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Abstract. In this paper, we consider the nonlinear Ψ -Hilfer impulsive fractional
differential equation. Our main objective is to derive the formula for the solution
and examine the existence and uniqueness of solutions. The acquired results are
extended to the nonlocal Ψ -Hilfer impulsive fractional differential equation. We gave
an applications to the outcomes we obtained. Further, examples are provided in
support of the results we got.
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1 Introduction

The fractional differential equations (FDEs) over the years have been the ob-
ject of investigation by many researchers [1, 4, 14, 19, 22, 24, 37, 39]. Eminent
mathematicians working in the field of FDEs has been exhibiting critical and
fascinating outcomes throughout the years that contribute significantly to the
mathematical analysis of FDEs, few of them are O’Regan [2], Agarwal [3], Bal-
achandran, Trujillo [8], Benchohra [9], Diethelm [15], Feckan [17], Guo [18],
Kilbas [19], Mophou [23], JinRong Wang [34], Wang [36] and Zhou [39].
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The fact is that certain natural phenomena by means of fractional differen-
tial equations are modeled and allows to better describe the real situation of
the problem compared to the problem modeled by means of differential equa-
tions of whole order. In this direction, the subject has picked up strength and
interest of the researchers, since the fractional derivatives allows the variation
of the order of the differential equation that is straightforwardly associated
with the solution of FDEs. Recently, Sousa et al. [31] presented a fractional
mathematical model by means of the time-fractional diffusion equation, which
describes the concentration of nutrients in the blood and allows analyzing the
solution of the model, better than the integer case. Other mathematical mod-
eling and its analysis in the form differential equations with fractional order
derivative can be found in [13,16,21].

The existence, uniqueness, stability along with other qualitative properties
of solutions for various kinds of FDEs without and with impulsive conditions
(instantaneous and non-instantaneous) have been investigated in [9, 28, 29, 30,
32, 36]. The FDEs with impulsive effect play vital role in modeling real world
physical phenomena involving in the study of population dynamics, biotech-
nology and chemical technology. Advancement in the theory of impulsive dif-
ferential equations and its applications in the real world phenomena have been
marvelously given in the monographs of Bainov and Simeonov [7], Benchohra
et al [10] and Samoilenko and Perestyuk [25].

In 2009, Benchohra and Slimani [12] investigated various criterion for the
existence of solutions for a class of initial value problems for impulsive fractional
differential equations given by

cDµy(t) = f(t, y(t)), t ∈ [0, T ], t 6= tk,

∆y|t=tk = Ik(y(t−k )),

y(0) = y0 ∈ R,
(1.1)

where cDµ(·) is the Caputo fractional derivative of order 0 < µ ≤ 1, f :
[0, T ] × R → R is a given function, Ik : R → R, k = 1, ...,m , 0 = t0 < t1 <
· · · < tm < tm+1 = T , ∆y|t=tk = y(t+k )− y(t−k ), y(t+k ) = limh→0+ y(tk + h) and
y(t−k ) = limh→0− y(tk + h), k = 1, 2, . . . ,m.

Benchohra and Seba [11] extended the study of existence for impulsive FDEs
(1.1) in the Banach spaces. The following year, Benchohra and Berhoun [9],
investigated sufficient conditions for the existence of solutions for impulsive
FDEs with variable times.

In [17], Feckan et al. with the help of the examples it is demonstrated that
the formula for the solutions of fractional impulsive FDEs (1.1) considered in
the few referred papers in [17] were incorrect. They have derived the valid
formula for the solution of impulsive FDEs (1.1) involving Caputo derivative
and investigated the existence results for (1.1) using Banach contraction prin-
ciple and Leray-Schauder theorem. In another interesting paper [37], Wang
and coauthor presented the idea of piecewise continuous solutions for Caputo
fractional impulsive Cauchy problems and impulsive fractioanl boundary value
problem. They acquired existence and uniqueness of solution and further-
more determined data dependence and Ulam stabilities of solutions by means
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of generalized singular Gronwall inequalities. For recent studies on existence,
uniqueness and Ulam–Hyers stabilty of solutions for various class of impulsive
FDEs , we refer the work of Ali et al. [5], Shah et al. [26] and Wang et al. [34].

In any case, it is advantageous to utilize more broad fractional derivatives
in which they hold a wide class of fractional derivatives as particular cases
including the traditional ones of Caputo and Riemann-Liouville (RL). Sausa

et al. [27] introduced the Ψ–Hilfer derivative operator HDµ, ν;Ψ
a+ that includes

number of well known derivatives including widely used Riemann–Liouville and
Caputo derivative. The advantage of studying the nonlinear FDEs involving Ψ -
Hilfer derivative is that it preserves the investigated property of a FDEs with
other fractional derivative operators listed in [27] which are particular cases
of Ψ -Hilfer derivative. The fundamental study pertaining to existence and
uniqueness and stability properties of the solution of FDEs involving Ψ -Hilfer
derivative can be found in [14,20,29,30,32,33].

Motivated by the works highlighted above, in the present paper, we consider
the following impulsive Ψ -Hilfer fractional differential equation (impulsive Ψ -
HFDE ) with initial condition

HDµ, ν;Ψ
a+ u(t) = f(t, u(t)), t ∈ J \ {t1, t2, . . . , tm}, J = [a, T ], T > a, (1.2)

∆I1−%;Ψa+ u(tk) = ζk ∈ R, k = 1, 2, . . . ,m, (1.3)

I1−%;Ψa+ u(a) = δ ∈ R, (1.4)

where 0 < µ < 1, 0 ≤ ν ≤ 1, % = µ + ν − µν, HDµ, ν;Ψ
a+ (·) is the Ψ -

Hilfer fractional derivative of order µ and type ν, I1−%;Ψa+ is left sided Ψ -RL
fractional integral operator, a = t0 < t1 < t2 < · · · < tm < tm+1 = T ,

∆I1−%;Ψ
a+

u(tk) = I1−%;Ψ
a+

u(t+k ) − I1−%;Ψ
a+

u(t−k ), I1−%;Ψ
a+

u(t+k ) = limε→0+ I1−%;Ψ
a+

u(tk + ε)

and I1−%;Ψ
a+

u(t−k ) = limε→0− I1−%;Ψ
a+

u(tk + ε).

