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Abstract. In this paper, we apply Legendre-Laguerre functions (LLFs) and collo-
cation method to obtain the approximate solution of variable-order time-fractional
partial integro-differential equations (VO-TF-PIDEs) with the weakly singular ker-
nel. For this purpose, we derive the pseudo-operational matrices with the use of
the transformation matrix. The collocation method and pseudo-operational matrices
transfer the problem to a system of algebraic equations. Also, the error analysis of the
proposed method is given. We consider several examples to illustrate the proposed
method is accurate.
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1 Introduction

Partial integro-differential equations with a weakly singular kernel have numer-
ous applications in mathematical physics and chemical reactions, such as the
theory of elasticity, hydrodynamics, heat conduction, stereology [18] and the

�
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radiation of heat from semi-infinite solids [16]. Various numerical and analytical
methods have been used for solving integro-differential equations. For example,
Baleanu et al. [3] utilized the optimum q-homotopic analysis method for solv-
ing weakly singular kernel fractional fourth-order partial integro-differential
equations, Tang [34] applied a finite difference scheme for partial integro-
differential equations with a weakly singular kernel, McLean et al. [19] used
Laplace transformation of an integro-differential equation of parabolic types,
Nemati et al. [25] discussed the numerical solution of two-dimensional non-
linear Volterra integral equations by the Legendre polynomials, Fairweather
[12] introduced spline collocation methods for a class of hyperbolic partial
integro-differential equations, Dehestani et al. [9] proposed an efficient com-
putational approach based on the Genocchi hybrid functions for solving a class
of fractional Fredholm-Volterra functional integro-differential equations, Patel
et al. [26] applied two-dimensional wavelets collocation scheme for linear and
nonlinear Volterra weakly singular partial integro-differential equations and
many other methods have been used in this type of equation, which can refer
to [4, 10, 25, 30, 31, 32, 35].

In 1993, Samko and Ross [6], introduced an interesting generalization of
fractional operators. They presented the study of fractional integration and
differentiation when the order is not a constant but a function. Afterward,
the variable order fractional calculus (VOFC) is presented as a useful tool with
various applications in science and engineering, specifically, VOFC describes the
mechanics of an oscillating mass subjected to a variable viscoelasticity damper
and a linear spring [6] to characterize the dynamics of Van der Pol equation [11],
to develop motion for spherical particle sedimentation in a quiescent viscous
liquid [27], to analyze elastoplastic indentation problems [14], to interpolate the
behavior of systems with multiple fractional terms [33] and to obtain variable-
order fractional noise [29].

Several papers have been devoted to the study of variable-order fractional
problems, such as variable-order fractional differential equations [17, 22, 24],
variable-order fractional partial integro-differential equations [2, 8, 20, 21, 23]
and so on. Limited work has been done in the study on VO-TF-PIDEs with
the weakly singular kernel. Therefore, we consider the VO-TF-PIDEs with the
weakly singular kernel as

D
γ(x,t)
t u(x, t)+

2
∑

i=0

2
∑

j=0

µij

∂i+ju(x, t)

∂xi∂tj
=g(x, t) + λ

∫ x

0

∫ h(t)

0

Gu(ξ, η)

(x−ξ)α(t−η)β
dηdξ,

q − 1 < γ(x, t) ≤ q, (x, t) ∈ [0, 1]× [0,∞) (1.1)

with initial conditions and boundary conditions

u(x, 0) = f0(x),
∂u(x, 0)

∂t
= f1(x),

u(0, t) = ϕ0(t), u(1, t) = ϕ1(t), (1.2)

where α, β ∈ [0, 1), which are not both zero and u(x, t) is an unknown function.
The known functions h(t), f0(x), f1(x), ϕ0(t) and ϕ1(t) are defined on interval
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Ω = [0, 1] × [0,∞), µij , λ are real constants, q is a positive integer and G is

an identity or differential operator. Also, D
γ(x,t)
t denotes the variable order

Caputo fractional derivative operator that is defined as follows [6, 8]:

D
γ(x,t)
t u(x, t) =

1

Γ (q − γ(x, t))

∫ t

0

(t− s)q−γ(x,t)−1 ∂
qu(x, s)

∂sq
ds,

for q − 1 < γ(x, t) ≤ q, t > 0 and q ∈ Z+. To guarantee the existence and
uniqueness of the solution of the proposed equation, we supposed that the
functions u(x, t) and g(x, t) be sufficiently smooth functions. To solve this
problem, we focus on providing a numerical scheme to solve VO-TF-PIDEs
with the weakly singular kernel by LLFs and collocation method. Then, several
numerical examples are presented to illustrate the effectiveness of the proposed
method.

In modeling of physical phenomena, the variable order fractional derivatives
are very powerful, because they have the memory with respect to time and spa-
tial location. Therefore, the fractional derivatives statements in the proposed
equation are replaced by the variable-order fractional derivative. Solving the
problems by the variable-order fractional derivative with the help of an ana-
lytical method is not convenient. Hence, this fact motivates us to present the
numerical algorithm base on Legendre-Laguerre functions. The Laguerre poly-
nomials are orthogonal in the semi-infinite intervals which are appropriate for
approximating problems of natural phenomena in semi-infinite intervals.

This paper is structured as follows. In Section 2, we introduce the for-
mulation of LLFs and their properties. Section 3 is devoted to the pseudo-
operational matrices of integration and variable-order fractional derivative for
LLFs by use of the transformation matrix of Legendre and Laguerre polynomi-
als to Taylor polynomials. In Section 5, we will describe a successful numerical
approach, which is used for making up the solution. The convergence of the ap-
proximate solution is given in Section 6. In Section 7, we report our numerical
results to demonstrate the accuracy of the proposed scheme. Also, conclusions
are given in Section 8.

2 Legendre-Laguerre functions

In this section, we introduce two-dimensional LLFs, which obtain these func-
tions with Legendre and Laguerre polynomials. Consider the shifted Legendre
polynomials Pm(x) on the interval [0, 1] as [7]

Pm(x) =

m
∑

s=0

(−1)s+m(m+ s)!

(m− s)!(s!)2
xs, m = 1, 2, 3, . . . .

The shifted Legendre polynomials are orthogonal with respect to the weight
function w(x) = 1 in the interval [0, 1] with the orthogonal property

∫ 1

0

w(x)Pm(x)Pn(x)dx =
1

2m+ 1
δmn,
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where δmn is the Kronecker function. The Laguerre polynomials Ln(t) on the
interval [0,∞) are defined as follows [7]:

Ln(t) =

n
∑

k=0

(−1)kn!

