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1 Introduction

The piezoelectric effect is characterized by the coupling between the mechanical
and electrical behavior of the materials. It consists on the apparition of electric
charges on the surfaces of some crystals after their deformation. Conversely, it
was proved experimentally that the action of electric field on the crystals may
generate strain and stress. A deformable material which presents such a behav-
ior is called a piezoelectric material. Piezoelectric materials are used extensively
as switches and actuators in many engineering systems, in radioelectronics, elec-
troacoustics and measuring equipments. However, there are very few mathe-
matical results concerning contact problems involving piezoelectric materials
and therefore there is a need to extend the results on models for contact with
deformable bodies which include coupling between mechanical and electrical
properties. General models for elastic materials with piezoelectric effects can
be found in [2,7]. A static frictional contact problem for electric-elastic materi-
als was considered in [3,10,12]. A slip-dependent frictional contact problem for
electro-elastic materials was studied in [21]. Contact problems with friction or
adhesion for electro-viscoelastic materials were studied in [4,9,15,20,22,27] and
recently in [8] for the case of an electrically conductive foundation. For works
concerned with the frictional contact problems for electro-viscoelastic materi-
als with long memory, we refer to [15, 16] and the references therein. In the
present paper we consider a mathematical model for the process of a frictional
contact problem with normal compliance and wear for an electro-viscoelastic
material with long memory, damage and a moving conductive foundation. The
foundation is assumed to move steadily and only sliding contact takes places.
A mathematical models which describe the equilibrium of an elastic or a vis-
coelastic body in frictional contact with a moving foundation were considered
in [24, 25, 26]. In all these papers, the damage function β is restricted to have
values between zero and one. When β = 1 there is no damage in the material,
when β = 0 the material is completely damaged, when 0 < β < 1 there is
partial damage and the system has a reduced load carrying capacity. Contact
problems with damage have been investigated in [14,17,18,23].

The rest of the paper is structured as follows. In Section 2, we present the
notation and some preliminaries. In Section 3, we present the mechanical prob-
lem, we list the assumptions on the data and give the variational formulation of
the problem. In Section 4, we state our main existence and uniqueness result.
It is based on arguments of classical results for elliptic variational inequalities,
on parabolic inequalities and fixed point arguments.

2 Notation and preliminaries

In this section we present the notation we shall use and some preliminary
material. For further details, we refer the reader to [5]. We denote by Sd the
space of second order symmetric tensors on Rd (d = 2, 3), while ”·” and | . | will
represent the inner product and the Euclidean norm on Sd and Rd. Let Ω ⊂ Rd
be a bounded domain with a Lipschitz boundary Γ and let ν denote the unit
outer normal on Γ . Everywhere in the sequel the index i and j run from 1 to d,
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summation over repeated indices is implied and the index that follows a comma
represents the partial derivative with respect to the corresponding component
of the independent spatial variable. We use the standard notation for Lebesgue
and Sobolev spaces associated to Ω and Γ and introduce the spaces

H =
{
u = (ui) / ui ∈ L2(Ω)

}
, H =

{
σ = (σij) / σij = σji ∈ L2(Ω)

}
,

H1 = {u = (ui) / ε(u) ∈ H} , H1 = {σ ∈ H / Diυσ ∈ H} .

Here ε and Diυ are the deformation and divergence operators, respectively,
defined by

ε(u) = (εij(u)), εij(u) =
1

2
(ui,j + uj,i), Diυσ = (σij, j).

The spaces H,H, H1 andH1 are real Hilbert spaces endowed with the canonical
inner products given by

(u,υ)H =

∫
Ω

uiυidx ∀u,υ ∈ H, (σ, τ )H =

∫
Ω

σijτijdx ∀σ, τ ∈ H,

(u,υ)H1 =(u,υ)H + (ε(u), ε(υ))H ∀u,υ ∈ H1,

(σ, τ )H1 =(σ, τ )H + (Diυσ, Diυτ )H ∀σ, τ ∈ H1.

The associated norms on the spaces H, H, H1 and H1 are denoted by | . |H ,
| . |H, | . |H1

and | . |H1
, respectively. For every element υ ∈ H1 we also use the

notation υ for the trace of υ on Γ and we denote by υν and υτ the normal and
the tangential components of υ on Γ given by υν = υ ·ν, υτ = υ−υνν. We also
denote by σν and στ the normal and the tangential traces of a function σ ∈ H1,
we recall that when σ is a regular function then σν = (σν) ·ν, στ = σν−σνν,
and the following Green’s formula holds

(σ, ε(υ))H + (Diυσ,υ)H =

∫
Γ

σν · νda ∀υ ∈ H1.

Let T > 0. For every real Banach space X we use the classical notation for
the spaces C(0, T ;X), C1(0, T ;X), and we use the standard notation for the
Lebesgue spaces and for the Sobolev spaces Lp(0, T ;X) and W k,p(0, T ;X),
1 ≤ p ≤ ∞, 1 ≤ k. Moreover, if X1 and X2 are real Hilbert spaces then
X1 ×X2 denotes the product. Hilbert space endowed with the canonical inner
product (., .)X1×X2

.

