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Abstract. The main aim of this paper is to present a hybrid scheme of both mesh-
less Galerkin and reproducing kernel Hilbert space methods. The Galerkin meshless
method is a powerful tool for solving a large class of multi-dimension problems. Re-
producing kernel Hilbert space method is an extremely efficient approach to obtain
an analytical solution for ordinary or partial differential equations appeared in vast
areas of science and engineering. The error analysis and convergence show that the
proposed mixed method is very efficient. Since the solution space spanned by radial
basis functions do not directly satisfy essential boundary conditions, an auxiliary pa-
rameterized technique is employed. Theoretical studies indicate that this new method
is very stable, though a parameterized problem is employed instead of the main prob-
lem.
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1 Introduction

During the past three decades, considerable effort has been devoted to devel-
oping the meshfree methods based on radial basis functions (RBFs) for solving
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various types of partial differential equations (PDEs). In these methods, sys-
tem of algebraic equations is established for the whole PDEs by employing only
a set of scattered nodes in the domain and on the boundary. Consequently, the
method avoids difficulties arising from the mesh-based methods such as finite
element method (FEM) and finite difference method (FDM). The main attrac-
tive features of RBfs is that they can be easily applied to higher dimensional
cases due to the fact that they depend only on the distance between the nodal
points.

The Galerkin method is a class of powerful tools to prove the existence of
solutions for various problems and also to approximate solutions for linear and
nonlinear PDEs. This method uses the weak-form of the underlying PDE which
results in reducing the smoothness requirement of the approximation functions.
Authors in [9,10] applied RBFs to Galerkin method for solving elliptic problems
with Dirichlet boundary conditions by making an artificial Neumann boundary
condition via some auxiliary parameters. They also proved the convergence
and obtained an error estimate of their method in the weak form. Salehi et.al
applied the so called moving least square method (MLS) to solving PDEs using
polynomials and estimating smooth functions with an optimal accuracy [21].
An RBF meshless method was employed to solve two-dimensional magneto-
hydrodynamic (MHD) equations in [15] using variably scaled radial kernel.
Also the RBF method based on collocation (spectral method) has been ap-
plied to some applications (see for example [5, 16]). Dehghan et.al [14] solved
the time fractional diffusion-wave equation by the method of lines using this
technique. They first discretized the main problem by employing the Crank
Nicolson method and then applied the meshless Galerkin method by the use of
the auxiliary parameters technique presented in [9, 10].

On the other hand, for about two decades, the reproducing kernel Hilbert
space method (RKHS) which is an analytical approach, has been in progress
for solving linear and nonlinear diverse problems [1,2,3,4,13]. Many hard and
nonlinear problems such as system of boundary value problems [13], Bagley-
Torvik and Painlevé equations [2], integro-differential equations of Fredholm
operator type in the sense of the Atangana-Baleanu fractional operator [3] and
ABC-Fractional Volterra integro-differential equations [4] have been success-
fully solved by this method.

We present a new method combining both Galerkin RBFs (GRBFs) and
RKHS methods. For this purpose, we describe the method for the following
special class of quasi-linear initial-boundary value problem.

∂u(t, x)

∂t
−∆u(t, x) = g(t, x) + f(u(t, x)), in (t, x) ∈ (0, T )×Ω,

u(t, x) = 0, (t, x) ∈ (0, T ]× ∂Ω,
u(0, x) = u◦, x ∈ Ω.

(1.1)

Here Ω ⊂ RN , N = 2, 3, 4, . . ., is a convex and bounded polygon, I = (0, T )
is the time interval and g satisfies the required regularity conditions. Also f
is a sufficiently smooth function in one variable without any growth conditions
such as u5, eu or u3|u| as well as Fitz-Hugh-Nagumo or Allen-Cahn type non-
linearities like u3 − αu with some positive α ∈ R. The existence, uniqueness
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and stability of the solution for the above equation have been studied in [7]. A
general RKHS is defined as follows.

Definition 1. Let E be an arbitrary (non-empty) abstract set like a real Ba-
nach space and F (E) denote the set of all complex-valued functions on E. A
RKHS on the set E is a Hilbert space H ⊆ F (E) with a function K : E×E → R
that is called the reproducing kernel with reproducing property Kp = K(., p)
for all p ∈ E in which f(p) = (f,Kp) holds for all f ∈ H and p ∈ E. The
Hilbert space H in which its corresponding reproducing kernel function is K,
denote by HK .