(k!)2(n− k)!
tk, n = 1, 2, 3, . . . . (2.1)

The Laguerre polynomials are orthogonal with respect to the weight function
w(t) = e−t in the interval [0,∞) with the orthogonal property

∫

∞

0

w(t)Lm(t)Ln(t)dt = δmn.

Accordingly, we construct two-dimensional LLFs as follows:

ψmn(x, t) = Pm(x)Ln(t), (x, t) ∈ Ω, m = 0, 1, . . . ,M, n = 0, 1, . . . , N.

Two-dimensional LLFs ψmn(x, t), are the orthogonal basis with respect to the
weight function w(x, t) = e−t. Using the orthogonality property of Legendre
and Laguerre polynomials, we obtain

∫

∞

0

∫ 1

0

e−tψmn(x, t)ψij(x, t)dxdt =
1

2m+ 1
δmiδnj .

A function f(x, t), which is integrable in Ω, can be expanded as

f(x, t) =
∞
∑

m=0

∞
∑

n=0

fmnψmn(x, t),

fmn = (2m+ 1)

∫

∞

0

∫ 1

0

w(x, t)f(x, t)ψmn(x, t)dxdt.

Then, we have truncated series for f as

f(x, t) ≃

M
∑

m=0

N
∑

n=0

fmnψmn(x, t) = PT (x)FL(t),

where

F =
[

fmn

]

(M+1)×(N+1)
, m = 0, 1, . . . ,M, n = 0, 1, . . . , N,

P (x) = [P0(x), P1(x), . . . , PM (x)]T , L(t) = [L0(t), L1(t), . . . , LN(t)]T .

3 Pseudo-operational matrices of integration for LLFs

In this section, we calculate the integral pseudo-operational matrix without
coefficients and with the weakly singular coefficients for Legendre and Laguerre
polynomials.

Math. Model. Anal., 25(4):680–701, 2020.
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3.1 Pseudo-operational matrices of integration

To calculate the integral pseudo-operational matrices of Legendre polynomials,
we use the Taylor polynomials Ti(x) = xi, i = 0, 1, · · · ,M [13]. The following
relation holds among these polynomials and Legendre polynomials:

P (x) = D1T (x), T (x) = [1, x, x2, . . . , xM ]T ,

D1 =
[

d1ij
]

, d1ij =

{

(−1)i+j(i+j)!
(i−j)!(j!)2 , i ≥ j,

0, otherwise,
i, j = 0, 1, . . . ,M,

D1 denotes the transformation matrix of the Legendre polynomials to the Tay-
lor polynomials. Now, by integrating from P (x), we obtain

∫ x

0

P (ξ)dξ =

∫ x

0

D1T (ξ)dξ = D1

∫ x

0

T (ξ)dξ

= xD1H1T (x) = xD1H1D
−1
1 P (x) = xQ1P (x),

where Q1 = D1H1D
−1
1 is an integral pseudo-operational matrix of Legendre

polynomials and

H1 =
[

h1ij
]

, h1ij =

{

1
i+1 , i = j,

0, i 6= j,
i, j = 0, 1, . . . ,M.

Moreover, to deal with the problem, we utilize the following integral
∫ x

0

ξP (ξ)dξ =

∫ x

0

ξD1T (ξ)dξ = D1

∫ x

0

ξT (ξ)dξ

= x2D1Ĥ1T (x) = x2D1Ĥ1D
−1
1 P (x) = x2Q̂1P (x),

where Q̂1 = D1Ĥ1D
−1
1 and

Ĥ1 =
[

ĥ1ij

]

, ĥ1ij =

{

1/(i+ 2), i = j,
0, i 6= j,

i, j = 0, 1, . . . ,M.

Moreover, we can write L(t) in the matrix form as follows:

L(t) = D2T (t), T (t) = [1, t, t2, . . . , tN ]T ,

D2 = [d2ij ](N+1)×(N+1), d2ij =

{

(−1)j(i)!
(i−j)!(j!)2 , i ≥ j,

0, otherwise,
i, j = 0, 1, . . . , N,

D2 is the transformation matrix of the Laguerre polynomials to the Taylor
polynomials. Then, by integrating L(t) on interval [0, h(t)], we have

∫ h(t)

0

L(η)dη =

∫ h(t)

0

D2T (η)dη = D2

∫ h(t)

0

T (η)dη = h(t)D2H2T (h(t))

= h(t)D2H2D
−1
2 L(h(t)) = h(t)Q2L(h(t)), (3.1)

where Q2 = D2H2D
−1
2 and

H2 =
[

h2ij
]

, h2ij =

{

1/(i+ 1), i = j,
0, i 6= j,

i, j = 0, 1, . . . , N.
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In Equation (3.1), by putting h(t) = t, we have
∫ t

0 L(η)dη = tQ2L(t), where we
introduce Q2 as an integral pseudo-operational matrix of Laguerre polynomials.
In addition, we need

∫ t

0

ηL(η)dη =

∫ t

0

ηD2T (η)dη = D2

∫ t

0

ηT (η)dη

= t2D2Ĥ2T (t) = t2D2Ĥ2D
−1
2 L(t) = t2Q̂2L(t), Q̂2 = D2Ĥ2D

−1
2 ,

where

Ĥ2 =
[

ĥ2ij

]

, ĥ2ij =

{

1
i+2 , i = j,

0, i 6= j,
i, j = 0, 1, . . . , N.

3.2 Pseudo-operational matrix with the weakly singular coefficients

To deal with an integral part of Equation (1.1), we present the pseudo-opera-
tional matrix with the weakly singular coefficients. Hence, we obtain integral
of Legendre polynomials with the weakly singular kernel 1

(x−ξ)α :

∫ x

0

P (ξ)

(x− ξ)α
dξ =

∫ x

0

D1T (ξ)

(x− ξ)α
dξ = D1

∫ x

0

T (ξ)

(x − ξ)α
dξ

= x1−αD1S1T (x) = x1−αD1S1D
−1
1 P (x) = x1−αS̃1P (x),

where S̃1 = D1S1D
−1
1 is the pseudo-operational matrix with the weakly singu-

lar coefficients for Legendre polynomials and

S1 =
[

s1ij
]

, s1ij =

{

Γ (1−α)Γ (1+i)
Γ (2+i−α) , i = j,

0, i 6= j,
i, j = 0, 1, . . . ,M.