The main purpose of the paper is to derive the formula for the solution
of Equations(1.2)–(1.4). We investigate the results pertaining to the existence
and uniqueness of solutions for the impulsive Ψ -HFDEs Equations (1.2)–(1.4)
through the equivalent fractional integral that we obtained. Further, we extend
the obtained results to the non-local impulsive Ψ -HFDEs.

We highlight here a rigorous analysis of Equations(1.2)–(1.4) regarding the
main results and advantages obtained in this paper:

• With Ψ(t) = t and taking the limits ν → 0 and ν → 1 of the Equa-
tions(1.2)–(1.4), we obtain the respective special cases for the differential
equations, that is, the classical fractional derivatives of Riemann-Liouville
and Caputo, respectively. In addition to the integer case, by choosing µ=
1. These are two special cases of fractional derivatives. However, a wide
class of fractional derivatives can be obtained from the choice of the pa-
rameters ν and Ψ(t);

• Since it is possible to obtain a wide class of derivatives from the choice
of ν and Ψ(t); consequently, it is also possible to obtain a class of frac-
tional differential equations with their respective fractional derivatives,
as particular cases;
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Organization of Paper: In Section 2, some definitions and results that are
important for the development of the paper have been provided via Lemmas and
Theorems. In Section 3, we present a representation formula for the solution,
i.e., we show that the problem (1.2)–(1.4) is equivalent to the Volterra fractional
integral equation. In Section 4, we investigated the existence and uniqueness
of the solution of impulsive Ψ -HFDE. In Section 5, we will investigate the
existence and uniqueness of a nonlocal impulse Ψ -HFDE. Finally, we close the
paper with proposed future work.

2 Preliminaries

In this section, we introduce preliminary facts that are utilized all through this
paper. Let Ψ ∈ C1(J ,R) an increasing function such that Ψ ′(x) 6= 0, ∀ x ∈ J .

Definition 1. [19] The Ψ -Riemann fractional integral of order µ > 0 of the
function h is given by

Iµ;Ψa+ h (t) :=
1

Γ (µ)

∫ t

a

LµΨ (t, σ)h (σ) dσ, LµΨ (t, σ) = Ψ ′ (σ) (Ψ (t)− Ψ (σ))
µ−1

.

Lemma 1. [19] Let µ > 0, ν > 0 and δ > 0. Then:

(i) Iµ;Ψa+ Iν;Ψa+ h(t) = Iµ+ν;Ψa+ h(t);

(ii) If h(t) = (Ψ(t)− Ψ(a))δ−1, then Iµ;Ψa+ h(t) = Γ (δ)
Γ (µ+δ) (Ψ(t)− Ψ(a))µ+δ−1.

Definition 2. [27] The Ψ–Hilfer fractional derivative of function h of order
µ, (0 < µ < 1) and of type 0 ≤ ν ≤ 1, is defined by

HDµ, ν;Ψ
a+ h(t) = I

ν(1−µ);Ψ
a+

(
1

Ψ ′(t)

d

dt

)
I
(1−ν)(1−µ);Ψ
a+ h(t).

Theorem 1. [27] If h ∈ C1(J ), 0 < µ < 1 and 0 ≤ ν ≤ 1, then

(i) Iµ;Ψa+
HDµ, ν;Ψ

a+ h(t) = h(t)−Ω%Ψ (t, a)I
(1−ν)(1−µ);Ψ
a+ h(a),

Ω%Ψ (t, a) = (Ψ(t)−Ψ(a))%−1

Γ (%) ;

(ii) HDµ, ν;Ψ
a+ Iµ;Ψa+ h(t) = h(t).

Consider the weighted space [27] defined by

C1−%;Ψ (J ) =
{
u : (a, T ]→ R : (Ψ(t)− Ψ(a))1−%u(t) ∈ C(J )

}
, 0 < % ≤ 1.

Define the weighted space of piecewise continuous functions as

PC1−%;Ψ (J ,R) = {u : (a, T ]→ R : u ∈ C1−%;Ψ ((tk, tk+1],R), k = 0, 1, 2, . . . ,m,

I1−%;Ψa+ u(t+k ), I1−%;Ψa+ u(t−k ) exists and I1−%;Ψa+ u(t−k ) = I1−%;Ψa+ u(tk)

for k = 1, 2, . . . ,m}.

Math. Model. Anal., 25(4):642–660, 2020.
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Clearly, PC1−%;Ψ (J ,R) is a Banach space with the norm

‖u‖PC1−%;Ψ (J ,R) = sup
t∈J

∣∣(Ψ(t)− Ψ(a))1−%u(t)
∣∣ .

Note that for % = 1, we get PC0;Ψ (J ,R) = PC(J ,R) a particular case of the
space PC1−%;Ψ (J ,R), whose details are given in [6, 12,35].

With suitable modification, the PC-type Arzela–Ascoli Theorem [7,38] can
be extended to the weighted space PC1−%;Ψ (J , X ).

Theorem 2 [PC1−%;Ψ type Arzela-Ascoli Theorem]. Let X be a Banach
space and W1−%;Ψ ⊂ PC1−%;Ψ (J ,X ). If the following conditions are satisfied:

(a) W1−%;Ψ is uniformly bounded subset of PC1−%;Ψ (J ,X );

(b) W1−%;Ψ is equicontinuous in (tk, tk+1), k = 0, 1, 2, . . . ,m,where t0 =
a, tm+1 = T ;

(c) W1−%;Ψ (t) = {u(t) : u ∈ W1−%;Ψ , t ∈ J \ {t1, . . . , tm},W1−%;Ψ (t+k ) =
{u(t+k ) : u ∈ W1−%;Ψ} and W1−%;Ψ (t−k ) = {u(t−k ) : u ∈ W1−%;Ψ} are
relatively compact subsets of X,

then W1−%;Ψ is a relatively compact subset of PC1−%;Ψ (J , X).