We intend to improve the Galerkin method by combining it with an analytical
method. To do so, we present a new hybrid method of both meshless based on
RBFs and RKHS. Some suitable assumptions required in the error analysis and
convergence are stated. There is an adapted auxiliary parameterized technique
for elliptic problems [9, 10]. We adapt this scheme for problem (1.1) and show
that the solution of the auxiliary problem uniformly converges to the solution
of problem (1.1) in the Sobolev norm. Further, the process of GRBFs is in-
troduced for spatial semi-discretization. Then, a convergence theory is carried
out for the approximate solution of the parameterized problem. The system
of nonlinear ordinary differential equations of time variable will be dealt with
by the RKHS method, analytically. Finally, we provide a convergence theory
for numerical solution produced by hybrid GRBFs and the RKHS. The outline
of this paper is as follows. The meshless Galerkin method and reproducing
kernel Hilbert space will be presented in Section 2. The numerical analysis will
be given in Section 3. Some numerical results will be exhibited in Section 4.
Finally, we summarize the achievements in Section 5.

2 Hybrid meshless Galerkin method and reproducing
kernel Hilbert space

In this section, first, we implement the proposed method and then present the
convergence analysis showing that the approximate solution converges to the
weak solution of (1.1). All over in this work we use the following spaces for
any integer number k,m,

Hk
(
[0, T ];Hm(Ω)

)
=
{
u : u : [0, T ]→ Hm(Ω)

}
with its norm for u belonging to it, as follows

‖u‖2
Hk
(
[0,T ];Hm(Ω)

) =

k∑
i=0

∫ T

0

∥∥∥∂iu(t)

∂ti

∥∥∥2
Hm(Ω)

dt.

When k = 0, this space is denoted with L2
(
[0, T ];Hm(Ω)

)
which its norms is

‖u‖2
L2
(
[0,T ];Hm(Ω)

) =

∫ T

0

‖u(t)‖2Hm(Ω)dt.
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The definition of Lp
(
[0, T ];Hm(Ω)

)
, for all p ∈ [0,∞], can be included from all

functions u : [0, T ]→ Hm(Ω) with its norm

‖u‖p
Lp
(
[0,T ];Hm(Ω)

) =

∫ T

0

‖u(t)‖pHm(Ω)dt

that the elements of this space have finite value in its norm.

2.1 Implementation of new method

In this subsection, the meshless Galerkin method based on RBFs is introduced
for solving problem (1.1). As is well known, in the weak form of the main prob-
lem (1.1), an integral curve of directional derivative of the unknown function
along the boundary ∂Ω appears in the formulation which is the challenging
part of the problem. One way to avoid this difficulty is apply an auxiliary
parametrized technique to convert a Dirichlet boundary condition to a Neu-
mann one. To do so, problem (1.1) is converted to the following parametrized
quasi-linear parabolic equation:

∂uβ(t, x)

∂t
−∆uβ(t, x) = g(t, x) + f(uβ(t, x)), in (t, x) ∈ (0, T )×Ω,

∂uβ(t, x)

∂n
+ βuβ(t, x) = 0, (t, x) ∈ (0, T ]× ∂Ω,

uβ(0, x) = u◦, x ∈ Ω,

(2.1)

where n is the outward unit vector of ∂Ω and β is an auxiliary parameter
that it should be created enough big in our numerical computation. As well
known, the corresponding variational problem of (2.1) finds the solution uβ ∈
H2
(
[0, T ];H1(Ω)

)
, such that for all v ∈ H1(Ω),

d

dt

(
uβ(t), v

)
Ω

+ a
(
uβ(t), v

)
Ω

+ β
(
uβ(t), v

)
∂Ω

=
(
g(t), v

)
Ω

+
(
f(uβ(t)), v

)
Ω
,

∀t ∈ [0, T ],

uβ(0, x) = u◦, in x ∈ Ω, (2.2)

where u(t) is the abbreviation of u(t, x) and

(
u, v
)
Ω

=

∫
Ω

u(x)v(x)dx, ∀u, v ∈ L2(Ω),

a
(
u, v
)
Ω

=

∫
Ω

∇u(x)∇v(x)dx, ∀u, v ∈ H1(Ω),(
u, v
)
∂Ω

=

∫
∂Ω

u(x)v(x)dx, ∀u, v ∈ L2(∂Ω).

We discretize the weak form in (2.2) by choosing a finite dimensional subspace
VM = span

{
Φ(x − x1), . . . , Φ(x − xM )

}
+ ΠN

m ⊂ H1(Ω) which Φ(x − xi)s
radial basis function (RBF) create by Φ(x) = φ(‖x‖) that is positive definite
or m-order conditionally positive definite on Rn with respect to the set of
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polynomials Πn
m having total degree m − 1 or less when all nonzero a ∈ Rn

satisfying
∑N
i=1 aip(xi) = 0, for all p ∈ Πn

m, we have that

N∑
i=1

N∑
j=1

aiajΦ(xj − xi) > 0,

and
{
x1, . . . , xM

}
is a set of distinct points in Ω with the mesh ratio h that it

is supx∈Ω infi=1,··· ,M ‖x − xi‖ [5, 8, 11, 15, 16, 18, 21, 23]. We then approximate
uβ by the discrete uβ,M given by the expansion

uβ,M (t, x) =

M∑
i=1

uβ,i(t)Φ(x− xi), ∀(t, x) ∈ [0, T ]×Ω.