Also, we obtain integration of Laguerre polynomials with the weakly singular
kernel 1/(t− η)β on interval [0, h(t)] as:

∫ h(t)

0

L(η)

(t− η)β
dη =

∫ h(t)

0

D2T (η)

(t− η)β
dη = D2

∫ h(t)

0

T (η)

(t− η)β
dη

= h(t)1−βD2S2T (h(t)) = h(t)1−βD2S2D
−1
2 L(h(t)) = h(t)1−β S̃2L(h(t)),

where S̃2 = D2S2D
−1
2 the pseudo-operational matrix with the weakly singular

coefficients for Laguerre polynomials and

S2 =
[

s2ij
]

, s2ij =

{

Γ (1−β)Γ (1+i)
Γ (2+i−β) , i = j,

0, i 6= j,
i, j = 0, 1, . . . , N.

4 Pseudo-operational matrix of the variable-order

fractional derivative

In this section, we derive the pseudo-operational matrix of the variable-order
fractional derivative of Laguerre polynomials by using some properties of Ca-
puto variable-order fractional derivative.

Math. Model. Anal., 25(4):680–701, 2020.
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Theorem 1. The pseudo-operational matrix of the variable-order fractional
derivative of order q − 1 < γ(x, t) ≤ q for the Laguerre polynomials is given by

D
γ(x,t)
t L(t) ≃ tq−γ(x,t)ξ

γ(x,t)
N L(t),

where ξ
γ(x,t)
N is called the pseudo-operational matrix of variable-order fractional

derivative for the Laguerre polynomials.

Proof. By using some properties of Caputo variable-order fractional derivative
and Equation (2.1), we obtain

D
γ(x,t)
t Ln(t) = D

γ(x,t)
t (

n
∑

k=0

(−1)kn!

(k!)2(n− k)!
tk) =

n
∑

k=0

(−1)kn!

(k!)2(n− k)!
D

γ(x,t)
t (tk)

=

n
∑

k=0

(−1)kn!

(k!)2(n− k)!

Γ (k + 1)

Γ (k − γ(x, t) + 1)
tk−γ(x,t)

= tq−γ(x,t)
n
∑

k=q

b
γ(x,t)
n,k tk−q, b

γ(x,t)
n,k =

(−1)kn!Γ (k + 1)

(k!)2(n− k)!Γ (k − γ(x, t) + 1)
.

Now, we approximate tk−q by N + 1 terms of Laguerre polynomials tk−q ≃
∑N

j=0 ck,jLj(t). By employing the above equations, we get

D
γ(x,t)
t Ln(t) ≃ tq−γ(x,t)

n
∑

k=q

b
γ(x,t)
n,k

N
∑

j=0

ck,jLj(t) = tq−γ(x,t)
N
∑

j=0

(
n
∑

k=q

θ
γ(x,t)
n,k,j )Lj(t)

= tq−γ(x,t)
N
∑

j=0

ξ
γ(x,t)
n,k,j Lj(t), θ

γ(x,t)
n,k,j = b

γ(x,t)
n,k ck,j . (4.1)

The matrix form of Equation (4.1) can be written as follows:

D
γ(x,t)
t Ln(t) ≃ tq−γ(x,t)

[

∑n
k=q θ

γ(x,t)
n,k,0

∑n
k=q θ

γ(x,t)
n,k,1 · · ·

∑n
k=q θ

γ(x,t)
n,k,N

]

L(t).

⊓⊔

Also, according to the above process, we obtain

D
γ(x,t)
t (tL(t)) ≃ t1+q−γ(x,t)ξ̂

γ(x,t)
N L(t),

where ξ̂
γ(x,t)
N similar ξ

γ(x,t)
N is calculated.

5 Description of the method

In this section, we present the numerical scheme for solving the problem given
in Equation (1.1) with conditions in Equation (1.2). According to the proposed
equation, we expand the following function by the LLFs as:

∂4u(x, t)

∂x2∂t2
≃ PT (x)UL(t), (5.1)
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where U(M+1)×(N+1) is an unknown matrix as

U = [umn](M+1)×(N+1) , m = 0, 1, . . . ,M, n = 0, 1, . . . , N.

To approximate the other functions, we use the pseudo-operational matrices
that presented in previous sections. By integrating the above equation with
respect to t and substituting initial conditions into it, we obtain

∂3u(x, t)

∂x2∂t
≃ tPT (x)UQ2L(t) + f ′′

1 (x), (5.2)

∂2u(x, t)

∂x2
≃ t2PT (x)UQ2Q̂2L(t) + tf ′′

1 (x) + f ′′

0 (x). (5.3)

Now by integrating Equation (5.3) of order 2 with respect to x, we get

∂u(x, t)

∂x
≃xt2PT (x)QT

1 UQ2Q̂2L(t)+t(f
′

1(x)−f
′

1(0))+(f ′

0(x)−f
′

0(0))+
∂u(0, t)

∂x
,

(5.4)

u(x, t) ≃ x2t2PT (x)Q̂T
1 Q

T
1 UQ2Q̂2L(t) + t(f1(x) − f1(0)− xf ′

1(0))

+ (f0(x)− f0(0)− xf ′

0(0)) + x
∂u(0, t)

∂x
+ ϕ0(t). (5.5)

Function ∂u(0,t)
∂x

is unknown, in order to obtain this function, integrating Equa-
tion (5.4) with respect to x from 0 to 1

u(1, t)−u(0, t)≃t2
(
∫ 1

0

xPT (x)dx

)

QT
1 UQ2Q̂2L(t) + t(f1(1)− f1(0)− f ′

1(0))

+ (f0(1)− f0(0)− f ′

0(0)) +
∂u(0, t)

∂x
,

where

∫ 1

0

xPT (x)dx =

∫ 1

0

xT T (x)DT
1 dx = STDT

1 , S =

[

1

2
,
1

3
,
1

4
, . . . ,

1

M + 2

]T

.

Then,

∂u(0, t)

∂x
≃ϕ1(t)− ϕ0(t)− t2STDT

1 Q
T
1 UQ2Q̂2L(t)− t(f1(1)− f1(0)− f ′

1(0))

− (f0(1)− f0(0)− f ′

0(0)).