3 Mechanical and variational formulations

The physical setting is the following. An electro-viscoelastic body with long
memory and damage occupies a bounded domain Ω ⊂ Rd (d = 2, 3) with
outer Lipschitz surface Γ. The body is submitted to the action of body forces
of density f0 and volume electric charges of density q0. It is also constrained
mechanically and electrically on the boundary. We consider a partition of Γ
into three disjoint measurable parts Γ1, Γ2 and Γ3, on one hand, and a partition
of Γ1∪ Γ2 into two disjoint measurable parts Γa and Γb, on the other hand,
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such that meas(Γ1) > 0, meas(Γa) > 0. Let T > 0 and let [0, T ] be the
time interval of interest. The body is clamped on Γ1, so the displacement field
vanishes there. Surface tractions of density f2 act on Γ2. We also assume that
the electrical potential vanishes on Γa and a surface free electrical charge of
density q2 is prescribed on Γb. In the reference configuration the body may come
in contact over Γ3 with a conductive moving obstacle, which is also called the
foundation. The contact is modeled with the normal compliance condition and
a general version of Coulomb’s law of dry friction. Also, there may be electrical
charges on the part of the body which is in contact with the foundation and
which vanish when contact is lost. We are interested in the evolution of the
deformation of the body and of the electric potential on the time interval [0, T ].
The process is assumed to be isothermal, electrically static, i.e., all radiation
effects are neglected, and mechanically quasistatic, i.e., the inertial terms in
the momentum balance equations are neglected. To simplify the notation, we
do not indicate explicitly the dependence of various functions on the variables
x ∈ Ω ∪ Γ and t ∈ [0, T ] . Then, the classical formulation of the mechanical
problem of sliding frictional contact problem with normal compliance and wear
may be stated as follows.

Problem P. Find a displacement field u : Ω × [0, T ] → Rd, a stress field
σ : Ω × [0, T ]→ Sd, an electric potential field ϕ : Ω × [0, T ]→ R , an electric
displacement field D : Ω× [0, T ]→ Rd, a damage field β : Ω× [0, T ]→ R and
a wear function ζ : Γ3 × [0, T ]→ R such that

σ=Aε(u̇)+F(ε (u) , β)+

∫ t

0

M(t−s)ε(u(s))ds+ E∗∇ϕ in Ω × (0, T ), (3.1)

D = Eε(u)−B∇ϕ in Ω × (0, T ) , (3.2)

β̇ − ke 4 β + ∂ΨK(β) 3 S(ε(u), β) in Ω × (0, T ), (3.3)

Div σ + f0 = 0 in Ω × (0, T ) , (3.4)

divD = q0 in Ω × (0, T ) , (3.5)

u = 0 on Γ1 × (0, T ) , σν = f2 on Γ2 × (0, T ) , (3.6)
−σν = pν ,

|στ | ≤ µpν ,
στ = −µpν (u̇τ−υ∗)

|u̇τ−υ∗| if u̇τ 6= υ∗,

ζ̇ = k1µ pν R
∗(|u̇τ − υ∗|), on Γ3 × (0, T ),

(3.7)

∂β

∂ν
= 0 on Γ × (0, T ) , (3.8)

ϕ = 0 on Γa × (0, T ) , D · ν = q2 on Γb × (0, T ) , (3.9)

D · ν = ψ(uν − h− ζ)φL(ϕ− ϕ0) on Γ3 × (0, T ) , (3.10)

u(0) = u0, β(0) = β0, ζ(0) = 0 in Ω. (3.11)

Here, µ = µ(ζ, |u̇τ − υ∗|) and pν = pν(uν − h − ζ). Equations (3.1) and (3.2)
represent the constitutive law for a piezoelectric material with long memory
and damage, where A and F are nonlinear operators describing the purely vis-
cous and the elastic properties of the material, respectively, M is a relaxation
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fourth order tensor, E(ϕ) = −∇ϕ is the electric field, E = (eijk) represents the
third order piezoelectric tensor, E∗ is its transposed and B denotes the electric
permittivity tensor. We use dots for derivatives with respect to the time vari-
able t. Inclusion (3.3) describes the evolution of the damage field, governed by
the source damage function S, where ke is a positive coefficient and ∂ΨK is the
subdifferential of indicator function of the set of admissible damage functions
given by K = {ξ ∈ H1(Ω) / 0 ≤ ξ ≤ 1 a.e. in Ω}. Equations (3.4) and (3.5)
represent the equilibrium equations for the stress and electric displacement
fields. Equations (3.6) are the displacement and traction boundary conditions,
respectively. Equation (3.8) describes a homogeneous Neumann boundary con-
dition, where ∂β

∂ν is the normal derivative of β. Equations (3.9) represent the
electric boundary conditions. In (3.11) u0 is the given initial displacement, β0
is the initial material damage and ζ(0) = 0 means that at the initial moment
the body is not subject to any prior wear. The relations (3.7) represent the con-
dition with normal compliance, friction and wear. The wear function ζ which
measures the wear accumulated of the surface. The evolution of the wear of the
contacting surface is governed by the differential form of Archard’s law ( see,
e.g., [1,19,28,29]), where k1 > 0 is a wear coefficient, pν is a prescribed function
of the normal compliance, µ ≥ 0 is the coefficient of friction, h represents the
gap in direction of ν, υ∗ is the tangential velocity of the foundation, |u̇τ − υ∗|
represents the slip rate between the contact surface and the foundation, and
R∗ : R+ → R+ is the truncation operator R∗ (r) = r if r ≤ R and R∗ (r) = R
if r > R, R being a fixed positive constant. We recall that in the case without
wear, a general version of normal compliance is given by −σν = pν(uν − h).
The difference uν − h, when positive, represents the penetration of the surface
asperities into those of the foundation. This condition was first introduced
in [11] and used in a large number of papers, see for instance [6,13] and the ref-
erences therein. Next, (3.10) is the electrical contact condition on Γ3, which is
the main novelty of this work. This condition has been used in [9] for electro-
viscoelastic contact problem with short memory. It represents a regularized
condition which may be obtained as follows. First, we assume that the founda-
tion is electrically conductive and its potential is maintained at ϕ0. When there
is no contact at a point on the surface (i.e., uν < h), there are no free electrical
charges on the surface and the normal component of the electric displacement
field vanishes (i.e., D ·ν = 0). During the process of contact (i.e., when uν ≥ h)
the normal component of the electric displacement field or the free charge is
assumed to be proportional to the difference between the potential of the foun-
dation and the body’s surface potential with k as the proportionality factor.
Thus D ·ν = k(ϕ−ϕ0), then D ·ν = kχ[0,∞) (uν − h) (ϕ−ϕ0), where χ[0,∞) is
the characteristic function of the interval [0,∞). Since our process involves the
wear of the contacting surfaces we need to take into account the change in the
geometry by replacing the initial gap function h with h+ ζ during the process,
we write D ·ν = kχ[0,∞) (uν − h− ζ) (ϕ−ϕ0), this condition describes perfect
electrical contact and is somewhat similar to the well-known Signorini contact
condition. Both conditions may be over-idealizations in many applications. To
make it more realistic, we regularize previous relation and write it as (3.10)
in which kχ[0,∞) (uν − h− ζ) is replaced with ψ which is a regular function