Inserting the expansion into (2.2) and setting v = Φ(x − xi), provides the
following system of ODEs, whose solution determines the coefficients uβ,i,

d

dt
UMβ (t) + C−1

(
A + βB

)
UMβ (t) = C−1GM (t) + C−1FM (UMβ (t)), t ∈ [0, T ],

UMβ (0) = UM◦ , (2.3)

where A, B and C are symmetric positive definite matrices with

Ai,j = a
(
Φ(.− xi), Φ(.− xj)

)
Ω
, Bi,j =

(
Φ(.− xi), Φ(.− xj)

)
∂Ω
,

Ci,j =
(
Φ(.− xi), Φ(.− xj)

)
Ω

and GMi (t), FMi (UM (t)) and UMβ,i(t) are vectors as follows,

GMi (t) =
(
g(t), Φ(.− xi)

)
Ω
, FMi (UM (t)) =

(
f(UM (t)), Φ(.− xi)

)
Ω
,

UM◦,i =
(
u◦, Φ(.− xi)

)
Ω
, UMβ,i(t) =

(
uβ(t), Φ(.− xi)

)
Ω
.

By solving the system of ODEs in (2.3) the unknown coefficients uβ,i can be
determined. Since in the current work, the compactly supported RBFs are
employed, the above coefficient matrices are sparse. The Matlab 2017b is used
to evaluate the integrals. We now obtain an one variable unknown vector
function of the system ODE in (2.3) based on reproducing kernel Hilbert space.
In this space, one can precisely express the solution of a nonlinear differential
equation by series of elementary functions [1, 2, 3, 4, 13]. We rewrite the ODE
in (2.3) as follows

LβWM
β (t) = HM (t,WM

β (t)),

WM
β (0) = 0,

(2.4)

where

WM
β (t) = UMβ (t)− UM◦,β , Lβ =

d

dt
+ C−1

(
A + βB

)
,

HM (t,WM
β (t))=C−1GM (t)+C−1FM (WM

β (t) + UM◦,β)+C−1
(
A+βB

)
UM◦,β ,
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where Lβ is a continuous linear operator from H1=

M times︷ ︸︸ ︷
H2
◦[0, T ]× · · · ×H2

◦[0, T ] to

H2 =

M times︷ ︸︸ ︷
H1[0, T ]× · · · ×H1[0, T ], and H2

◦[0, T ] =
{
u ∈ H2[0, T ] : such that

u(0) = 0
}

similar to that in [1]. Also H1 and H2 are Hilbert spaces with inner
products

(
u, v
)
H1

=

M∑
i=1

(
ui, vi

)
H2

◦[0,T ]
, u, v ∈ H1,

(
u, v
)
H2

=

M∑
i=1

(
ui, vi

)
H1[0,T ]

, u, v ∈ H2,

where u = (u1, · · · , uM )t, v = (v1, . . . , vM )t, (u, v)H2
◦[0,T ] = u′(0)v′(0) +∫ T

0
u′′(x)v′′(x)dx and (., .)H1[0,T ] = u(0)v(0) +

∫ T
0
u′(x)v′(x)dx are the inner

produces on H2
◦[0, T ] and H1[0, T ], respectively (see [6, 13]). We know that

H2
◦[0, T ] and H1[0, T ] are reproducing kernel Hilbert spaces [1, 2, 3, 4, 13]. Let
K1(x, y) and K2(x, y), respectively, be kernels of H2

◦[0, T ] and H1[0, T ], and
X =

{
t1, t2, . . . , tn, . . .

}
be dense in the interval [0, T ] defining as

χi,j(t) = K2(t, ti)ej , t ∈ [0, T ], Ψi,j(t) = L∗βχi,j(t), t ∈ [0, T ],

where i = 1, 2, 3, . . . , ej for j = 1, 2, . . . ,M are the standard basis on RM and
L∗β is the adjoint operator of Lβ . Also Ψi,j(t), i = 1, 2, . . . , j = 1, 2, . . . ,M ,
are a complete basis functions for H1 that they are independent [1, 13]. The
normal orthogonal basis functions Ψ i,j(t) for H1 can be constructed by the
Gram-Schmidt orthogonalization process on Ψi,j(t) to example one can see
Algorithm 1 of [1] to make the normal orthogonal basis functions and corre-
sponding their coefficients,

Ψ i,j(t) =

i∑
k=1

j∑
l=1

βi,jk,lΨl,k(t), i = 1, 2, . . . , j = 1, 2, . . . ,M.

where βi,jk,ls are called the Gram-Schmidt coefficients of Ψ i,j . Similar with
Algorithm 2 of [1], the method can be implemented by making a sequence
convergent to the exact solution of (2.4) by the following process

WM
β,n(t) =

n−1∑
i=1

M∑
j=1

Bi,jΨ i,j(t), Bi,j =

i−1∑
k=1

M∑
l=1

βi,jl,kH
M
l (t,WM

β,k−1(tk)),

where HMl (t,WM
β,k−1(t)) is l-th component of HM (t,WM

β,k−1(t)), WM
β,0(t1)=0.