Proof. Let W1−%;Ψ ⊂ PC1−%;Ψ (J , X ) satisfy the conditions (a) to (c). Let
{zn} be any sequence in W1−%;Ψ . Define xn(t) = (Ψ(t) − Ψ(a))1−%zn(t),∀n.
Then sequence {xn} ⊂ W ⊂ PC(J ,X ), where W satisfy the conditions of
Theorem 2.1 of [38]. Proceeding as in the proof of Theorem 2.1 of [38], there
exist x ∈ PC(J ,X ) such that xn → x in PC(J ,X ) which in turn gives
zn → z in PC1−%;Ψ (J , X ). This proves W1−%;Ψ is a relatively compact subset
of PC1−%;Ψ (J ,X ). ut

Theorem 3 [Krasnoselskii, [39]]. Let M be a closed, convex, and nonempty
subset of a Banach space X , and A, B the operators such that

1. Ax+ By ∈M whenever x, y ∈M;

2. A is compact and continuous; 3. B is a contraction mapping.

Then there exists z ∈M such that z = Az + Bz.

3 Representation formula for the solution

The following lemma play an important role in building an equivalent fractional
integral equation of the impulsive Ψ -HFDE (1.2)–(1.4).

Lemma 2. Let 0 < µ < 1 and 0 ≤ ν ≤ 1, % = µ + ν − µν and h : J → R be
continuous. Then for any b ∈ J a function u ∈ C1−%,Ψ (J , R) defined by

u(t) = Ω%Ψ (t, a)
{
I1−%;Ψa+ u(b)− I1−%+µ;Ψa+ h(t)

∣∣∣
t=b

}
+ Iµ;Ψa+ h(t) (3.1)

is the solution of the Ψ–Hilfer fractional differential equation

HDµ, ν;Ψ
a+ u(t) = h(t), t ∈ J .
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Proof. Applying HDµ, ν;Ψ
a+ on both sides of the equation (3.1), we get

HDµ, ν;Ψ
a+ u(t) =

{
I1−%;Ψa+ u(b)− I1−%+µ;Ψa+ h(t)

∣∣∣
t=b

}
HDµ, ν;Ψ

a+ Ω%Ψ (t, a)

+H Dµ, ν;Ψ
a+ Iµ;Ψa+ h(t), t ∈ J .

Using the result ( [33], Page 10),

HDµ, ν;Ψ
a+ (Ψ(t)− Ψ(a))%−1 = 0, 0 < % < 1, (3.2)

and using the Theorem 1, we get HDµ, ν;Ψ
a+ u(t) = h(t), t ∈ J . This completes

the proof of the Lemma. ut

In the next result, utilizing the Lemma 2, we obtain the equivalent fractional
integral of the problem (1.2)–(1.4).

Lemma 3. Let h : J → R be a continuous function. Then a function u ∈
PC1−%;Ψ (J , R) is a solution of impulsive Ψ–HFDE

HDµ, ν;Ψ
a+ u(t) = h(t), t ∈ J \ {t1, t2, . . . , tm}, (3.3)

∆I1−%;Ψa+ u(tk) = ζk ∈ R, k = 1, 2, 3, . . . ,m, (3.4)

I1−%;Ψa+ u(a) = δ ∈ R, (3.5)

if and only if u is a solution of the following fractional integral equation

u(t)=

{
Ω%Ψ (t, a) δ + Iµ;Ψa+ h(t), t ∈ [a, t1],

Ω%Ψ (t, a)
(
δ+
∑k
i=1ζi

)
+Iµ;Ψa+ h(t), t∈(tk, tk+1], k=1, . . . ,m.

(3.6)

Proof. Assume that u ∈ PC1−%;Ψ (J , R) satisfies the impulsive Ψ–HFDE
(3.3)–(3.5). If t ∈ [a, t1] then{

HDµ, ν;Ψ
a+ u(t) = h(t),

I1−%;Ψa+ u(a) = δ.
(3.7)

Then the problem (3.7) is equivalent to the following fractional integral [33]

u(t) = Ω%Ψ (t, a) δ + Iµ;Ψa+ h(t), t ∈ [a, t1]. (3.8)

Now, if t ∈ (t1, t2] then

HDµ, ν;Ψ
a+ u(t) = h(t), t ∈ (t1, t2] with I1−%;Ψa+ u(t+1 )− I1−%;Ψa+ u(t−1 ) = ζ1.

By Lemma 2, we have

u(t) = Ω%Ψ (t, a)
{
I1−%;Ψa+ u(t+1 )− I1−%+µ;Ψa+ h(t)

∣∣
t=t1

}
+ Iµ;Ψa+ h(t)

= Ω%Ψ (t, a)
{
I1−%;Ψa+ u(t−1 ) + ζ1 − I1−%+µ;Ψa+ h(t)

∣∣
t=t1

}
+ Iµ;Ψa+ h(t), t ∈ (t1, t2].

(3.9)

Math. Model. Anal., 25(4):642–660, 2020.
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Now, from (3.8), we have I1−%;Ψa+ u(t) = δ + I1−%+µ;Ψa+ h(t). This gives

I1−%;Ψa+ u(t−1 )− I1−%+µ;Ψa+ h(t)
∣∣
t=t1

= δ. (3.10)

Using (3.10) in (3.9), we obtain

u(t) = Ω%Ψ (t, a)(δ + ζ1) + Iµ;Ψa+ h(t), t ∈ (t1, t2]. (3.11)

Next, if t ∈ (t2, t3] then

HDµ, ν;Ψ
a+ u(t) = h(t), t ∈ (t2, t3] with I1−%;Ψa+ u(t+2 )− I1−%;Ψa+ u(t−2 ) = ζ2.

Again by Lemma 2, we have

u(t) = Ω%Ψ (t, a)
{
I1−%;Ψa+ u(t+2 )− I1−%+µ;Ψa+ h(t)

∣∣∣
t=t2

}
+ Iµ;Ψa+ h(t) = Ω%Ψ (t, a)

×
{
I1−%;Ψa+ u(t−2 ) + ζ2 − I1−%+µ;Ψa+ h(t)

∣∣∣
t=t2

}
+ Iµ;Ψa+ h(t), t ∈ (t2, t3]. (3.12)

From (3.11), we have I1−%;Ψa+ u(t) = (δ + ζ1) + I1−%+µ;Ψa+ h(t), which gives

I1−%;Ψa+ u(t−2 )− I1−%+µ;Ψa+ h(t)
∣∣∣
t=t2

= δ + ζ1. (3.13)

Using (3.13) in (3.12), we get

u(t) = Ω%Ψ (t, a) (δ + ζ1 + ζ2) + Iµ;Ψa+ h(t), t ∈ (t2, t3].