Variational Analysis of a Frictional Contact Problem 175

which will be described below, and φL is the truncation function φL(s) = −L
if s < −L, φL(s) = s if −L ≤ s ≤ L and φL(s) = L if s > L,where L is a
large positive constant. We note that this truncation does not pose any prac-
tical limitations on the applicability of the model, since L may be arbitrarily
large, higher than any possible peak voltage in the system, and therefore in
applications φL(ϕ− ϕ0) = ϕ− ϕ0.

To obtain a variational formulation of the problem (3.1)–(3.11) we introduce
the closed subspace of H1 defined byV = {υ ∈ H1/υ = 0 on Γ1}. Since
meas(Γ1) > 0, Korn’s inequality holds and there exists a constant cK > 0
which depends only on Ω and Γ1 such that

|ε(υ)|H ≥ cK |υ|H1
∀υ ∈ V.

On the space V we consider the inner product and the associated norm given
by

(u,υ)V = (ε(u), ε(υ))H , |υ|V = |ε(υ)|H ∀υ ∈ V.

It follows from Korn’s inequality that | . |H1 and | . |V are equivalent norms
on V. Therefore (V, | . |V ) is a real Hilbert space. Moreover, by the Sobolev’s
trace theorem and Korn’s inequality, there exists a constant c0 > 0, depending
only on Ω, Γ1 and Γ3 such that

|υ|L2(Γ3)d
≤ c0 |υ|V ∀υ ∈ V. (3.12)

We also introduce the spaces

W =
{
φ ∈ H1(Ω) / φ = 0 on Γa

}
,

W =
{
D = (Di) / Di ∈ L2(Ω), diυD ∈ L2(Ω)

}
,

where diυD = (Di,i). The spaces W and W are real Hilbert spaces with the
inner products given by

(ϕ, φ)W =

∫
Ω

∇ϕ · ∇φdx, (D,E)W =

∫
Ω

D ·Edx+

∫
Ω

divD · divEdx.

The associated norms will be denoted by | . |W and | . |W , respectively. More-
over, when D ∈ W is a regular function, the following Green’s type formula
holds

(D,∇φ)H + (divD, φ)L2(Ω) =

∫
Γ

D · νφda ∀φ ∈ H1(Ω).

Notice also that, since meas(Γa) > 0, the following Friedrichs-Poincaré inequal-
ity holds

|∇φ|H ≥ cF |φ|H1(Ω) ∀φ ∈W,

where cF > 0 is a constant which depends only on Ω and Γa. It follows from
Friedrichs-Poincaré inequality that | . |H1(Ω) and | . |W are equivalent norms on
W and therefore (W, | . |W ) is a real Hilbert space. Moreover, by the Sobolev’s
trace theorem, there exists a constant a0 > 0, depending only on Ω, Γa and Γ3

such that
|φ|L2(Γ3)

≤ a0 |φ|W ∀φ ∈W.
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In the study of the mechanical problem (3.1)–(3.11), we now list assumptions
on the data. Assume that the operators A, F , E , B and the functions S, pν , µ,
ψ satisfy the following conditions with LA, mA, LF , LS , Lν , p∗ν , Lµ, µ∗, mB ,
Lψ and Nψ being positive constants:

(a) A : Ω × Sd → Sd.
(b) |A(x, ε1)−A(x, ε2)| ≤ LA |ε1 − ε2|

∀ε1, ε2 ∈ Sd, a.e. x ∈ Ω.
(c) (A(x, ε1)−A(x, ε2)).(ε1 − ε2) ≥ mA |ε1 − ε2|2

∀ε1, ε2 ∈ Sd, a.e. x ∈ Ω.
(d) The mapping x→ A(x, ε) is Lebesgue measurable

on Ω for any ε ∈ Sd.
(e) The mapping x→ A(x,0) belongs to H.

(3.13)



(a) F : Ω × Sd × R→ Sd.
(b) |F(x, ε1, r1)−F(x, ε2, r2)| ≤ LF (|ε1 − ε2|+ |r1 − r2|)
∀ε1, ε2 ∈ Sd,∀r1, r2 ∈ R a.e. x ∈ Ω.

(c) The mapping x→ F(x, ε, r) is Lebesgue measurable
on Ω for any ε ∈ Sd and r ∈ R.

(d) The mapping x→ F(x,0, 0) belongs to H.

(a) S : Ω × Sd × R→ R.
(b) |S(x, ε1, r1)− S(x, ε2, r2)| ≤ LS(|ε1 − ε2|+ |r1 − r2|)
∀ε1, ε2 ∈ Sd, ∀r1, r2 ∈ R a.e. x ∈ Ω.

(c) For any ε ∈ Sd and r ∈ R,
x→ S(x, ε, r) is Lebesgue measurable on Ω.

(d) The mapping x→ S(x,0, 0) belongs to L2(Ω).

(a) pν : Γ3 × R→ R+.
(b) |pν(x, u1)− pν(x, u2)| ≤ Lν |u1 − u2|
∀u1, u2 ∈ R, a.e. x ∈ Γ3.
(c) For any u ∈ R x→ pν(x, u) is Lebesgue measurable on Γ3.
(d) pν(x, u) = 0 for all u ≤ 0, a.e. x ∈ Γ3.
(e) pν(x, u) ≤ p∗ν for all u ∈ R, a.e. x ∈ Γ3.