The convergence of the above sequence in H1 has been proven in [1,13]. This is
due to converging the above sequence, WM

β,n(t), to the exact solution, WM
β (t),

of problem (2.4) in H1.
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3 Numerical analysis

In currently subsection, we intend to survey the growth rate of convergence
of the approximate solution to the weak solution (1.1). We know that the
ordinary differential equation (2.2) has a unique solution, uβ(t; v), depending
continuously on v ∈ B =

{
v ∈ H1(Ω) : ‖v‖Ω ≤ 1

}
. Since f is a Lipschitz

function, there exists a positive and continuous function L(v) such that for all
v ∈ B,

‖f(uβ(t; v))− f(u◦)‖Ω ≤ L(v)‖uβ(t; v)− u◦‖∂Ω
≤ L(v)‖uβ(t; v)‖∂Ω + L(v)‖u◦‖∂Ω .

By boundary regularity property u◦ vanishes and using trace theorem gives

‖f(uβ(t; v))‖Ω ≤ L(v)‖uβ(t; v)‖∂Ω + ‖f(u◦)‖Ω ≤ L(v)‖uβ(t; v)‖Ω + ‖f(u◦)‖Ω .
(3.1)

The weak solution (2.2) can be obtained for v ∈ B, but B is a weakly compact
set of H1(Ω) by the Banach-Alaoglu theorem [20]. Let L = sup L(B) < ∞
then the inequality (3.1) is obtained for the weak solution uβ(t) as follows

‖f(uβ(t))‖Ω ≤ L‖uβ(t)‖Ω + ‖f(u◦)‖Ω .

Now we obtain a upper bound for the weak solution of problem (2.1). Substi-
tuting v = uβ(t) in the weak form (2.2), for any t ∈ [0, T ], we have

1

2

d

dt
‖uβ(t)‖2Ω + a

(
uβ(t), uβ(t)

)
Ω

+ β
(
uβ(t), uβ(t)

)
∂Ω

≤
(
‖g(t)‖Ω + ‖f(uβ(t))‖Ω

)
‖u(t)β‖Ω

≤
(
‖g(t)‖Ω + L‖uβ(t)‖Ω + ‖f(u◦)‖Ω

)
‖uβ(t)‖Ω .

(3.2)

Hence

d

dt
‖uβ(t)‖Ω ≤ ‖g(t)‖Ω + ‖f(uβ(t))‖Ω ≤ ‖g(t)‖Ω + L‖uβ(t)‖Ω + ‖f(u◦)‖Ω .

Integrating both sides of inequality (3.2) yields

‖uβ(t)‖Ω ≤
(
‖u◦‖Ω + t‖f(u◦)‖Ω +

∫ t

0

‖g(s)‖Ωds
)

+ L

∫ t

0

‖uβ(s)‖Ωds.

Using Grönwall’s lemma results in the following inequality

‖uβ(t)‖Ω ≤ C(t)
(
‖u◦‖Ω + t‖f(u◦)‖Ω +

∫ t

0

‖g(s)‖Ωds
)
, (3.3)

where C(t) is a positive function bounded by eLt. Also the following inequality
is a straightforward result of the last two relations

d

dt
‖uβ(t)‖Ω + ‖∇uβ(t)‖Ω + β‖uβ(t)‖∂Ω ≤ ‖g(t)‖Ω + ‖f(uβ(t))‖Ω

≤ ‖g(t)‖Ω + L‖uβ(t)‖Ω + ‖f(u◦)‖Ω ,
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thus

d

dt

(
e−Lt‖uβ(t)‖Ω

)
+ e−Lt‖∇uβ(t)‖Ω + e−Ltβ‖uβ(t)‖∂Ω

≤ e−Lt
(
‖g(t)‖Ω + ‖f(u◦)‖Ω

)
.

Integrating both sides over [0, t] gives

e−Lt‖uβ(t)‖Ω +

∫ t

0

e−Ls‖∇uβ(s)‖Ωds+

∫ t

0

e−Lsβ‖uβ(s)‖∂Ωds

≤
∫ t

0

e−Ls
(
‖g(s)‖Ω + ‖f(u◦)‖Ω

)
ds+ ‖uβ(0)‖Ω .