Continuing the above process, we obtain

u(t) = Ω%Ψ (t, a)
(
δ +

k∑
i=1

ζi

)
+ Iµ;Ψa+ h(t), t ∈ (tk, tk+1], k = 1, 2, . . . ,m.

Conversely, let u ∈ PC1−%;Ψ (J , R) satisfies the fractional integral equation

(3.6). Then, for t ∈ [a, t1], we have u(t) = Ω%Ψ (t, a) δ + Iµ;Ψa+ h(t). Applying the

Ψ -Hilfer fractional derivative operator HDµ, ν;Ψ
a+ on both sides, we get

HDµ, ν;Ψ
a+ u(t) = δ HDµ, ν;Ψ

a+ Ω%Ψ (t, a) + HDµ, ν;Ψ
a+ Iµ;Ψa+ h(t).

Utilizing (3.2) and Theorem 1, HDµ, ν;Ψ
a+ u(t) = h(t), t ∈ [a, t1]. Now, for t ∈

(tk, tk+1], (k = 1, 2, . . . ,m), we have

u(t) = Ω%Ψ (t, a)
(
δ +

k∑
i=1

ζi

)
+ Iµ;Ψa+ h(t), t ∈ (tk, tk+1], k = 1, 2, . . . ,m.

Applying the operator HDµ, ν;Ψ
a+ (·) on both sides and using (3.2) and the The-

orem 1, we obtain

HDµ, ν;Ψ
a+ u(t) =

{
δ +

k∑
i=1

ζi

}
HDµ, ν;Ψ

a+ Ω%Ψ (t, a) + HDµ, ν;Ψ
a+ Iµ;Ψa+ h(t) = h(t).
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We have proved that u satisfies (3.3). Next, we prove that u also satisfy the

conditions (3.4) and (3.5). Applying the Ψ -RL fractional operator I1−%;Ψa+ (·) on
both sides of (3.8), we get

I1−%;Ψa+ u(t) = δ I1−%;Ψa+ Ω%Ψ (t, a) + I1−%;Ψa+ Iµ;Ψa+ h(t) = δ + I1−%+µ;Ψa+ h(t),

and from which we obtain I1−%;Ψa+ u(a) = δ, which is the condition (3.5).
Further, from Equation (3.6) for t ∈ (tk, tk+1], we have

I1−%;Ψa+ u(t) =
{
δ +

k∑
i=1

ζi

}
I1−%;Ψa+ Ω%Ψ (t, a) + I1−%;Ψa+ Iµ;Ψa+ h(t)

= δ +

k∑
i=1

ζi + I1−%+µ;Ψa+ h(t) (3.14)

and for t ∈ (tk−1, tk] we have

I1−%;Ψa+ u(t) =
{
δ +

k−1∑
i=1

ζi

}
I1−%;Ψa+ Ω%Ψ (t, a) + I1−%;Ψa+ Iµ;Ψa+ h(t)

= δ +

k−1∑
i=1

ζi + I1−%+µ;Ψa+ h(t). (3.15)

Therefore, from (3.14) to (3.15), we obtain

I1−%;Ψa+ u(t+k )− I1−%;Ψa+ u(t−k ) =

k∑
i=1

ζi −
k−1∑
i=1

ζi = ζk,

which condition (3.4). We have proved that u satisfies the impulsive Ψ–HFDE
(3.3)–(3.5). This completes the proof. ut

4 Existence and uniqueness results

Theorem 4. (Existence) Assume that the function f : (a, T ] × R → R is
continuous and satisfies the conditions:

(A1) f(·, u(·)) ∈ PC1−%;Ψ (J , R) for any u ∈ PC1−%;Ψ (J , R) ,

(A2) there exists a constant 0 < L ≤ Γ (µ+ %)/(2Γ (%)(Ψ(T )− Ψ(a))µ) satis-
fying

|f(t, u)− f(t, v)| ≤ L|u− v|, t ∈ J , u, v ∈ R.

Then, the impulsive Ψ–HFDE (1.2)–(1.4) has at least one solution in
PC1−%;Ψ (J , R).

Proof. In the view of Lemma 3, the equivalent fractional integral equation of
the impulsive Ψ -HFDE (1.2)–(1.4) is given by

u(t) = Ω%Ψ (t, a)
(
δ +

∑
a<tk<t

ζk

)
+ Iµ;Ψa+ f(t, u(t)), t ∈ J . (4.1)

Math. Model. Anal., 25(4):642–660, 2020.
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Consider the set

Br =
{
u ∈ PC1−%;Ψ (J , R) : I1−%;Ψa+ u(a) = δ, ‖u‖PC1−%;Ψ (J ,R) ≤ r

}
,

where

M = sup
σ∈J
|f(σ, 0)|, r ≥ 2

(
1

Γ (%)

{
|δ|+

m∑
i=1

|ζi|
}

+
M(Ψ(T )− Ψ(a))1−%+µ

Γ (µ+ 1)

)
.

We define the operators P and Q on Br by

Pu(t) = Ω%Ψ (t, a)

(
δ +

∑
a<tk<t

ζk

)
, Qu(t) = Iµ;Ψa+ f(t, u(t)), t ∈ J .

Then the fractional integral equation (4.1) can be written as operator equation

u = Pu+Qu, u ∈ PC1−%;Ψ (J , R) .

Step 1: We prove that Pu+Qv ∈ Br for any u, v ∈ Br.
Let any u, v ∈ Br. Then using (A1), for any t ∈ J , we have∣∣(Ψ(t)− Ψ(a))1−%(Pu(t) +Qv(t))

∣∣
=

∣∣∣∣(Ψ(t)− Ψ(a))1−%
{
Ω%Ψ (t, a)

(
δ +

∑
a<tk<t

ζk

)
+ Iµ;Ψa+ f(t, v(t))

}∣∣∣∣
≤ 1

Γ (%)

(
|δ|+

m∑
k=1

|ζk|
)

+
(Ψ(t)− Ψ(a))1−%

Γ (µ)

∫ t

a

LµΨ (t, σ) |f(σ, v(σ))| dσ

≤ 1

Γ (%)

(
|δ|+

m∑
k=1

|ζk|
)

+
(Ψ(t)− Ψ(a))1−%

Γ (µ)

∫ t

a

LµΨ (t, σ) |f(σ, v(σ))− f(σ, 0)|dσ

+
(Ψ(t)− Ψ(a))1−%

Γ (µ)