(3.14)



(a) µ : Γ3 × R2 → R.
(b) |µ(x, a1, b1)− µ(x, a2, b2)| ≤ Lµ(|a1 − a2|+ |b1 − b2|)
∀a1, a2, b1, b2 ∈ R, a.e. x ∈ Γ3.

(c) The mapping x→ µ(x, a, b) is Lebesgue
measurable on Γ3 ∀a, b ∈ R.

(d) µ(x, a, b) ≤ µ∗ ∀a, b ∈ R.a.e. x ∈ Γ3.

(3.15)


(a)B = (Bij) : Ω × Rd → Rd.
(b) B(x)E = (bij(x)Ej) ∀E = (Ei) ∈ Rd, a.e. x ∈ Ω.
(c) bij = bji , bij ∈ L∞(Ω).

(d) BE ·E ≥ mB |E|2 ∀E = (Ei) ∈ Rd, a.e. x ∈ Ω.

(3.16)

 (a) E : Ω × Sd → Rd.
(b) E(x)τ = (ei j k (x)τjk) ∀τ = (τij) ∈ Sd, a.e. x ∈ Ω.
(c) eijk = eikj ∈ L∞(Ω).

(3.17)
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

(a) ψ : Γ3 × R→ R+.
(b) |ψ(x, u1)− ψ(x, u2)| ≤ Lψ |u1 − u2|
∀u1, u2 ∈ R, a.e. x ∈ Γ3.

(c) |ψ(x, u)| ≤ Nψ ∀u ∈ R, a.e. x ∈ Γ3.
(d) x→ ψ(x, u) is measurable on Γ3 for all u ∈ R.
(e) x→ ψ(x, u) = 0 for all u ≤0.

(3.18)

The relaxation tensor M satisfiesM ∈ C(0, T ;H∞), where H∞ is the space of
fourth order tensor field given by

H∞ = {E = (Eijkl) / Eijkl = Eklij = Ejikl ∈ L∞ (Ω) , 1 ≤ i, j, k, l ≤ d} ,

which is a real Banach space with the norm

|E|H∞ = max
1≤i,j,k,l≤d

|Eijkl|L∞(Ω) .

The density of volume forces, traction, volume electric charges and surface
electric charges have the regularity

f0 ∈ C(0, T ;H), f2 ∈ C(0, T ;L2(Γ2)d). (3.19)

q0 ∈ C(0, T ;L2(Ω)), q2 ∈ C(0, T ;L2(Γb)). (3.20)

Finally, we assume that the gap function h, the given potential of the foundation
ϕ0, the initial displacement field u0 and the initial damage field β0 satisfy

h ∈ L2(Γ3), h ≥ 0 a.e. x ∈ Γ3, ϕ0 ∈ L2(Γ3), u0 ∈ V, β0 ∈ K. (3.21)

We define the bilinear form a : H1(Ω)×H1(Ω)→ R by

a(ς, ϑ) = ke

∫
Ω

∇ς · ∇ϑdx.

Next we define the four mappings f : [0, T ] → V , q : [0, T ] → W, j : V × V ×
V × L2(Γ3)→ R and γ : V ×W × L2(Γ3)→W , respectively, by

(f(t),v)V =

∫
Ω

f0(t) · vdx +

∫
Γ2

f2(t) · vda, (3.22)

(q(t), φ)W =

∫
Ω

q0(t)φdx−
∫
Γb

q2(t)φda,

j(u,v,w, ζ ) =

∫
Γ3

pν(uν − h− ζ )wνda

+

∫
Γ3

µ pν(uν − h− ζ ) |wτ − v∗| da ,
(3.23)

(γ(u, ϕ, ζ), φ)W =

∫
Γ3

ψ(uν − h− ζ)φL(ϕ− ϕ0)φda, (3.24)

for all u,v,w ∈ V , ζ ∈ L2(Γ3), ϕ, φ ∈W and t ∈ [0, T ], µ = µ(ζ, |vτ − v∗|).

Math. Model. Anal., 26(2):170–187, 2021.



178 M.S. Mesai Aoun, M. Selmani and A. Azeb Ahmed

The functional j : V × V × V × L2(Γ3)→ R satisfies{
for all g,w ∈ V and ζ ∈ L2(Γ3) : υ → j(g,w,υ, ζ)
is proper, convex and lower semicontinuous on V.

(3.25)

We note that conditions (3.19) and (3.20) imply that

f ∈ C(0, T ;V ), q ∈ C(0, T ;W ).

Using standard arguments we obtain the variational formulation of the me-
chanical problem (3.1)–(3.11).

Problem PV. Find a displacement field u : [0, T ] → V , a stress field σ :
[0, T ]→ H1, an electric potential field ϕ : [0, T ]→W , an electric displacement
field D : [0, T ] → W, a damage field β : [0, T ] → H1(Ω) and a wear function
ζ : [0, T ]→ L2(Γ3) such that,

σ(t) = Aε(u̇(t)) + F(ε(u(t)),β (t))

+ E∗∇ϕ(t) +

∫ t

0

M(t− s)ε(u(s))ds, t ∈ [0, T ], (3.26)

(σ(t) , ε(υ − u̇(t)))H + j(u(t), u̇(t),υ, ζ(t))

− j(u(t), u̇(t), u̇(t), ζ(t)) ≥ (f(t),υ−u̇(t))V ∀υ ∈ V, t ∈ [0, T ],

β(t) ∈ K, (β̇(t), ξ − β(t))L2(Ω) + a(β(t), ξ − β(t))

≥ (S(ε(u(t)), β(t)), ξ − β(t))L2(Ω) ∀ξ ∈ K, a.e. t ∈ (0, T ),

D(t) = Eε(u(t))−B∇ϕ(t), t ∈ [0, T ],

(D(t),∇φ)H = (γ (u (t) , ϕ (t) , ζ (t)) , φ)W (3.27)

− (q(t), φ)W ∀φ ∈W, t ∈ [0, T ],

ζ̇ = k1µ(ζ, |u̇τ − υ∗|)pν(uν − h− ζ )R∗(|u̇τ − υ∗|), t ∈ [0, T ],

u(0) = u0, β(0) = β0, ζ(0) = 0. (3.28)

The existence of the unique solution to Problem PV is stated and proved in
the next section.