Also, we need to calculate the following expression. By integrating Equa-
tion (5.1) of order 2 with respect to x and using the boundary conditions, we
have

∂3u(x, t)

∂x∂t2
≃ xPT (x)QT

1 UL(t) +
∂3u(0, t)

∂x∂t2
, (5.6)

∂2u(x, t)

∂t2
≃ x2PT (x)Q̂T

1 Q
T
1 UL(t) + x

∂3u(0, t)

∂x∂t2
+ ϕ′′

0(t). (5.7)

Math. Model. Anal., 25(4):680–701, 2020.
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In Equations (5.6) and (5.7), ∂3u(0,t)
∂x∂t2

is an unknown function. By integrating
Equation (5.6) from 0 to 1 with respect to x, we get

∂3u(0, t)

∂x∂t2
≃ ϕ′′

1 (t)− ϕ′′

0 (t)− STDT
1 Q

T
1 UL(t).

By integrating Equation (5.7) with respect to t, we have

∂u(x, t)

∂t
≃x2tPT (x)Q̂T

1 Q
T
1 UQ2L(t) + x(ϕ′

1(t)− ϕ′

0(t)− tSTDT
1 Q

T
1 UQ2L(t))

+ ϕ′

0(t) + f1(x).

In addition, we calculate the variable-order fractional derivatives by applying
the pseudo-operational matrix presented in Section 4. Therefore, we achieve

D
γ(x,t)
t u(x, t) ≃ x2t2+q−γ(x,t)PT (x)Q̂T

1 Q
T
1 UQ2Q̂2ξ̄

γ(x,t)
N L(t)

+
Γ (2)

Γ (2− γ(x, t))
t1−γ(x,t)(f1(x) − f1(0)− xf ′

1(0))

+ x(D
γ(x,t)
t ϕ1(t)−D

γ(x,t)
t ϕ0(t)− t2+q−γ(x,t)STDT

1 Q
T
1 UQ2Q̂2ξ̄

γ(x,t)
N L(t)

−
Γ (2)

Γ (2− γ(x, t))
t1−γ(x,t)(f1(1)− f1(0)− f ′

1(0))) +D
γ(x,t)
t ϕ0(t),

so that ξ̄
γ(x,t)
N according to the process in Theorem 1 is obtained. Consequently,

by using the pseudo-operational matrix and following integration formula
∫ x

0

ξn

(x− ξ)α
dξ =

Γ (1− α)Γ (1 + n)

Γ (2− α− n)
x1−α+n,

we approximate an integral part of Equation (1.1). In specific example

∫ x

0

∫ t

0

ut2(ξ, η)

(x− ξ)
1
2

dηdξ ≃

∫ x

0

PT (ξ)

(x− ξ)
1
2

dξUQ2Q̂2

∫ t

0

η2L(η)dη

+

∫ x

0

∫ t

0

ηf
′′

1 (ξ)

(x− ξ)
1
2

dξdη +

∫ x

0

∫ t

0

f
′′

0 (ξ)

(x− ξ)
1
2

dξdη

≃ x
1
2 t3PT (x)S̃T

1 UQ2Q̂2Q̃2L(T ) +
t2

2

∫ x

0

f
′′

1 (ξ)

(x− ξ)
1
2

dξ + t

∫ x

0

f
′′

0 (ξ)

(x− ξ)
1
2

dξ

and
∫ x

0

∫ t

0

ux2(ξ, η)

(t− η)
1
2

dηdξ ≃

∫ x

0

ξ2PT (ξ)dξQ̂T
2 Q

T
2 U

∫ t

0

L(η)

(t− η)
1
2

dη

+
x2

2

∫ t

0

ϕ′′

1 (η)− ϕ′′

0 (η)

(t− η)
1
2

dη −
x2

2
STDT

1 Q
T
1 U

∫ t

0

L(η)

(t− η)
1
2

dη

+ x

∫ t

0

ϕ′′

0 (η)

(t− η)
1
2

dη ≃ x3t
1
2PT (x)Q̃T

1 Q̂
T
1Q

T
1 US̃2L(t)+

x2

2

∫ t

0

ϕ′′

1(η) − ϕ′′

0(η)

(t− η)
1
2

dη

−
1

2
x2t

1
2STDT

1 Q
T
1 US̃2L(t) + x

∫ t

0

ϕ′′

0 (η)

(t− η)
1
2

dη.
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Q̃1 and Q̃2 similar to Q̂1 and Q̂2 are calculated, respectively. So that,

∫ x

0

ξ2P (ξ)dξ = x3Q̃1P (x),

∫ t

0

η2L(η)dη = t3Q̃2L(t),

where Q̃1 = D1H̃1D
−1
1 , Q̃2 = D2H̃2D

−1
2 and

H̃1 =
[

h̃1ij

]

, h̃1ij =

{

1/(i+ 3), i = j,
0, i 6= j,

i, j = 0, 1, . . . ,M,

H̃2 =
[

h̃2ij

]

, h̃2ij =

{

1/(i+ 3), i = j,
0, i 6= j,

i, j = 0, 1, . . . , N.

We obtain an algebraic equation by substituting the above approximate func-
tions in Equation (1.1). Then, we collocated this equation in nodal points of
Newton-Cotes [7]. Ultimately, we get an unknown matrix U by solving a sys-
tem of algebraic equations and using Newton’s iterative method. Finally, by
substituting U in Equation (5.5), we achieve the approximate solution to the
problem.

6 Convergence and error estimation

In this section, we present the upper bound of errors by the following theorem
in Sobolev space [5]. For this goal, the Sobolev norm of integer order µ ≥ 0 on
the interval (a, b) in R is defined as

‖f‖Hµ(a,b) =

( µ
∑

j=0

‖f (j)‖2L2(a,b)

)
1
2

.

The seminorm is defined as [5]

|f |Hµ;M (a,b) =

( µ
∑

j=min(µ,M+1)

‖f (j)‖2L2(a,b)

)
1
2

.

Lemma 1. Let f ∈ Hµ(0, 1), such that PMf =
∑M

m=0 fmPm is the best ap-
proximation of f, then for 1 ≤ k ≤ µ, we get

‖f − PMf‖Hk(0,1) ≤ CM2k− 1
2−µ|f |Hµ;M (0,1),

where C depends on µ.

Also, Laguerre approximations in weighted Sobolev spaces on the half-line
R+ of integer order µ ≥ 0 is defined as follows:

‖g‖Hµ(R+) =

( µ
∑

j=0

‖g(j)‖2L2
w(R+)

)
1
2

, ‖g‖2L2
w(R+) =

(
∫

R+

g2(t)e−tdt

)
1
2

.