(3.4)

The inequalities (3.3), for t = 0, and (3.4), for t = T , can result the following
inequality

‖uβ‖
L1
(
[0,T ];L2(∂Ω)

) ≤ C(T )

β

(
‖u◦‖Ω + ‖f(u◦)‖Ω + ‖g‖

L1
(
[0,T ];L2(Ω)

)). (3.5)

By boundary condition (2.1), one can demonstrate that
∂uβ(t)
∂n is bounded, that

is,

‖∂uβ(t)

∂n
‖∂Ω = sup

{∣∣(∂uβ(t)

∂n
, φ
)
∂Ω

∣∣ : φ ∈ L2(∂Ω) and ‖φ‖∂Ω = 1
}

= sup
{
β
∣∣(uβ(t), φ

)
∂Ω

∣∣ : φ ∈ L2(∂Ω) and ‖φ‖∂Ω = 1
}

= β‖uβ(t)‖∂Ω
(3.6)

with respect to (3.6) and multiplication both sides of the inequality (3.5) by β,
then we have

‖∂uβ(t)

∂n
‖
L1
(
[0,T ];L2(∂Ω)

) ≤ C(T )
(
‖u◦‖Ω + ‖f(u◦)‖Ω + ‖g‖

L1
(
[0,T ];L2(Ω)

)).
Using (3.5) and (3.6) and applying Trace theorem, one can conclude that uβ(t)
converges to the weak solution of problem (1.1).

Theorem 1. Assume that k > N
2 and as β → ∞, the weak solution of (2.1),

uβ(t), strongly converges to the weak solution of (1.1), u(t), in
L2([0, T ];Hk(Ω)), meaning that there exists C ′k(u◦, g), Ck(u◦, g) > 0 depending
only on u◦ and g such that

‖u− uβ‖L2([0,T ];Hk(Ω)) ≤ eLT
1√
β
Ck(u◦, g), (3.7)

and for the problem (1.1), we have

‖ ∂
∂t
u− ∂

∂t
uβ‖L2([0,T ];Hk(Ω)) ≤ eLT

1√
β
C ′k(u◦, g). (3.8)

Proof. The inner product of L2(Ω) is replaced by that of Hk−1(Ω). By equal-

ity (3.6), we conclude that uβ(t)→ 0 and
∂uβ(t)
∂n → ∂u(t)

∂n as β →∞ on C(∂Ω).

Math. Model. Anal., 26(2):318–336, 2021.
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By the trace theorem [6], if v ∈ Hk−1(Ω), then v ∈ Hk− 3
2 (∂Ω), consequently,

we get

d

dt

(
uβ(t), v

)
Hk−1(Ω)

+
(
∇uβ(t),∇v

)
Hk−1(Ω)

−
(
f(uβ(t)), v

)
Hk−1(Ω)

= (g(t), v
)
Hk−1(Ω)

− β
(
uβ(t), v

)
Hk− 3

2 (∂Ω)
−→

(
g(t), v

)
Hk−1(Ω)

=
d

dt

(
u(t), v

)
Hk−1(Ω)

+
(
∇u(t),∇v

)
Hk−1(Ω)

−
(
f(u(t)), v

)
Hk−1(Ω)

, ∀t ∈ [0, T ].

Let eβ(t) = u(t)− uβ(t) then for any t ∈ [0, T ], we have

d

dt

(
eβ(t), v

)
Hk−1(Ω)

+
(
∇eβ(t),∇v

)
Hk−1(Ω)

=
(
f(u(t))− f(uβ(t)), v

)
Hk−1(Ω)

− β
(
uβ(t), v

)
Hk− 3

2 (∂Ω)
,

hence, by setting v = eβ(t) and using locally Lipschitz property of f , the
following is obtained

1

2

d

dt
‖eβ(t)‖2Hk−1(Ω) − L‖eβ(t)‖2Hk−1(Ω) +

(
∇eβ(t),∇eβ(t)

)
Hk−1(Ω)

≤ β‖uβ(t)‖2
Hk− 3

2 (∂Ω)
.

Also

1

2

d

dt

(
e−2Lt‖eβ(t)‖2Hk−1(Ω)

)
+ e−2Lt

(
∇eβ(t),∇eβ(t)

)
Hk−1(Ω)

≤ e−2Ltβ‖uβ(t)‖2
Hk− 3

2 (∂Ω)
.

Applying trace theorem and using the bound of ‖eβ(t)‖∂Ω,k in (3.5) yields

1

2

d

dt

(
e−2Lt‖eβ(t)‖2Hk−1(Ω)

)
+ e−2Lt

(
∇eβ(t),∇eβ(t)

)
Hk−1(Ω)

≤ e−2Lt 1

β

(
LC(t)

(
‖u◦‖Hk−1(Ω) + t‖f(u◦)‖Hk−1(Ω) + ‖g(t)‖Ω

)
+ ‖f(u◦)‖Hk−1(Ω) + ‖g(t)‖Hk−1(Ω)

)2
.