4 Existence and uniqueness result

The main result in this section is the following existence and uniqueness result.

Theorem 1. Assume that (3.13)–(3.21) and (3.25) hold. Then if c20p
∗
νLµ <

mA and Nψ <
mB
a20
, there exists a unique solution {u,σ, ϕ,D, β, ζ} to Problem

PV. Moreover, the solution satisfies

u ∈C1(0, T ;V ), (4.1)

σ ∈C(0, T ;H1),

ϕ ∈C(0, T ;W ), D ∈ C(0, T ;W), (4.2)

β ∈H1(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)), (4.3)

ζ ∈C1(0, T ;L2(Γ3)). (4.4)
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The functions u, σ, ϕ, D, β and ζ which satisfy (3.26)–(3.28) are called weak
solution to contact problem P.We conclude that, under the assumptions (3.13)–
(3.21) and if c20p

∗
νLµ < mA and Nψ <

mB
a20

, the mechanical problem (3.1)–(3.11)

has a unique weak solution satisfying (4.1)–(4.4). The proof of Theorem 1
is carried out in several steps. Everywhere in this section we suppose that
assumptions of Theorem 1 hold. Below, c denotes a generic positive constant
which may depend on Ω, Γ1, Γ2, Γ3, A, E , F , M, B, ψ, pν , µ and T but does
not depend on t nor of the rest of input data, and whose value may change
from place to place.

In the first step let ζ ∈ C(0, T ;L2(Γ3)), η ∈ C(0, T ;H), g ∈ C(0, T ;V ) and
w ∈ C(0, T ;V ) be given and consider the following variational problem.

Problem PVζηgw. Find a velocity field vζηgw : [0, T ] → V and a stress
field σζηgw : [0, T ]→ H such that for all t ∈ [0, T ],

σζηgw(t) = Aε (vζηgw(t)) + η(t), (4.5)

(σζηgw(t)), ε(v − vζηgw(t)))H + j(g(t),w(t),v, ζ(t))

− j(g(t),w(t),vζηgw(t), ζ(t)) ≥ (f(t),v − vζηgw(t))V ∀v ∈ V. (4.6)

In the study of Problem PVζηgw we have the following result.

Lemma 1. PVζηgw has a unique solution (vζηgw,σζηgw) such that
vζηgw ∈ C(0, T ;V ), σζηgw ∈ C(0, T ;H1).

Proof. We define the operator A : V → V such that

(Au,v)V = (Aε(u), ε(v))H ∀u,v ∈ V. (4.7)

It follows from (4.7), (3.13)(b) and (3.13)(c) that A : V → V is Lipschitz con-
tinuous and a strongly monotone operator on V . Moreover using Riesz Repre-
sentation Theorem we may define an element F ∈ C(0, T ;V ) by (F (t),v)V =
(f(t),v)V −(η(t), ε(v))H. Since A is a strongly monotone and Lipschitz contin-
uous operator on V and from (3.25), it follows from classical result on elliptic
inequalities (see for example [5]) that there exists a unique function vζηgw ∈ V
which satisfies

(Avζηgw(t),v − vζηgw(t))V + j(g(t),w(t),v, ζ(t))

− j(g(t),w(t),vζηgw(t), ζ(t)) > (F (t),v − vζηgw(t))V .
(4.8)

We use the relation (4.5), the assumption (3.13) and the properties of the
deformation tensor to obtain that σζηgw(t) ∈ H. Since v = vζηgw(t) ± Φ
satisfies (4.6), where Φ ∈ D(Ω)d is arbitrary, using the definition (3.22) we find

Divσζηgw(t) + f0(t) = 0.

With the regularity assumption (3.19) on f0 we see that Divσζηgw(t) ∈ H.
Therefore σζηgw(t) ∈ H1. Next we show that vζηgw ∈ C(0, T ;V ). Let t1, t2 ∈
[0, T ] and denote vζηgw(ti) = vi, g(ti) = gi, w(ti) = wi, ζ (ti) = ζi, η(ti) = ηi,
σ(ti) = σi and f(ti) = f i for i = 1, 2. Using the relation (4.8) we find

(Av1 −Av2,v1 − v2)V ≤ j(g1,w1,v2, ζ1)− j(g1,w1,v1, ζ1)

+ j(g2,w2,v1, ζ2)− j(g2,w2,v2, ζ2)

+ (f1 − f2,v1 − v2)V + (η2 − η1, ε(v1 − v2))H.
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Then by using (3.23), (3.12), the conditions (3.13), (3.14) and (3.15) we obtain

mA |v1 − v2|V ≤ Lν(1 + µ∗)c20 |g1 − g2|V + c20p
∗
νLµ |w1 −w2|V

+ (Lν + Lµp
∗
ν + Lνµ

∗) c0 |ζ1 − ζ2|L2(Γ3)
+ |η1 − η2|H + |f1 − f2|V .

(4.9)

This inequality and the regularity of the functions f , g, w, ζ and η show that
vζηgw ∈ C(0, T ;V ). From assumption (3.13), the relation (4.5) we have

|σ1 − σ2|H ≤ c(|v1 − v2|V + |η1 − η2|H). (4.10)

We have
Divσζηgw(t) + f0(t) = 0. (4.11)

The regularity of the functions η, v, f0 and the relations (4.10), (4.11) show
that σζηgw ∈ C(0, T ;H1). ut

Let ζ ∈ C(0, T ;L2(Γ3)), g ∈ C(0, T ;V ) and η ∈ C(0, T ;H) be given. We
consider the operator Λζηg : C(0, T ;V )→ C(0, T ;V ) defined by

Λζηgw = vζηgw. (4.12)

We have the following result.