Math. Model. Anal., 25(4):680–701, 2020.
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Lemma 2. Let g ∈ Hµ(R+), such that PNg =
∑N

n=0 gnLn is the best approxi-
mation of g then for any µ ≥ 0 and 0 ≤ r ≤ µ, we have [5]

‖g − PNg‖Hk(R+) ≤ CN r−
µ
2 ‖g‖Hµ

w,µ(R+),

where C depends on µ.

Theorem 2. Suppose that uM and uN are approximated with truncated Legen-
dre-Laguerre series uMn and umN , respectively. So that,

uMn(x, t) =

N
∑

n=0

aMnPM (x)Ln(t), uM (x, t) =

∞
∑

n=0

aMnPM (x)Ln(t),

umN(x, t) =

M
∑

m=0

amNPm(x)LN (t), uN(x, t) =

∞
∑

m=0

amNPm(x)LN (t).

Then, the following estimates hold

‖uM − uMn‖Hk
w(Ω) ≤ CN r−

µ
2 ‖uM‖Hµ

w,µ−1(R+)‖PM‖Hk
w[0,1],

‖uN − umN‖Hk
w(Ω) ≤ CM2k− 1

2−µ|uN |Hµ
w,µ−1[0,1]

‖LN‖Hk
w(R+).

Proof. According to the hypothesizes and Lemmas 1 and 2, we have

‖uM − uMn‖Hk
w(Ω) = ‖

∞
∑

n=0

aMnPMLn −
N
∑

n=0

aMnPMLn‖Hk
w(Ω)

≤ ‖

∞
∑

n=0

aMnLn −

N
∑

n=0

aMnLn‖Hk
w(R+)‖PM‖Hk

w[0,1]

≤ CN r−
µ
2 ‖uM‖Hµ

w,µ−1(R+)‖PM‖Hk
w[0,1].

And also,

‖uN − umN‖Hk
w(Ω) = ‖

∞
∑

m=0

umNPmLN −
M
∑

m=0

umNPmLN‖Hk
w(Ω)

≤ ‖

∞
∑

m=0

umNPm −

M
∑

m=0

umNPm‖Hk
w [0,1]‖LN‖Hk

w(R+)

≤ CM2k− 1
2−µ|uN |Hµ,M [0,1]‖LN‖Hk

w(R+).

Hence, we obtain the upper bound of the errors. ⊓⊔

Corollary 1. Suppose uN , uM ∈ Hµ(Ω) and µ ≥ 1 then by setting N,M ≥ µ−1,
and considering the previous theorem, we deduce

‖uM − uMn‖Hk
w(Ω) ≤ CN r−µ

2 ‖uM‖Hµ
w,µ−1(R+)‖PM‖Hk

w[0,1],

‖uN − umN‖Hk
w(Ω) ≤ CM2k− 1

2−µ‖u
(µ)
N ‖L2[0,1]‖LN‖Hk

w(R+).
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In the first and second inequality, the values of M and N are constant, respec-
tively. According to this fact, in the first inequality, the rate of convergence of
uMn to uM is faster than 1

N
to the power of N

2 + 1
2 − r. And also, in the second

inequality, the rate of convergence of umN to uN is faster than 1
M

to the power
of M − 2k + 3

2 .

7 Illustrative examples

In order to test the validity of the present method, we consider some examples
and apply the technique in Section 5 for solving them. Then, the numerical
results are compared with their exact solution and other methods. The com-
putations were performed on a personal computer and the codes were written
in MATLAB 2016.

Example 1. Consider VO-TF-PIDEs with weakly singular kernel [30]

D
γ(x,t)
t u(x, t) = u(x, t) + g(x, t) +

∫ x

0

∫ h(t)

0

ut2(ξ, η)

(x− ξ)
1
2

dηdξ, 0 < γ(x, t) ≤ 1

with initial conditions u(x, 0) = 0, ∂u(x,0)
∂t

= 0, 0 ≤ x ≤ 1, t > 0, where g(x, t) =
Γ (3)

Γ (3−γ(x,t))xt
2−γ(x,t) − xt2 − 8

3x
3
2 h(t). The exact solution of this example is

u(x, t) = xt2. To evaluate the precision of the proposed method, we present
the norm of residual error

‖ResMN‖22,w =

∫ 1

0

∫

∞

0

Res2MN (x, t)w(x, t)dxdt,

where

ResMN (x, t) =t3−γ(x,t)PT (x)UQ2Q̂2ξ̄
γ(x,t)
N L(t)− t2PT (x)UQ2Q̂2L(t)

− g(x, t)− x
1
2 h(t)PT (x)S̃T

1 UQ2L(h(t)).

By taking M = N = 1, h(t) = cos(t), γ(x, t) = 1 and M = N = 1, h(t) =
t, γ(x, t) = 1− 0.5 exp(−xt), we get respectively

‖Res11‖
2
2,w = 6.5274× 10−32, ‖Res11‖

2
2,w = 1.7231× 10−31.

In Table 1, the absolute errors are obtained between the approximate solutions
and the exact solution using Legendre-Laguerre functions for various functions
of h(t) and γ(x, t) with M = N = 1 (here γ3(x, t) = 0.8+ 0.005 cos(xt)). Also,
maximum absolute errors with various functions of h(t) and γ(x, t) for x = 1
and t ∈ [0, 20] with M = N = 1 and CPU time (in seconds) are shown in
Table 2. Due to the errors in figure [30], the proposed method is more accurate
in comparison to the method in [30] with h(t) = t, N = 2 and γ(x, t) = 1.

Example 2. Consider VO-TF-PIDEs with weakly singular kernel

D
γ(x,t)
t2

u(x, t) = u(x, t) +
∂u

∂x
(x, t) + g(x, t) +

∫ x

0

∫ h(t)

0

uxt2(ξ, η)

(x− ξ)
1
4

dηdξ,

Math. Model. Anal., 25(4):680–701, 2020.
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Table 1. Absolute errors for various functions of h(t) and γ(x, t) with M = 1, N = 1 of
Example 1.