∫ t

a

LµΨ (t, σ) |f(σ, 0)|dσ

≤ 1

Γ (%)

(
|δ|+

m∑
k=1

|ζk|

)
+
L (Ψ(t)− Ψ(a))1−%

Γ (µ)

∫ t

a

LµΨ (t, σ)|v(σ)|dσ

+
M (Ψ(t)− Ψ(a))1−%

Γ (µ)

∫ t

a

LµΨ (t, σ) dσ =
1

Γ (%)

(
|δ|+

m∑
k=1

|ζk|
)

+
L(Ψ(t)−Ψ(a))1−%

Γ (µ)

∫ t

a

LµΨ (t, σ) (Ψ(σ)−Ψ(a))%−1
∣∣(Ψ(σ)− Ψ(a))1−%v(σ)

∣∣ dσ
+
M(Ψ(t)−Ψ(a))1−%

Γ (µ)

(Ψ(t)−Ψ(a))µ

µ
≤ 1

Γ (%)

(
|δ|+

m∑
k=1

|ζk|
)

+L(Ψ(t)−Ψ(a))1−%

× ‖v‖PC1−%;Ψ (J ,R)I
µ;Ψ
a+ (Ψ(t)− Ψ(a))%−1 +

M (Ψ(t)− Ψ(a))1−%+µ

Γ (µ+ 1)

≤ 1

Γ (%)

(
|δ|+

m∑
k=1

|ζk|
)

+
LΓ (%)

Γ (µ+ %)
(Ψ(t)− Ψ(a))µ‖v‖PC1−%;Ψ (J ,R)
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+
M (Ψ(t)− Ψ(a))1−%+µ

Γ (µ+ 1)
≤ 1

Γ (%)

(
|δ|+

m∑
k=1

|ζk|
)

+
LΓ (%)

Γ (µ+ %)
(Ψ(T )− Ψ(a))µr +

M (Ψ(T )− Ψ(a))1−%+µ

Γ (µ+ 1)
.

Since

r ≥ 2

(
1

Γ (%)

{
|δ|+

m∑
i=1

|ζi|
}

+
M(Ψ(T )− Ψ(a))1−%+µ

Γ (µ+ 1)

)
,

L ≤ Γ (µ+ %)/(2Γ (%)(Ψ(T )− Ψ(a))µ),

we have
∣∣(Ψ(t)− Ψ(a))1−%(Pu(t) +Qv(t))

∣∣ ≤ r, t ∈ J . Therefore
‖(Pu+Qv)‖PC1−%;Ψ (J ,R) ≤ r. From definition of the operator P and Q, one

can verify that I1−%;Ψa+ (Pu+Qv)(a) = δ. We have proved that, Pu+Qv ∈ Br.
Step 2 : Clearly P is a contraction with the contraction constant zero.
Step 3 : Q is compact and continuous. The continuity of Q follows from the
continuity of f . Next we prove that Q is uniformly bounded on Br. Let any
u ∈ Br. Then by (A2), for any t ∈ J , we have∣∣(Ψ(t)− Ψ(a))1−%Qu(t)

∣∣ =
∣∣(Ψ(t)− Ψ(a))1−%Iµ;Ψa+ f(t, u(t))

∣∣
≤ (Ψ(t)− Ψ(a))1−%

Γ (µ)

∫ t

a

LµΨ (t, σ) |f(σ, u(σ))| dσ ≤ (Ψ(t)− Ψ(a))1−%

Γ (µ)

×
∫ t

a

LµΨ (t, σ)|f(σ, u(σ))−f(σ, 0)| dσ+
(Ψ(t)− Ψ(a))1−%

Γ (µ)

∫ t

a

LµΨ (t, σ) |f(σ, 0)| dσ

≤ L(Ψ(t)−Ψ(a))1−%

Γ (µ)

∫ t

a

LµΨ (t, σ) |u(σ)| dσ+
M (Ψ(t)−Ψ(a))1−%

Γ (µ)

∫ t

a

LµΨ (t, σ) dσ

≤ LΓ (%)

Γ (µ+ %)
(Ψ(t)− Ψ(a))µ ‖u‖PC1−%;Ψ (J ,R) +

M (Ψ(t)− Ψ(a))1−%+µ

Γ (µ+ 1)

≤ LΓ (%)

Γ (µ+ %)
(Ψ(T )− Ψ(a))µ r +

M (Ψ(T )− Ψ(a))1−%+µ

Γ (µ+ 1)
.

Therefore

‖Qu‖PC1−%;Ψ (J ,R) ≤
LΓ (%)

Γ (µ+ %)
(Ψ(T )− Ψ(a))µ r +

M(Ψ(T )− Ψ(a))1−%+µ

Γ (µ+ 1)
.

This proves Q is uniformly bounded on Br. Next, we show that QBr is equicon-
tinuous. Let any u ∈ Br and t1, t2 ∈ (tk, tk+1] for some k, (k = 0, 1, . . . ,m) with
t1 < t2. Then,

|Qu(t2)−Qu(t1)| =
∣∣∣∣(Iµ;Ψa+ f(t, u(t))

∣∣∣
t=t2

)
−
(
Iµ;Ψa+ f(t, u(t))

∣∣∣
t=t1

)∣∣∣∣
≤ 1

Γ (µ)

∫ t2

a

LµΨ (t2, σ) |f(σ, u(σ))| dσ − 1

Γ (µ)

∫ t1

a

LµΨ (t1, σ) |f(σ, u(σ))| dσ

=
1

Γ (µ)

∫ t2

a

LµΨ (t2, σ) (Ψ(σ)− Ψ(a))%−1
∣∣(Ψ(σ)− Ψ(a))1−%f(σ, u(σ))

∣∣ dσ
Math. Model. Anal., 25(4):642–660, 2020.
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− 1

Γ (µ)

∫ t1

a

LµΨ (t1, σ) (Ψ(σ)−Ψ(a))%−1
∣∣(Ψ(σ)−Ψ(a))1−%f(σ, u(σ))

∣∣ dσ
≤
{
Iµ;Ψa+ (Ψ(t)− Ψ(a))%−1

∣∣
t=t2
− Iµ;Ψa+ (Ψ(t)− Ψ(a))%−1

∣∣
t=t1

}
‖f‖PC1−%;Ψ (J ,R)

=
Γ (%)

Γ (µ+ %)

{
(Ψ(t2)− Ψ(a))1−%+µ − (Ψ(t1)− Ψ(a))1−%+µ

}
‖f‖PC1−%;Ψ (J ,R) .