Lemma 2. The operator Λζηg has a unique fixed point wζηg ∈ C(0, T ;V ).

Proof. Let w1,w2 ∈ C(0, T ;V ). We use the notation vi = vζηgwi for i = 1, 2.
From the definition (4.12) we have

|Λζηgw1(t)− Λζηgw2(t)|V = |v1(t)− v2(t)|V ∀t ∈ [0, T ].

Using similar arguments as those used in the proof of (4.9) we find

mA |v1(t)− v2(t)|V ≤ c
2
0p
∗
νLµ |w1(t)−w2(t)|V ∀t ∈ [0, T ].

Keeping in mind that c20p
∗
νLµ < mA, the two inequalities shows that the oper-

ator Λζηg is a contraction in the Banach space C(0, T ;V ), which concludes the
proof. ut

In what follows we denote by wζηg the fixed point given in Lemma 2 and
let vζηg ∈ C(0, T ;V ) be the function defined by vζηg = vζηgwζηg . We have
Λζηgwζηg = wζηg and Λζηgwζηg = vζηgwζηg it follows that wζηg = vζηg.
Therefore, choosing w = wζηg in (4.8) and for all v ∈ V, t ∈ [0, T ], we see that
vζηg satisfies

(Avζηg(t),v − vζηg(t))V + j(g(t),vζηg(t),v, ζ(t))

− j(g(t),vζηg(t),vζηg(t), ζ(t)) > (F (t),v − vζηg(t))V .
(4.13)

We denote by uζηg ∈ C1(0, T ;V ) the function

uζηg(t) = u0 +

∫ t

0

vζηg(s) ds ∀t ∈ [0, T ], (4.14)
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and define the operator Λζη : C(0, T ;V )→ C(0, T ;V ) by

Λζηg = uζηg. (4.15)

Lemma 3. The operator Λζη has a unique fixed point gζη ∈ C(0, T ;V ).

Proof. Let g1, g2 ∈ C(0, T ;V ). We use the notation vi = vζηgi and ui = uζηgi
for i = 1, 2. Using (4.14) and the estimates in the proof of Lemma 1 yield for all
s ∈ [0, T ], (mA−p∗νLµc20) |v1(s)−v2(s)|V ≤ c20Lν(1+µ∗) |g1(s)−g2(s)|V . Using
now (4.14)-(4.15) we obtain for all t ∈ [0, T ] ,

|Λζηg1(t)− Λζηg2(t)|V ≤
c20Lν(1 + µ∗)

(mA − p∗νLµc20)

∫ t

0

|g1(s)− g2(s)|V ds.

By reiterating this inequality m times, we obtain that a power of Λζη is a
contraction mapping on C(0, T ;V ), which concludes the proof. ut

Problem PVζη . Find a displacement field uζη : [0, T ] → V such that
for all t ∈ [0, T ] ,

(Aε(u̇ζη(t)), ε(v − u̇ζη(t)))H + (η(t), ε(v − u̇ζη(t))H

+ j(uζη(t), u̇ζη(t),v, ζ(t))− j(uζη(t), u̇ζη(t), u̇ζη(t), ζ(t))

≥ (f(t),v − u̇ζη(t))V ∀v ∈ V,
(4.16)

uζη(0) = u0.

In the study of the problem PVζη we have the following result.

Lemma 4. PVζη has a unique solution satisfying the regularity (4.1).

Proof. For each ζ ∈ C(0, T ;L2(Γ3)) and η ∈ C(0, T ;H), we denote by gζη ∈
C(0, T ;V ) be the fixed point guaranted by Lemma 3 and let uζη be the function
defined by (4.14), for g = gζη. We have Λζηgζη = gζη. From (4.14) and (4.15)
it follows that uζη = gζη. Therefore, taking g = gζη in (4.13) and using (4.7)
and (4.14) we see that uζη is the unique solution to problem PVζη satisfying
the regularity expressed in (4.1).

In the second step, let ζ ∈ C(0, T ;L2(Γ3)) and η ∈ C(0, T ;H), we use the
displacement field uζη defined in (4.14) and consider the following variational
problem. ut

Problem QVζη . Find the electric potential field ϕζη : [0, T ] → W such
that ∀t ∈ [0, T ]

(B∇ϕζη(t),∇φ)H + (γ(uζη(t), ϕζη(t), ζ (t)), φ)W

− (Eε(uζη(t)),∇φ)H = (q(t), φ)W ∀φ ∈W,
(4.17)

we have the following result.
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Lemma 5. QVζη has a unique solution ϕζη which satisfies the regularity ex-
pressed in (4.2). Moreover, if ϕζη1 and ϕζη2are the solutions of (4.17) corre-
sponding to η1,η2 ∈ C(0, T ;H) then, there exists c > 0, such that

|ϕζη1(t)− ϕζη2(t)|W ≤ c |uζη1(t)− uζη2(t)|V ∀ t ∈ [0, T ]. (4.18)

Proof. Let t ∈ [0, T ]. We use Riesz representation theorem to define the
operator Aζη(t) : W →W by

(Aζη(t)ϕ, φ)W = (B∇ϕ,∇φ)H − (Eε(uζη(t)),∇φ)H

+ (γ(uζη(t), ϕ, ζ (t)), φ)W ∀ϕ, φ ∈W.

Let ϕ1, ϕ2 ∈ W . Assumption (3.16)–(3.18) and the definition (3.24) imply
Aζη(t) is a strongly monotone and Lipschitz continuous operator on W . We
deduce that there exists a unique element ϕζη(t) ∈W such that Aζη(t)ϕζη(t) =
q(t). We conclude that ϕζη is the unique solution of QVζη.