Integrating both sides of the above inequality, gives

‖eβ(t)‖2Hk−1(Ω) + 2e2Lt
∫ t

0

e−2Ls
(
∇eβ(s),∇eβ(s)

)
Hk−1(Ω)

ds

≤ 2e2Lt
1

β

∫ t

0

e−2Ls
(
LC(s)

(
‖u◦‖Hk−1(Ω) + t‖f(u◦)‖Hk−1(Ω)

+ ‖g(s)‖Hk−1(Ω)

)
+ ‖f(u◦)‖Hk−1(Ω) + ‖g(s)‖Hk−1(Ω)

)2
ds,

or briefly

‖eβ(t)‖Hk−1(Ω) + 2e2Lt
∫ t

0

e−2Ls
(
∇eβ(s),∇eβ(s)

)
Hk−1(Ω)

ds

≤
(
eLt
√

2

β
Ck(t, u◦, g(t))

)2
,
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where

Ck(t, u◦, g(t)) =
(∫ t

0

e−2Ls
(
LC(s)

(
‖u◦‖Hk−1(Ω) + t‖f(u◦)‖Hk−1(Ω)

+ ‖g(s)‖Hk−1(Ω)

)
+ ‖f(u◦)‖Hk−1(Ω) + ‖g(s)‖Hk−1(Ω)

)2
ds
) 1

2

,

(3.9)

also ∫ t

0

e−2Ls‖eβ(s)‖2Hk(Ω)ds ≤
2

β

∫ t

0

Ck(s, u◦, g(t))2ds, (3.10)∫ T

0

e−2Ls
(
∇eβ(s),∇eβ(s)

)
Hk−1(Ω)

ds ≤
(√ 1

β
Ck(T, u◦, g(T ))

)2
. (3.11)

Addition of inequalities (3.10) and (3.11) for C > 0, results in

‖eβ‖L2([0,T ];Hk(Ω)) ≤ eLT
1√
β
Ck(u◦),

where Ck(u◦, g) =
(
C
∫ T
0
Ck(s, u◦, g(t))2ds + Ck(T, u◦, g(T ))

) 1
2 . The proof of

inequality (3.7) is complete. The proof of inequality (3.8) is similar to the
inequality (3.7). ut

For the case f = 0, the problem is reduced to a linear case for which one can
show the following inequality. we have established the following inequality for
Galerkin method applied to problem (2.1),

‖uβ(t)− uβ,M (t)‖L2(Ω) ≤ ‖uβ(0)− uM,◦‖L2(Ω)

+ ‖RβMuβ(t)− uβ(t)‖L2(Ω) +

∫ t

0

∥∥∥∂RβMuβ(s)

∂s
− ∂uβ(s)

∂s

∥∥∥
L2(Ω)

ds,

where RβMu(t) is called the elliptic or Ritz projection on VN . We define it
as the orthogonal projection with the inner product (∇.,∇.)Ω + β(., .)∂Ω [6],
hence

(∇RβMv,∇ξ)Ω+β(RβMv, ξ)∂Ω = (∇v,∇ξ)Ω+β(v, ξ)∂Ω ,∀ξ ∈ VM ,∀v ∈ H1(Ω),

(u◦, ρ)Ω = (uM,◦, ρ)Ω , ∀ρ ∈ VM , ∀u◦ ∈ L2(Ω). (3.12)

Using Cea’s lemma [6] and definition of Ritz projection, we obtain the following
inequality for all v ∈ VM

‖uβ −RβMuβ‖∂Ω ≤
1

β
‖∇uβ −∇v‖Ω + ‖uβ − v‖Ω .

Theorem 4.1 of [22], yields

‖uβ −RβMuβ‖∂Ω ≤ C
( 1

β
hk−1 + hk

)
‖uβ‖Hk(Ω).
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Since in the current work, 1
β ≤ O(h), we obtain the error bound

‖uβ −RβMuβ‖∂Ω ≤ Ch
k‖uβ‖Hk(Ω),

or, equivalently, by trace theorem

‖uβ −RβMuβ‖Ω ≤ Ch
k‖uβ‖Hk(Ω). (3.13)

The following theorem states a priori error estimate for GRBFs.

Theorem 2. Assume that Φ̂(ω)(1 + ‖ω‖)2k, ω ∈ RN , is a bounded function,
N < 2k, C > 0, uβ(t) ∈ H1

(
[0, T ];Hk(Ω)

)
is a solution of problem (2.1) and

uM,◦ is an interpolant or projection of u◦ ∈ Hk(Ω), where u◦ is the initial
condition of problem (2.1) on VM , thus for any t ∈ [0, T ]

‖uβ(t)− uβ,M (t)‖L2(Ω) ≤eLthk
(
‖u◦‖Hk(Ω) + ‖uβ(t)‖Hk(Ω)

+

∫ t

0

‖∂uβ(s)

∂s
‖Hk(Ω)ds

)
.