Note that |Qu(t2)−Qu(t1)| → 0 as |t1 − t2| → 0. This shows that Q is
equicontinuous on (tk, tk+1]. Therefore Q is relatively compact on Br. By
PC1−%;Ψ type Arzela-Ascoli Theorem (Theorem 2) Q is compact on Br. Since
all the assumptions of Krasnoselskii’s fixed point theorem (Theorem 3) are sat-
isfied, the operator equation u = Pu+Qu has fixed point ũ ∈ PC1−%;Ψ (J , R),
which is the solution of the impulsive Ψ -HFDE (1.2)–(1.4). ut

Theorem 5. (Uniqueness) Assume that the function f : (a, T ] × R → R is
continuous and satisfies the conditions (A1)–(A2). Then, impulsive Ψ–HFDE
(1.2)–(1.4) has a unique solution in the weighted space PC1−%;Ψ (J , R).

Proof. Consider the set Br as defined in the Theorem 4 and define the operator
T on Br by

T u(t) = Ω%Ψ (t, a)
(
δ +

∑
a<tk<t

ζk

)
+ Iµ;Ψa+ f(t, u(t)), t ∈ J .

To prove u = T u has a fixed point, we show that T Br ⊂ Br. For that take any
u ∈ Br. Then, by (A2) for any t ∈ J , we have

|T u(t)| =
∣∣∣Ω%Ψ (t, a)

(
δ +

∑
a<tk<t

ζk

)
+ Iµ;Ψa+ f(t, u(t))

∣∣∣
≤ Ω%Ψ (t, a)

(
|δ|+

m∑
k=1

|ζk|
)

+
1

Γ (µ)

∫ t

a

LµΨ (t, σ) |f(σ, u(σ))| dσ

≤ Ω%Ψ (t, a)
(
|δ|+

m∑
k=1

|ζk|
)

+
1

Γ (µ)

∫ t

a

LµΨ (t, σ) |f(σ, u(σ))− f(σ, 0)| dσ

+
1

Γ (µ)

∫ t

a

LµΨ (t, σ) |f(σ, 0)| dσ ≤ Ω%Ψ (t, a)
(
|δ|+

m∑
k=1

|ζk|
)

+
LΓ (%)

Γ (µ+ %)
(Ψ(t)− Ψ(a))1−%+µ‖u‖PC1−%;Ψ (J ,R) +

M (Ψ(t)− Ψ(a))µ

Γ (µ+ 1)

≤ Ω%Ψ (t, a)
(
|δ|+

m∑
k=1

|ζk|
)

+
LΓ (%)

Γ (µ+ %)
(Ψ(t)− Ψ(a))1−%+µ r

+
M (Ψ(t)− Ψ(a))µ

Γ (µ+ 1)
.

Thus,

|(Ψ(t)− Ψ(a))1−% T u(t)| ≤ 1

Γ (%)

(
|δ|+

m∑
k=1

|ζk|

)
+

LΓ (%)

Γ (µ+ %)
(Ψ(T )− Ψ(a))µ r
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+
M (Ψ(T )− Ψ(a))1−%+µ

Γ (µ+ 1)
, t ∈ J .

From the choices of constants r and L, it can be easily verified that

‖T u‖PC1−%;Ψ (J ,R) ≤ r.

This proves T Br ⊂ Br. Now, we prove that the operator T is a contraction on
Br. Let any u, v ∈ Br. Then by assumption (A2) for any t ∈ J ,∣∣(Ψ(t)− Ψ(a))1−%(T u(t)− T v(t))

∣∣
=
∣∣∣(Ψ(t)− Ψ(a))1−%

({
Ω%Ψ (t, a)

(
δ +

∑
a<tk<t

ζk

)
+ Iµ;Ψa+ f(t, u(t))

}
−
{
Ω%Ψ (t, a)

(
δ +

∑
a<tk<t

ζk

)
+ Iµ;Ψa+ f(t, v(t))

})∣∣∣
=
∣∣∣(Ψ(t)− Ψ(a))1−%

(
Iµ;Ψa+ f(t, u(t))− Iµ;Ψa+ f(t, v(t))

)∣∣∣
≤ (Ψ(t)− Ψ(a))1−%

Γ (µ)

∫ t

a

LµΨ (t, σ) |f(σ, u(σ))− f(σ, v(σ))| dσ

≤ L (Ψ(t)− Ψ(a))1−%

Γ (µ)

∫ t

a

LµΨ (t, σ) |u(σ)− v(σ)| dσ

≤ LΓ (%)

Γ (µ+ %)
(Ψ(t)− Ψ(a))µ‖u− v‖PC1−%;Ψ (J ,R).

From the choice of constant L, it follows that

‖T u− T v‖PC1−%;Ψ (J ,R) ≤
1

2
‖u− v‖PC1−%;Ψ (J ,R).

Thus, T is a contraction and by the Banach contraction principle it has a
unique fixed point in Br ⊆ PC1−%;Ψ (J , R) which is the unique solution of
impulsive Ψ -HFDE (1.2)–(1.4). ut

5 Nonlocal impulsive Ψ-HFDE

In this section we examine the existence and uniqueness results for impulsive
Ψ -HFDE with non local initial conditions given by

HDµ, ν;Ψ
a+ u(t) = f(t, u(t)), t ∈ J \ {t1, t2, . . . , tm}, (5.1)

∆I1−%;Ψa+ u(tk) = ζk ∈ R, k = 1, 2, . . . ,m, (5.2)

I1−%;Ψa+ u(a) + g(u) = δ ∈ R, (5.3)

where µ, ν, % and the function f are as given in the problem (1.2)–(1.4) and
g : PC1−%;Ψ (J , R)→ R is a continuous function.

Theorem 6. (Existence) Assume that the function f : (a, T ] × R → R is
continuous and satisfies the conditions (A1)–(A2). Further, assume that g :
PC1−%;Ψ (J , R)→ R is a continuous function that satisfies:

Math. Model. Anal., 25(4):642–660, 2020.
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(A3) |g(u)− g(v)| ≤ Lg‖u− v‖PC1−%;Ψ (J ,R), u, v ∈ PC1−%;Ψ (J , R) , with 0 <

Lg ≤
1

6
Γ (%).