We show next that ϕζη ∈ C(0, T ;W ). Let t1, t2 ∈ [0, T ] and denote ϕζη(ti) =
ϕi, uζην(ti) = uiν , uζη(ti) = ui, q(ti) = qi, ζ (ti) = ζi for i = 1, 2. Using (4.17),
(3.16), (3.17) and the definition (3.24) we find

mB |ϕ1 − ϕ2|W ≤ (cE + LψLa0c0) |u1 − u2|V + |q1 − q2|W
+ LψLa0 |ζ1 − ζ2|L2(Γ3)

+Nψa
2
0 |ϕ1 − ϕ2|W ,

(4.19)

where cE is a positive constant which depends on the piezoelectric tensor E .
It follows from inequality (4.19) and the fact that Nψ <

mB
a20

that

|ϕ1 − ϕ2|W ≤ c(|u1 − u2|V + |q1 − q2|W + |ζ1 − ζ2|L2(Γ3)
). (4.20)

Since u ∈ C1(0, T ;V ), q ∈ C(0, T ;W ), ζ ∈ C(0, T ;L2(Γ3)) the inequality
(4.20) implies that ϕζη ∈ C(0, T ;W ).

Let η1, η2 ∈ C(0, T ;H) and denote ϕζηi = ϕi, uζηi = ui for i = 1, 2. We
use (4.17) and arguments similar to those used in the proof of (4.19) to obtain

mB |ϕ1(t)− ϕ2(t)|W ≤ Nψa
2
0 |ϕ1(t)− ϕ2(t)|W

+ (cE + LψLa0c0) |u1 (t)− u2 (t)|V ,

for all t ∈ [0, T ]. This inequality, combined with the fact that Nψ <
mB
a20

leads

to (4.18) which concludes the proof. ut

In the third step, we let θ ∈ C(0, T ;L2(Ω)) be given and consider the
following variational problem for the damage field.

Problem PVθ . Find a damage field βθ : [0, T ]→ H1(Ω) such that

βθ(t) ∈ K, (β̇θ (t) , ξ − βθ(t))L2(Ω) + a(βθ(t), ξ − βθ(t))
≥ (θ(t), ξ − βθ(t))L2(Ω) ∀ξ ∈ K, a.e. t ∈ (0, T ) , βθ(0) = β0.

Lemma 6. Problem PVθ has a unique solution βθ which satisfies
βθ ∈ H1(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)).
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Proof. To solve PVθ, we use the standard result for parabolic variational
inequalities ( see for example the reference [23, p.47]). ut

Finally, we consider the operator Λζ : C(0, T ;H × L2(Ω)) → C(0, T ;H ×
L2(Ω)) defined by

Λζ(η, θ)(t) = (Λ
(1)
ζ (η, θ)(t), Λ

(2)
ζ (η, θ)(t)) ∈ H × L2(Ω), (4.21)

Λ
(1)
ζ (η, θ)(t)=F(ε(uζη), βθ)+E∗∇ϕζη(t)+

∫ t

0

M(t−s)ε(uζη(s))ds,(4.22)

Λ
(2)
ζ (η, θ)(t) = S(ε(uζη(t)), βθ(t)). (4.23)

Here, for every (η, θ) ∈ C(0, T ;H × L2(Ω)), uζη, ϕζη and βθ represent the
displacement field, the electric potential field and the damage field obtained in
Lemmas 4, 5 and 6 respectively.

By using similar arguments to those used in the Lemma 4.8 in [14], we have
the following result.

Lemma 7. The operator Λζ has a unique fixed point (ηζ , θζ) ∈ C(0, T ;H ×
L2(Ω)).

Let ζ ∈ C(0, T ;L2(Γ3)). In the fourth step we consider the following varia-
tional problem.

Problem PVζ . Find a displacement field uζ : [0, T ] → V , a stress field
σζ : [0, T ] → H1, an electric potential field ϕζ : [0, T ] → W , an electric dis-
placement field Dζ : [0, T ]→W and a damage field βζ : [0, T ]→ H1 (Ω) such
that

σζ(t) = Aε(u̇ζ(t)) + F(ε(uζ(t)), βζ(t))

+ E∗∇ϕζ(t) +

∫ t

0

M(t− s)ε(uζ(s))ds, t ∈ [0, T ],
(4.24)

(σζ(t) , ε(v − u̇ζ(t)))H + j(uζ(t), u̇ζ(t),v, ζ(t))

− j(uζ(t), u̇ζ(t), u̇ζ(t), ζ(t)) ≥ (f(t),v − u̇ζ(t))V ∀v ∈ V, t ∈ [0, T ] ,

Dζ(t) = Eε(uζ(t))−B∇ϕζ(t), t ∈ [0, T ] ,

(Dζ(t),∇φ)H = (γ(uζ(t), ϕζ(t), ζ (t)), φ)W

− (q(t), φ)W ∀φ ∈W, t ∈ [0, T ] ,
(4.25)

βζ(t) ∈ K , (β̇ζ(t), ξ − βζ(t))L2(Ω) + a(βζ(t), ξ − βζ(t))
≥ (S(ε(uζ(t)), βζ(t)), ξ − βζ(t))L2(Ω) ∀ξ ∈ K, a.e. t ∈ (0, T ),

(4.26)

uζ(0) = u0, βζ(0) = β0. (4.27)

Lemma 8. Problem PVζ has a unique solution (uζ ,σζ , ϕζ ,Dζ , βζ) satisfying
(4.1)–(4.3).