Proof. We write the error in the quasi-linear parabolic problem (2.1) as a sum
of two terms,

eβ(t) = uβ(t)− uβ,M (t) = θ(t) + ρ(t),

where θ(t) = RβMu(t) − uβ,M (t), ρ(t) = uβ(t) − RβMu(t). The first term θ(t)
will be the main object of the analysis. In order to find an upper bound for
θ(t), we note that by our definition of uβ,M (t) and attention to (3.12)

(∂θ(t)
∂t

, φ
)
Ω

+ a
(
θ(t), φ

)
Ω

+ β
(
θ(t), φ

)
∂Ω
−
(
f(uβ(t))− f(uβ,M (t)), φ

)
Ω

=
(∂ρ(t)

∂t
, φ
)

+ a
(
ρ(t), φ

)
Ω

+ β
(
ρ(t), φ

)
∂Ω
−
(
f(uβ(t))− f(uβ,M (t)), φ

)
Ω

=
(∂ρ(t)

∂t
, φ
)
Ω
−
(
f(uβ(t))− f(uβ,M (t)), φ

)
Ω

(3.14)

for all φ ∈ VM . From (3.14) we have

(∂eβ(t)

∂t
, φ
)
Ω

+ a
(
eβ(t), φ

)
Ω

+ β
(
eβ(t), φ

)
∂Ω

=
(∂θ(t)
∂t

, φ
)
Ω

+ a
(
θ(t), φ

)
Ω

+ β
(
θ(t), φ

)
∂Ω

+ β
(
ρ(t), φ

)
∂Ω
−
(
f(uβ(t))− f(uβ,M (t)), φ

)
Ω

+
(∂ρ(t)

∂t
, φ
)

+ a
(
ρ(t), φ

)
Ω

=
(∂ρ(t)

∂t
, φ
)
Ω
−
(
f(uβ(t))− f(uβ,M (t)), φ

)
Ω
.

Because the variables are independent, we have used the easily established fact
that the operator RβM commutates with time differentiation. Since θ belongs
to VM , we may choose φ = θ and conclude(∂eβ(t)

∂t
, θ(t)

)
Ω

+ a
(
eβ(t), θ(t)

)
Ω

+ β
(
eβ(t), θ(t)

)
∂Ω

=
(∂ρ(t)

∂t
, θ(t)

)
Ω
−
(
f(uβ(t))− f(uβ,M (t)), θ(t)

)
Ω
.



Using Galerkin Method to Solve Quasi-Linear Parabolic Equations 329

Here the second term is nonnegative. Also by the locally Lipschitz of f , we
have

d

dt
‖eβ(t)‖Ω ≤ ‖

∂ρ(t)

∂t
‖Ω + L‖eβ(t)‖Ω

and integrating the above inequality over the interval [0, t], yields

‖eβ(t)‖Ω ≤ ‖eβ(0)‖Ω +

∫ t

0

‖∂ρ(s)

∂s
‖Ωds+ L

∫ t

0

‖eβ(s)‖Ωds.

From Grönwall’s lemma [6], Theorem 2 and the inequality (3.13), we can con-
clude

‖eβ(t)‖Ω ≤ C(n◦, t)
(
‖eβ(0)‖Ω + ‖ρ(t)‖Ω +

∫ t

0

‖∂ρ(s)

∂s
‖Ωds

)
≤ eLthk

(
‖u◦‖Hk(Ω) + ‖uβ(t)‖Hk(Ω) +

∫ t

0

‖∂uβ(s)

∂s
‖Hk(Ω)ds

)
.

ut

From the proof process of Theorem 2, we can result C(n◦, t) ≤ eLt where L is
the Lipschitz constant of f depending on the above bound of u. The following
theorem states the growth rate of convergence for reproducing kernel Hilbert
space method.

Theorem 3. Let Xn =
{
t1 = 0, t2, . . . , tn+1 = T

}
be a set of equally spaced

points in [0, T ] with the distance δt = T
n in between. Then, there exists C > 0

such that

‖WM
β,n −WM

β ‖L2
M [0,T ] ≤ Cδt2‖WM

β ‖H1
,

where L2
M [0, T ]=

M times︷ ︸︸ ︷
L2[0, T ]× · · ·×L2[0, T ] with the inner product (u,v)L2

M [0,T ] =∑M
i=1(ui, vi)L2[0,T ] that v = (v1, . . . , vM )t and u = (u1, . . . , uM )t.