(xi, ti) γ(x, t) = 1 γ(x, t) = 0.875 γ3(x, t)
h(t) = t h(t) = exp(t2) h(t) = t h(t) = exp(t2) h(t) = t

0 0 0 0 0 0
(0.1, 0.1) 2.44× 10−18 1.67× 10−18 2.62× 10−19 1.04× 10−18 8.99× 10−20

(0.2, 0.2) 9.85× 10−18 6.03× 10−18 1.57× 10−18 3.72× 10−18 7.74× 10−19

(0.3, 0.3) 2.22× 10−17 1.21× 10−17 4.64× 10−18 7.42× 10−18 2.61× 10−18

(0.4, 0.4) 3.96× 10−17 1.92× 10−17 1.00× 10−17 1.15× 10−17 6.09× 10−18

(0.5, 0.5) 6.17× 10−17 2.64× 10−17 1.82× 10−17 1.57× 10−17 1.15× 10−17

(0.6, 0.6) 8.85× 10−17 3.33× 10−17 2.95× 10−17 1.93× 10−17 1.93× 10−17

(0.7, 0.7) 1.19× 10−16 3.91× 10−17 4.41× 10−17 2.21× 10−17 2.95× 10−17

(0.8, 0.8) 1.54× 10−16 4.34× 10−17 6.22× 10−17 2.39× 10−17 4.22× 10−17

(0.9, 0.9) 1.92× 10−16 4.60× 10−17 8.36× 10−17 2.42× 10−17 5.76× 10−17

(1, 1) 2.33× 10−16 4.64× 10−17 1.08× 10−16 2.30× 10−17 7.54× 10−17

Table 2. Maximum absolute errors for various functions of h(t), γ(x, t) for x = 1, t ∈ [0, 20]
with N = M = 1 of Example 1.

h(t) γ(x, t) Maximum absolute error CPU

t 1 5.4665× 10−14 9.9919 × 10−2

0.5 2.3149× 10−12 1.0213 × 10−1

1− exp(−xt) 2.2154× 10−12 1.0622 × 10−1

cos(t) 1 5.9807× 10−14 1.0682 × 10−1

0.5 3.1643× 10−12 1.0680 × 10−1

1− exp(−xt) 3.7712× 10−12 1.1115 × 10−1

1 < γ(x, t) ≤ 2, with initial conditions u(x, 0) = −x, ∂u(x,0)
∂t

= 0, 0 ≤ x ≤ 1,
and boundary conditions u(0, t) = 0, u(1, t) = t3 − 1, t > 0, with g(x, t) =
6xt3−γ(x,t)

Γ (4−γ(x,t)) −
2
3x

3
4h(t)2−x(t3−1)− t3+1. The exact solution of this example is

u(x, t) = x(t3 − 1). By applying the proposed method with M = 1, N = 3 and
various functions h(t) = t, sin(t), cos(t), t2 + 1 and γ(x, t) = 1.25, 1.5, 1.75, 2−
0.2 exp(−xt), we achieved the exact solution.

Example 3. Consider the following VO-TF-PIDEs with weakly singular kernel

∂u

∂t
(x, t) +D

γ(x,t)
t u(x, t) =−

∂u

∂x
(x, t) +

∂2u

∂x2
(x, t) + g(x, t)

+ λ

∫ x

0

∫ h(t)

0

u(ξ, η)

(x− ξ)
1
2

dηdξ,

0 < γ(x, t) ≤ 1, with initial condition u(x, 0) = 10x2(1 − x)2, 0 ≤ x ≤ 1
and boundary conditions u(0, t) = u(1, t) = 0, t > 0, with g(x, t) = 10(1 +

t2−γ(x,t)

Γ (2−γ(x,t)))x
2(1 − x)2 − 16

63λh(t)x
5
2 (t + 2)(16x2 − 36x + 21) + 10(4x3 − 6x2 +

2x − 12x2 + 12x − 2)(t + 1). The exact solution of this example is u(x, t) =
10(t+1)x2(1−x)2. Considering λ = 0, we have a variable order time-fractional
mobile-immobile advection-dispersion equations. Recently, many papers have
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published that aim to provide the satisfactory results of these equations. vari-
able order time-fractional mobile-immobile advection-dispersion model, which
is appeared to simulate solute transport in watershed catchments and rivers.
Several papers about the applications of this problem have been presented
in [28,37]. In Table 3, we compare the absolute errors of the present method for
M = 2, N = 1, λ = 0 and γ(x, t) = 1− 0.5 exp(−xt) with methods in [1,15,36].
Also, Table 4 shows the absolute errors with various functions of γ(x, t) with
h(t) = t, cos(t), λ = 1 and employs two sentences of Legendre polynomials for
expanded functions, including variable x and one sentence of Laguerre poly-
nomials for expanded functions, including variable t. Moreover, CPU time (in
seconds) is presented in Table 5. Figure 1 shows the absolute errors of approx-
imate solutions obtained for γ(x, t) = 1 − 0.3(1 + x3) exp(−t), M = 2, N = 1,
λ = 1 and h(t) = t with various intervals of t.

Table 3. Comparison of the absolute errors for γ(x, t)=1 − 0.5 exp(−xt), t=1 and λ=0,
with methods in [1, 15, 36] for Example 3.

xi Present Method Method in [15] Method in [36] Method in [1]
M = 2, N = 1 N = 20 N = 100 M = N = 10

0.1 4.84× 10−18 1.5629 × 10−4 6.3759 × 10−5 4.7781× 10−15

0.2 2.71× 10−17 1.4006 × 10−3 4.9040 × 10−6 1.1399× 10−16

0.3 6.46× 10−17 2.9751 × 10−3 5.9837 × 10−5 2.7608× 10−16

0.4 1.04× 10−17 4.2976 × 10−3 7.7810 × 10−6 7.0724× 10−16

0.5 1.31× 10−16 4.9721 × 10−3 5.8089 × 10−5 1.0486× 10−17

0.6 1.33× 10−16 4.8034 × 10−3 8.2984 × 10−6 2.3397× 10−16

0.7 1.09× 10−16 3.8152 × 10−3 5.8931 × 10−5 2.3096× 10−16

0.8 6.44× 10−17 2.2746 × 10−3 5.9463 × 10−6 8.4324× 10−17

0.9 1.86× 10−17 7.2075 × 10−4 6.2975 × 10−5 7.9527× 10−17

CPU 5.76× 10−2 - - -

Table 4. Absolute errors for various functions of γ(x, t) and h(t)=t, cos(t) with M = 2, N =
1, λ = 1 of Example 3.