Proof. Let (ηζ , θζ) ∈ C(0, T ;H×L2(Ω)) be the fixed point of Λζ defined by
(4.21)–(4.23) and denote uζ = uζηζ , ϕζ = ϕζηζ , βζ = βθζ , be the solutions to
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problems PVζη, QVζη and PVθ obtained in Lemmas 4, 5 and 6 respectively for
(η, θ) = (ηζ , θζ). Let

σζ(t) = Aε(u̇ζ(t)) + Fε(uζ(t), βζ(t)) + E∗∇ϕζ(t)

+

∫ t

0

M(t− s)ε(uζ(s))ds, ∀t ∈ [0, T ] ,

Dζ(t) = Eε(uζ(t))−B∇ϕζ(t), ∀t ∈ [0, T ] .

Equations Λ
(1)
ζ (ηζ , θζ) = ηζ and Λ

(2)
ζ (ηζ , θζ) = θζ , combined with (4.22) and

(4.23) shows that (uζ ,σζ ,ϕζ ,Dζ , βζ) satisfies (4.24)–(4.25). Next, (4.26) and
the regularities (4.1)–(4.3) follow from Lemmas 4, 5 and 6 and assumptions on
A, F , M and E which concludes the existence part of the Lemma 8.

The uniqueness part of Lemma 8 is a consequence of the uniqueness of
the fixed point of the operator Λζ defined by (4.21)–(4.23) and the unique
solvability of problems PVζηζ ,QVζηζand PVθζ . ut

Let us now consider the operator T : C(0, T ;L2(Γ3)) → C(0, T ;L2(Γ3))
defined for all t ∈ [0, T ] by

T ζ(t) = k1

∫ t

0

µ(ζ, |u̇τ − v∗|)pν(uν − h− ζ)R∗(|u̇τ − v∗|)ds . (4.28)

The last step in the proof of Theorem 1 is the next result.

Lemma 9. The operator T has a unique fixed point ζ∗ ∈ C(0, T ;L2(Γ3)).

Proof. Let ζ1, ζ2 ∈ C(0, T ;L2(Γ3)) and denote by (ui,σi, ϕi,Di), i = 1, 2,
the solutions to problem PVζ for ζ = ζi, i.e. ui = u ζi ,vi = u̇ζi ,σi = σζi ,
ϕi = ϕζi and Di = Dζi . Moreover, we denote in the sequel by c various
positive constants which may depend on k1 and v∗. We use similar arguments
that those used in the proof of the relation (4.9) to find that for all s ∈ [0, T ]

|v1(s)− v2(s)|V ≤ c
(
|u1(s)− u2(s)|V + |ζ1(s)− ζ2(s)|L2(Γ3)

)
.

Using the inequality 2ab ≤ a2 + b2 and integrating this inequality with respect
to time, we obtain∫ t

0

|v1(s)−v2(s)|2V ds ≤ c
(∫ t

0

|u1(s)−u2(s)|2V ds+

∫ t

0

|ζ1(s)−ζ2(s)|2L2(Γ3)
ds
)
.

Since u1(0) = u2(0) = u0 and using the previous inequality we obtain

|u1(t)− u2(t)|2V ≤ c
∫ t

0

|v1(s)− v2(s)|2V ds

≤ c
∫ t

0

|u1(s)− u2(s)|2V ds+ c

∫ t

0

|ζ1(s)− ζ2(s)|2L2(Γ3)
ds.

(4.29)

Applying Gronwall inequality, we deduce that

|u1(t)− u2(t)|2V ≤ c
∫ t

0

|ζ1(s)− ζ2(s)|2L2(Γ3)
ds.
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It follows from (4.29) and the previous inequality that∫ t

0

|v1(s)− v2(s)|2V ds ≤c
( ∫ t

0

∫ s

0

|ζ1(r)− ζ2(r)|2L2(Γ3)
drds

+

∫ t

0

|ζ1(s)− ζ2(s)|2L2(Γ3)
ds
)
.

Since s ≤ t∫ t

0

∫ s

0

|ζ1(r)− ζ2(r)|2L2(Γ3)
drds ≤ c

∫ t

0

∫ t

0

|ζ1(r)− ζ2(r)|2L2(Γ3)
drds

= c

∫ t

0

|ζ1(r)− ζ2(r)|2L2(Γ3)
dr

∫ t

0

ds.

Then ∫ t

0

|v1(s)− v2(s)|2V ds ≤ c
∫ t

0

|ζ1(s)− ζ2(s)|2L2(Γ3)
ds. (4.30)

On the other hand, since

T ζi (t) =k1

∫ t

0

µ(ζi (s) , |viτ (s)−v∗|) pν(uiν (s)−h−ζi (s)) R∗(|viτ (s)−v∗|)ds

for i = 1, 2, we use similar arguments that those used in the proof of the relation
(4.9) to obtain that for t ∈ [0, T ]

|T ζ1(t)− T ζ2(t)|2L2(Γ3)
≤ c

∫ t

0

(
|v1(s)− v2(s)|2V + |ζ1(s)− ζ2(s)|2L2(Γ3)

)
ds.

We substitute (4.30) in the previous inequality to find

|T ζ1(t)− T ζ2(t)|2L2(Γ3)
≤ c

∫ t

0

|ζ1(s)− ζ2(s)|2L2(Γ3)
ds.

Reiterating this inequality m times leads to

|T mζ1 − T mζ2|2C(0,T ;L2(Γ3))
≤ (cT )

m

m!
|ζ1 − ζ2|2C(0,T ;L2(Γ3))

.

Therefore, for m large enough, T m is a contractive operator on the Banach
space C(0, T ;L2(Γ3)). The operator T has a unique fixed point
ζ∗ ∈ C(0, T ;L2(Γ3)). ut

Now we have all ingredients to prove Theorem 1.

Proof. Let ζ∗ be the fixed point of the operator T given by (4.28). With
(4.24)–(4.27) and (4.28) it easy to verify that (uζ∗ ,σζ∗ , ϕζ∗ ,Dζ∗ , βζ∗ , ζ

∗) is
the unique solution to the problem PV satisfying the regularities (4.1)–(4.4).
ut
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