.2) and the continuity conditions for solution at
the points ts = sh, s = 1, 2, ..., 2N , then multiplying the boundary condition
by h > 0, we obtain the system of linear algebraic equations:

hB0λ2N+2 + hBλ1 + hCλ2N+1 = hd, (5.4)[
I + ap(A+ K̃p, ph)

]
λp −

[
I − ap(K̃p+1, ph)

]
λp+1 +

2N+1∑
j=1

j 6=p,j 6=p+1

ap(K̃j , ph)λj

+ ap(A0, ph)λ2N+2 = −ap(f, ph), p = 1, 2N. (5.5)

Denote by Q∗(δ2N (h)) : Rn(2N+1)+l → Rn(2N+1)+l the matrix corresponding to
the left-hand side of system (5.4)–(5.5) and rewrite down the system as follows:

Q∗(δ2N (h))λ = −F∗(δ2N (h)), λ ∈ Rn(2N+1)+l, (5.6)

where F∗(δ2N (h)) =
(
−hd, a1(f, h), a2(f, 2h), ..., a2N (f, 2Nh)

)
∈ Rn(2N+1)+l.

Let us consider issues related to the qualitative properties of Equation (5.6).
As indicated in [7, 9, 10], the conditionality number is one of the important
characteristics for a system of linear algebraic equations. This number, de-
fined as the product of the norms of system’s matrix and its inverse, shows
how the variations of coefficients and the right sides of the system affect the
variation of system’s solution. To determine the conditionality number for
Equation (5.6), we must estimate ‖Q∗(δ2N (h))‖ and ‖[Q∗(δ2N (h))]−1‖. Us-
ing inequalities (3.7)–(3.9) and taking into account that max

t∈[0,T ]
‖A(t)‖ = α,

max
t∈[0,T ]

‖A0(t)‖ = α0, max
(t,τ)∈[0,T ]×[0,T ]

‖K(t, τ)‖ = β, we have:

‖Q∗(δ2N (h))‖ ≤ max
[
h(‖B0‖+ ‖B‖+ ‖C‖), 2

+ max
p=1,2N

(
‖ap(A+ K̃p, ph)‖+

2N+1∑
j=1,j 6=p

‖ap(K̃j , ph)‖+ ‖ap(A0, ph)‖
)]

≤ max
[
h(‖B0‖+ ‖B‖+ ‖C‖), 1 + (1 + βTh+ α0h) exp(αh)

]
. (5.7)

Hence, the norm ofQ∗(δ2N (h)) does not depend on 2N, the number of partition.

Theorem 12. Let the problem (5.1)–(5.2) be well-posed with the constant χ0.
Then there exists a number h1 > 0 such that for all h ∈ (0, h1] : 2Nh = T ,
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the (n(2N + 1) + l)× (n(2N + 1) + l) matrix Q∗(δ2N (h)) is invertible, and the
estimate

‖[Q∗(δ2N (h))]−1‖ ≤ 2χ0/h (5.8)

is true.

The proofs of Theorems 11 and 12 with slight modifications are similar to the
proofs of Theorems 4.1 and 4.2, respectively, in [4].

So, if problem (5.1)–(5.2) is well-posed with the constant χ0, then inequal-
ities (5.7) and (5.8) yield the estimate

cond∞Q∗(δ2N (h)) = ‖Q∗(δ2N (h))‖ · ‖[Q∗(δ2N (h))]−1‖

≤ 2χ0

h
max

[
h(‖B0‖+ ‖B‖+ ‖C‖), 1 + (1 + βTh+ α0h) exp(αh)

]
(5.9)

for h ∈ (0, h1] : 2Nh = T . As can be seen from (5.9), the conditionality
number for system (5.6) increases linearly with respect to 2N if the problem
with parameter (1.1)–(1.2) is well-posed. This property ensures stability when
solving system (5.4)–(5.5) (see [7]).

In [4] we also propose a numerically approximate method for solving Cauchy
problems for ordinary differential equations on subintervals, which is illustrated
by numerical examples. The authors can present numerical results obtained
using MathCad15.
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