(xi, ti) γ(x, t)=1−0.5 exp(−xt) γ(x, t)=1− cos(x) exp(−t) γ(x, t)=0.25, 0.5, 1

0 0 0 0
(0.1, 0.1) 4.30× 10−18 4.40× 10−18 2.21× 10−18

(0.2, 0.2) 1.97× 10−17 2.44× 10−17 1.18× 10−17

(0.3, 0.3) 4.82× 10−17 5.80× 10−17 2.70× 10−17

(0.4, 0.4) 8.01× 10−17 9.34× 10−17 4.13× 10−17

(0.5, 0.5) 1.04× 10−16 1.16× 10−16 4.76× 10−17

(0.6, 0.6) 1.12× 10−16 1.17× 10−16 4.16× 10−17

(0.7, 0.7) 1.00× 10−16 9.36× 10−17 2.37× 10−17

(0.8, 0.8) 7.01× 10−17 5.20× 10−17 8.07× 10−19

(0.9, 0.9) 3.18× 10−17 1.14× 10−17 1.37× 10−17

(1, 1) 5.87× 10−39 5.87× 10−39 1.87× 10−39

Math. Model. Anal., 25(4):680–701, 2020.
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Table 5. CPU time for various functions of γ(x, t) with M = 2, N = 1, λ = 1 and h(t)=t

of Example 3.

γ(x, t) 1−0.5 exp(−xt) 1− cos(x) exp(−t) 0.25 0.5 1

CPU 2.23× 10−1 2.40× 10−1 1.75× 10−1 1.72 × 10−1 1.63× 10−1

Figure 1. Absolute errors between the exact and approximate solutions for
γ(x, t) = 1− 0.3(1 + x3) exp(−t), M = 2, N = 1, λ = 1 and h(t) = t with t ∈ [0, 100] (a) and

t ∈ [0, 1000] (b) of Example 3.

Example 4. Consider

D
γ(x,t)
t u(x, t) +

∂2u

∂x2
(x, t) + u(x, t) = g(x, t) +

∫ 1

0

∫ h(t)

0

u(ξ, η)

(t− η)
1
2

dηdξ

with the following initial condition u(x, 0) = 0, 0 ≤ x ≤ 1 and bound-
ary conditions u(0, t) = t2, u(1, t) = t2 exp(1), t > 0. And also, g(x, t) =

Γ (3)
Γ (3−γ(x,t)) t

2−γ(x,t) exp(x)+2t2 exp(x)− (1615 t
5
2 − 2

15 (t−h(t))
1
2 (3h(t)2+4th(t)+

8t2))(exp(1) − 1). The exact solution of this example is u(x, t) = t2 exp(x).
Table 6, presents the absolute errors for various values of γ(x, t), M and N
with h(t) = t. From Table 6, we can see clearly that the error gets smaller
and smaller with increasing M . Due to Table 6 and Figure 2, it is clear that
we achieve a good approximation of the exact solution by using a few terms of
LLFs.
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Figure 2. Errors between the exact and approximate solutions for γ(x, t) = 3+sin(x) cos(t)
4

and h(t) = t with M = 3, N = 2 (a) and M = 5, N = 2 (b) on the interval [0, 1]× [0, 1] of
Example 4.
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Table 6. Absolute errors with various values of γ(x, t) and M with h(t) = t and N = 2 for
Example 4.

(xi, ti) γ(x, t) = 0.25 γ(x, t) = 0.5
M = 2 M = 3 M = 5 M = 2 M = 3 M = 5

(0.1, 0.1) 1.79e−7 1.12e−9 7.64× 10−10 1.83× 10−7 4.37× 10−8 7.64× 10−10

(0.3, 0.3) 3.81e−6 3.17e−7 1.45× 10−8 3.77× 10−6 5.91× 10−7 1.45× 10−8

(0.5, 0.5) 1.31e−6 4.89e−7 4.50× 10−8 1.41× 10−6 9.78× 10−7 4.50× 10−8

(0.7, 0.7) 2.48e−5 1.76e−6 6.99× 10−8 2.49× 10−5 2.26× 10−6 6.99× 10−8

(0.9, 0.9) 1.83e−5 1.10e−7 4.69× 10−8 1.82× 10−5 1.16× 10−7 4.69× 10−8

(xi, ti) γ(x, t) = 1
M = 2 M = 3 M = 5

(0.1, 0.1) 1.67e−7 4.59e−8 3.24× 10−10

(0.3, 0.3) 3.83e−6 5.44e−7 1.17 × 10−8

(0.5, 0.5) 2.48e−5 1.76e−6 6.99 × 10−8

(0.7, 0.7) 2.49e−5 2.03e−6 6.65× 10−8

(0.9, 0.9) 1.82e−5 2.85e−7 4.59× 10−8

Example 5. Consider the VO-TF-PIDEs with weakly singular kernel

D
γ(x,t)
t u(x, t) +

∂u

∂x
(x, t) = g(x, t) +

∫ x

0

∫ h(t)

0

u(ξ, η)

(t− η)
1
2

dηdξ, 0 < γ(x, t) ≤ 1,

with the initial condition u(x, 0) = 0, 0 ≤ x ≤ 1 and boundary condition

u(0, t) = 0, t > 0, and g(x, t) = t1−γ(x,t)

Γ (2−γ(x,t)) sin(x) + t cos(x) + (43 t
3
2 − 2

3 (t −

h(t))
1
2 (2t + h(t)))(cos(x) − 1). The exact solution of this example is u(x, t) =

t sin(x). In order to display the accuracy of the method, the absolute errors
between the exact solution and numerical solutions for various choices of M,N
and γ(x, t) with h(t) = t are shown in Table 7.

Table 7. The absolute errors for different values of M,N with h(t) = t of Example 5.

γ(x, t) = 0.8 + 0.005 cos(xt) sin(x) γ(x, t) = 0.5
(xi, ti) M = 2, N = 1 M = 4, N = 1 M = 2, N = 1 M = 4, N = 1

(0, 0) 0 0 0 0
(0.1, 0.1) 2.15× 10−5 6.71× 10−8 3.12× 10−5 8.50× 10−8

(0.2, 0.2) 3.66× 10−5 5.56× 10−8 1.84× 10−5 9.24× 10−8

(0.3, 0.3) 4.40× 10−4 3.44× 10−8 4.53× 10−4 8.24× 10−8

(0.4, 0.4) 1.63× 10−3 1.00× 10−7 1.76× 10−3 1.59× 10−7

(0.5, 0.5) 4.31× 10−3 1.75× 10−7 4.71× 10−3 2.50× 10−7

(0.6, 0.6) 9.54× 10−3 1.48× 10−7 1.04× 10−2 2.42× 10−7

(0.7, 0.7) 1.88× 10−2 1.05× 10−7 2.05× 10−2 2.19× 10−7

(0.8, 0.8) 3.42× 10−2 3.36× 10−7 3.71× 10−2 4.80× 10−7

(0.9, 0.9) 5.85× 10−2 7.37× 10−7 6.30× 10−2 9.18× 10−7

(1, 1) 9.52× 10−2 8.58× 10−7 7.01× 10−2 6.83× 10−7

From Table 7, we can see clearly that the error gets smaller and smaller with
increasing M for various functions of γ(x, t). Table 8 illustrates ‖ResMN‖22,w
for various values of M,γ(x, t) with h(t) = t and N = 1. With regards to
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Figure 3 and Table 7, it is seen that the approximate solutions converge to the
exact solution.