Then, the nonlocal impulsive Ψ -HFDE (5.1)–(5.3) has at least one solution in
PC1−%;Ψ (J , R).

Proof. By applying the Lemma 3, the equivalent fractional integral equation
of the nonlocal impulsive Ψ -HFDE (5.1)–(5.3) is given as follows

u(t) = Ω%Ψ (t, a)
(
δ − g(u) +

∑
a<tk<t

ζk

)
+ Iµ;Ψa+ f(t, u(t)), t ∈ J . (5.4)

Consider the set

Br∗ =
{
u ∈ PC1−%;Ψ (J , R) : I1−%;Ψa+ u(a) + g(u) = δ, ‖u‖PC1−%;Ψ (J ,R) ≤ r∗

}
,

where

r∗ ≥ 3
( 1

Γ (%)

{
|δ|+G+

m∑
k=1

|ζk|
}

+
M

Γ (µ+ 1)
(Ψ(T )− Ψ(a))1−%+µ

)
,

G = |g(0)| and M = supσ∈J |f(σ, 0)|. Define operators R and Q∗ on Br∗ by

Ru(t) = Ω%Ψ (t, a)
(
δ − g(u) +

∑
a<tk<t

ζk

)
,Q∗u(t) = Iµ;Ψa+ f(t, u(t)), t ∈ J .

Then the fractional integral equation (5.4) is equivalent to the operator equa-
tion

u = Ru+Q∗u, u ∈ PC1−%;Ψ (J , R) . (5.5)

We apply the Krasnoselskii’s fixed point theorem (Theorem 3) to prove that the
operator equation (5.5) has fixed point. Firstly, we show that Ru+Q∗v ∈ Br∗
for any u, v ∈ Br∗ . By assumptions (A2) and (A3), for any u, v ∈ Br∗ and
t ∈ J ,∣∣(Ψ(t)− Ψ(a))1−%(Ru(t) +Q∗v(t))

∣∣
=
∣∣∣(Ψ(t)− Ψ(a))1−%

{
Ω%Ψ (t, a)

(
δ − g(u) +

∑
a<tk<t

ζk

)
+ Iµ;Ψa+ f(t, v(t))

}∣∣∣
≤ 1

Γ (%)

(
|δ|+ |g(u)|+

m∑
k=1

|ζk|
)

+
(Ψ(t)− Ψ(a))1−%

Γ (µ)

∫ t

a

LµΨ (t, σ) |f(σ, v(σ))| dσ

≤ 1

Γ (%)

(
|δ|+ |g(u)− g(0)|+ |g(0)|+

m∑
k=1

|ζk|
)

+
(Ψ(t)− Ψ(a))1−%

Γ (µ)

∫ t

a

LµΨ (t, σ) |f(σ, v(σ))− f(σ, 0)| dσ

+
(Ψ(t)− Ψ(a))1−%

Γ (µ)

∫ t

a

LµΨ (t, σ) |f(σ, 0)| dσ
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≤ 1

Γ (%)

(
|δ|+ Lg‖u‖PC1−%;Ψ (J ,R) +G+

m∑
k=1

|ζk|
)

+
LΓ (%)

Γ (µ+ %)
(Ψ(t)− Ψ(a))µ‖v‖PC1−%;Ψ (J ,R) +

M (Ψ(t)− Ψ(a))1−%+µ

Γ (µ+ 1)

≤ 1

Γ (%)

(
|δ|+G+

m∑
k=1

|ζk|
)

+
Lg
Γ (%)

r∗

+
LΓ (%)

Γ (µ+ %)
(Ψ(T )− Ψ(a))µr∗ +

M(Ψ(T )− Ψ(a))1−%+µ

Γ (µ+ 1)
.

From the choice of r∗, L and Lg, from the above inequality, we obtain

‖(Ru+Q∗v)‖PC1−%;Ψ (J ,R) ≤ r
∗.

Further, one can verify that I1−%;Ψa+ (Ru+Q∗v)(a) + g(u) = δ.
This shows that Ru + Q∗v ∈ Br∗ . Next, we prove that R is a contraction
mapping. Let any u, v ∈ Br∗ and t ∈ J . Consider∣∣(Ψ(t)− Ψ(a))1−%(Ru(t)−Rv(t))

∣∣
=
∣∣∣(Ψ(t)− Ψ(a))1−%

{
Ω%Ψ (t, a)

(
δ − g(u) +

∑
a<tk<t

ζk

)
− Ω%Ψ (t, a)

(
δ − g(v) +

∑
a<tk<t

ζk

)}∣∣∣
=

1

Γ (%)
|g(u)− g(v)| ≤ Lg

Γ (%)
‖u− v‖PC1−%;Ψ (J ,R).

From the choice of Lg, we obtain

‖Ru−Rv‖PC1−%;Ψ (J ,R) ≤
1

6
‖u− v‖PC1−%;Ψ (J ,R).

This shows thatR is a contraction. The operatorQ∗ is compact and continuous
as proved in the Theorem 4. Hence by PC1−%;Ψ (J , R)-type Arzela-Ascoli
Theorem 2Q∗ is compact on Br∗ . Further, as discussed in the proof of Theorem
4 the non local impulsive Ψ -HFDE (5.1)–(5.3) has at least one solution in
PC1−%;Ψ (J , R). ut

Theorem 7. (Uniqueness) Assume that the function f : (a, T ] × R → R is
continuous and satisfies the conditions (A1)–(A3). Then, non local impulsive
Ψ–HFDE (5.1)–(5.3) has a unique solution in the space PC1−%;Ψ (J , R).

Proof. The proof can be completed following the same steps as in the proof
the Theorem 5. ut

6 Applications

By taking Ψ(t) = t and ν → 1, the impulsive Ψ -HFDE (1.2)–(1.4) reduces to
Caputo impulsive FDE of the form:

CDµ
a+u(t) = f(t, u(t)), t ∈ J \ {t1, t2, . . . , tm}, (6.1)
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∆u(tk) = ζk ∈ R, k = 1, 2, . . . ,m, (6.2)

u(a) = δ ∈ R, (6.3)

and we have the following existence and uniqueness theorems for Caputo im-
pulsive FDE (6.1)–(6.3) as an applications of the Theorems 4 and 5.

Theorem 8. Assume that the function f ∈ C(J , R) satisfies the Lipschitz
condition

|f(t, u)− f(t, v)| ≤ L|u− v|, t ∈ J , u, v ∈ R

with 0 < L ≤ Γ (µ+1)
2(T−a)µ . Then, the Caputo impulsive FDE (6.1)–(6.3) has at

least one solution in the space PC (J , R).

Theorem 9. Under the suppositions of the Theorem 8 the impulsive Caputo
FDE (1.2)–(1.4) has a unique solution in the space PC (J , R).

7 Examples

In this section, we give examples to illustrate the utility of the results we
obtained.

Example 1. Consider, the impulsive Ψ -HFDE

HDµ,ν;Ψ
0+ u(t) =

9

5Γ ( 2
3 )

(Ψ(t)−Ψ(0))
5
3− (Ψ(t)−Ψ(0))4

16
+

1

16
u2, t∈[0, 1] \

{
1

2

}
,

(7.1)

I1−%;Ψ0+ u(0) = 0, ∆I1−%;Ψ0+ u

(
1

2

)
= σ ∈ R, (7.2)

0 < µ < 1, 0 ≤ ν ≤ 1, % = µ + ν − µν and Ψ : [0, 1] → R is as defined in
preliminaries. Define the function f : [0, 1]× [0, 1]→ R by

f(t, u) =
9

5Γ ( 2
3 )

(Ψ(t)− Ψ(0))
5
3 − (Ψ(t)− Ψ(0))4

16
+

1

16
u2.

Clearly, |f(t, u) − f(t, v)| ≤ 1
8 |u − v|, u, v ∈ R, t ∈ [0, 1]. Thus f satisfies the

Lipschitz condition with the constant L = 1
8 . If the function Ψ satisfies the

condition

L ≤ Γ (µ+ %)

2Γ (%)(Ψ(1)− Ψ(0))µ
, (7.3)

then problem (7.1)–(7.2) has unique solution. For instance, consider the par-
ticular case of the problem (7.1)–(7.2). By taking

Ψ(t) = t, µ = 1/3 and ν → 1.

Then the problem (7.1)–(7.2) reduces to impulsive FDE involving Caputo frac-
tional derivative operator of the form:

CD
1
3

0+u(t) =
9

5Γ ( 2
3 )
t
5
3 − t4

16
+

1

16
u2, t ∈ [0, 1] \

{
1

2

}
, (7.4)
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∆u (1/2) = 0, u(0) = 0. (7.5)

Note that Γ (µ+%)
2Γ (%)(Ψ(T )−Ψ(a))µ = 1

2 Γ
(
4
3

)
≈ 0.445. Since L = 1

8 , the condition (7.3)

is satisfied. Using the Theorem 4 with Ψ(t) = t, a = 0, T = 1, µ = 1
3 and ν →

1 the problem (7.4)–(7.5) has a solution on [0, 1]. By direct substitution one
can verify that u(t) = t2 is the solution of the problem (7.4)–(7.5).

Example 2. Consider an impulsive Ψ -HFDE

HDµ, ν;Ψ
0+ u(t) =

sin4(Ψ(t)− Ψ(0))

((Ψ(t)− Ψ(0)) + 3)3
|u(t)|

1 + |u(t)|
, t ∈ [0, 1] \

{
1

3

}
, (7.6)

∆I1−%;Ψ0+ u (1/3) = σ, I1−%;Ψ0+ u(0) = δ, (7.7)

where 0 < µ < 1, 0 ≤ ν ≤ 1, % = µ + ν − µν. Define the function f :

[0, 1]× [0, 1]→ R by f(t, u) = sin4(Ψ(t)−Ψ(0))
((Ψ(t)−Ψ(0))+3)3

|u|
1+|u| . Let u, v ∈ R and t ∈ [0, 1].

Then,

|f(t, u)− f(t, v)| =
∣∣∣ sin4(Ψ(t)− Ψ(0))

((Ψ(t)−Ψ(0))+3)3
|u|

1+|u|
− sin4(Ψ(t)− Ψ(0))

((Ψ(t)−Ψ(0))+3)3
|v|

1+|v|

∣∣∣
≤ 1

((Ψ(t)− Ψ(0)) + 3)
3

∣∣∣∣ |u|1 + |u|
− |v|

1 + |v|

∣∣∣∣ ≤ 1

((Ψ(1)− Ψ(0)) + 3)
3 |u− v|.

This proves f is Lipschitz function with the constant L = 1
((Ψ(1)−Ψ(0))+3)3

.

By Theorem 4 the problem (7.6)–(7.7) has a solution if

1

((Ψ(1)− Ψ(0)) + 3)
3 ≤

Γ (µ+ %)

2Γ (%)(Ψ(1)− Ψ(0))µ
.

8 Future work

In this paper, we have not investigated the continuous dependence on the var-
ious data and Ulam-Hyers stabilities of solution of (1.2)–(1.4), which is the
point of our next investigation and will be published a future work.

Now, if we consider Ψ(t) = t in the problem (1.2)–(1.4) with A : D(A) ⊂
X → X generator of C0-semigroup (Pt≥0) on a Banach space X, we have the
following impulsive Ψ -HFDE with initial condition

HDµ, ν
a+ u(t) = Au(t) + f(t, u(t)), t ∈ J \ {t1, t2, . . . , tm}, (8.1)

∆I1−%a+ u(tk) = ζk ∈ R, k = 1, 2, . . . ,m, (8.2)

I1−%;Ψa+ u(a) = δ ∈ R, (8.3)

with the same conditions of problem (1.2)–(1.4). The next step of the research
is to analyze the problem (8.1)–(8.3). But the question may arise “ Why not
get the existence and uniqueness of mild solutions to the problem (8.1)–(8.3)

with a Ψ–Hilfer fractional derivative operator HDµ, ν, Ψ
a+ ? ” The reason for non-

investigation with the Ψ -Hilfer fractional derivative comes from the fact of the

Math. Model. Anal., 25(4):642–660, 2020.
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non-existence of an integral transform, in particular, of Laplace with respect
to another function, since it is an important condition in the investigation of
the mild solution. Research in this sense has been developed and, in the near
future, results can be published.
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