Table 8. The error ‖ResMN‖22,w for different values of M,N, γ(x, t) with h(t) = t of
Example5.

γ(x, t) = 1 γ(x, t) = 1− 0.3 exp(−xt)
M = 2, N = 1 M = 4, N = 1 M = 2, N = 1 M = 4, N = 1

‖ResMN‖22,w 1.3035× 10−5 2.5877 × 10−10 8.2871 × 10−6 1.3248 × 10−10

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2
x 10

−6

 

 

γ(x,t)=1−0.7exp(−xt)

γ(x,t)=1−0.5exp(−xt)

γ(x,t)=1−0.3exp(−xt)

γ(x,t)=1−0.1exp(−xt)

Figure 3. Absolute errors between the exact and approximate solutions for t ∈ [0, 1],
N = 1,M = 4 with h(t) = t and x = 1 of Example 5.

Example 6. Consider the VO-TF-PIDEs with weakly singular kernel

D
γ(x,t)
t u(x, t) + u(x, t) = g(x, t) +

∫ x

0

∫ t

0

ut(ξ, η)

(x− ξ)
1
3

dηdξ, 0 < γ(x, t) ≤ 1

with the initial condition u(x, 0) = cos(x), 0 ≤ x ≤ 1 and following boundary
condition u(0, t) = 1 + sin(t), t > 0 where g(x, t) = cos(x) + sin(t) + cos(t) +
3
2x

2
3 sin(t). The exact solution of this example, when γ(x, t) = 1 is u(x, t) =

cos(x) + sin(t). Table 9 shows the absolute errors for different values of N
with M = 1 and γ(x, t) = 1. Due to the Table 9, by increasing the terms
of Laguerre polynomials N the approximate solution converges to the exact
solution. Figure 4 illustrates graphs of the approximate solution for various
values of γ(x, t) with M = 1, N = 3 and x = 1.

Example 7. As a final example, consider the VO-TF-PIDEs with weakly singu-
lar kernel

D
γ(x,t)
t u(x, t) =

∂u

∂x
(x, t) +

∂u

∂t
(x, t) + g(x, t) +

∫ x

0

∫ ρ

0

u(ξ, η)

(t− η)
1
2

dηdξ, ρ > 0,

0 < γ(x, t) ≤ 1, with initial condition u(x, 0) = cos(x), 0 ≤ x ≤ 1 and boundary

condition u(0, t) = t2 + 1, t > 0 and g(x, t) = 2t2−γ(x,t)

Γ (3−γ(x,t)) cos(x) − 2t cos(x) +
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Table 9. Absolute errors for various values of N with M = 1 and γ(x, t) = 1 of Example 6.

(xi, ti) N = 1 N = 3 N = 5

0 0 0 0
(0.1, 0.1) 5.80 × 10−3 4.30× 10−5 1.08× 10−7

(0.2, 0.2) 8.24 × 10−3 3.65× 10−5 6.58× 10−8

(0.3, 0.3) 8.24 × 10−3 2.40× 10−5 6.96× 10−8

(0.4, 0.4) 6.68 × 10−3 2.20× 10−5 9.50× 10−8

(0.5, 0.5) 4.42 × 10−3 2.95× 10−5 1.13× 10−7

(0.6, 0.6) 2.27 × 10−3 3.74× 10−5 1.39× 10−7

(0.7, 0.7) 1.02 × 10−3 3.66× 10−5 1.86× 10−7

(0.8, 0.8) 1.37 × 10−3 2.70× 10−5 2.26× 10−7

(0.9, 0.9) 3.97 × 10−3 2.43× 10−5 2.37× 10−7

(1, 1) 9.41 × 10−3 6.76× 10−5 4.06× 10−7

0 0.5 1 1.5

0.6

0.8

1

1.2

1.4

1.6

t

 

 

Exact solution

γ(x,t)=1

γ(x,t)=0.95

γ(x,t)=0.9

γ(x,t)=0.85

γ(x,t)=0.8

Figure 4. Approximate solutions for various values of γ(x, t) with M = 1, N = 3 and
x = 1 of Example 6.

(t2 + 1) sin(x) −
∫ x

0

∫ ρ

0
(η2+1) cos(ξ)

(t−η)
1
2

dηdξ. The exact solution of this example is

u(x, t) = (t2 + 1) cos(x). The absolute errors for various choices of ρ, with
(x, t) ∈ [0, 1] × [0, 10], (x, t) ∈ [0, 1] × [0, 50] and M = 5, N = 2 are plotted
in Figure 5. These graphs illustrate that approximate solutions in various
intervals have good accuracy.

8 Conclusions

This work introduces a new numerical approach for solving VO-TF-PIDEs with
the weakly singular kernel. The method is based on expanding the derivation
of the solution in terms of the LLFs and using the appropriate collocation
points. The main objective is to use an integral pseudo-operational matrix of
LLFs, which provides good conditions to receive the approximate solution with
high accuracy. The advantage of the proposed method is that, despite defined
time in an infinite interval, we achieved a good approximate solution. Also,
satisfactory examples illustrate the validity and efficiency of the method.

Math. Model. Anal., 25(4):680–701, 2020.
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Figure 5. Absolute error between the exact and approximate solutions for N = 2,M = 5
and γ(x, t) = 1− 0.5x2 exp(−t) with a) ρ = 50 on the interval [0, 1]× [0, 10], b) ρ = 50 on

the interval [0, 1]× [0, 50], c) ρ = 100 on the interval [0, 1]× [0, 10], d) ρ = 100 on the
interval [0, 1]× [0, 50] of Example 7.
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