Proof. We know that WM
β,n−1(tk) = WM

β (tk), for k = 1, 2, . . . , n and n =
1, 2, 3, . . ., using Theorem 5.5.4. of [13]. Further, by the Bessel-Fourier theo-
rem [19] we obtain

‖WM
β,n‖H1

≤ ‖WM
β ‖H1

. (3.15)

The proof can be completed by using inequality (3.15) and Theorem 1.1 of [12].
ut

We obtain an upper bound for ‖WM
β ‖H1

. One can obtain the solution of ODE
(2.4) as follows

WM
β (t) =

∫ t

0

e−C
−1
(
A+βB

)
(t−s)HM (s,WM

β (s))ds.
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Also we have

|WM
β (t)| ≤ |P|

∫ t

0

e−
(
D1+βD2

)
(t−s)|PtHM (s,WM

β (s))|ds

≤ |P|
∫ t

0

e−
(
D1+βD2

)
(t−s)

(
|PtC−1GM (s)|

+ |PtC−1||FM (WM
β (s) + UM◦,β)|+ |PtC−1

(
A + βB

)
UM◦,β |

)
ds

≤ |P|
∫ t

0

e−
(
D1+βD2

)
(t−s)

(
|PtC−1||GM (s)|+ |PtC−1||WM

β (s)|

+ |PtC−1||FM (UM◦,β)|+ |PtC−1
(
A + βB

)
||UM◦,β |

)
ds

= E ∗ |WM
β |(t) + E ∗ |GM |(t) + E

(
|
(
A + βB

)
||UM◦,β |+ |FM (UM◦,β)|

)
(t),

where E(t) = |P|
( ∫ t

0
e−
(
D1+βD2

)
s|PtC−1|ds

)
is an increasing bounded linear

operator, D1 and D2 are the positive diagonal matrices, and

Pe−
(
D1+βD2

)
(t−s)Pt = e−C

−1
(
A+βB

)
(t−s), where P is a unitary matrix and |.| is

absolute function on the vectors and matrices. By using Grönwall’s lemma, we
get

|WM
β (t)| ≤

(
I− E

)−1E(|(A + βB
)
||UM◦,β |+ |FM (UM◦,β)|

)
(t). (3.16)

By consistency of matrix norms, it can be shown that, for any integer number
n, there are two positive constants C1 and C2 such that ∀U ∈ H1∥∥E(|A + βB|U

)
‖(t) ≤

∫ t

0

(
C1e

−γ(t−s) + C2

)
‖U(s)‖ds, (3.17)

∥∥E(U)‖(t) ≤ ∫ t

0

(
C1e

−γ(t−s) + C2

)
‖U(s)‖ds. (3.18)

The following inequality is derived from (3.16), (3.17) and (3.18),

‖WM
β ‖H1≤C

(
‖UM◦,β‖+‖FM (UM◦,β)‖

)
≤ C

(
‖u◦‖L2(Ω)+‖f(u◦)‖L2(Ω)

)
. (3.19)

Let Φ̂(x) be a column vector of Φ(x− xi). We know that
uβ,M (t, x) = WM

β (t)tΦ̂(x) and unβ,M (t, x) = WM
β,n(t)tΦ̂(x). Then, by Theorem

10.22 of [23], there exists a C > 0 such that

‖uβ,M − unβ,M‖L2
(
[0,T ];Hk(Ω)

) ≤ C‖WM
β,n −WM

β ‖L2
M [0,T ]. (3.20)

The following theorem shows the relationship between the weak solution of
problem (1.1) and the approximate solution unβ,M .

Theorem 4. Let assumptions of Theorem 2 be established and, further, u and
unβ,M be the weak and approximate solutions of problems (1.1) and (2.1), re-
spectively. Then

‖u− unβ,M‖L2
(
[0,T ];L2(Ω)

) ≤ O(δt2 + hk + 1/
√
β
)
.
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Proof.

‖u− unβ,M‖L2
(
[0,T ];L2(Ω)

) ≤ ‖u−uβ‖
L2
(
[0,T ];L2(Ω)

)+‖uβ−uβ,M‖
L2
(
[0,T ];L2(Ω)

)
+ ‖uβ,M − unβ,M‖L2

(
[0,T ];L2(Ω)

) ≤ ‖u− uβ‖
L2
(
[0,T ];H1(Ω)

)
+ ‖uβ − uβ,M‖

L2
(
[0,T ];L2(Ω)

) + ‖uβ,M − unβ,M‖L2
(
[0,T ];L2(Ω)

).
The above bounds of ‖u− uβ‖

L2
(
[0,T ];H1(Ω)

) and ‖uβ,M − unβ,M‖L2
(
[0,T ];L2(Ω)

)
are determined by Theorems 1 and 3, respectively, and the inequality (3.20).
It is sufficient to obtain an upper bound for ‖uβ − uβ,M‖

L2
(
[0,T ];L2(Ω)

). By

Theorem 2 we find,

‖uβ(t)− uβ,M (t)‖L2(Ω) ≤eLthk
(
‖u◦‖Hk(Ω) + ‖uβ(t)‖Hk(Ω)

+

∫ t

0

‖∂uβ(s)

∂s
‖Hk(Ω)ds

)
,

from ( 1
n

∑n
i=1 ai)

2 ≤ 1
n

∑n
i=1 a

2
i and Cauchy-Schwartz inequality, we get

‖uβ(t)− uβ,M (t)‖2L2(Ω) ≤ 3e2Lth2k
(
‖u◦‖2Hk(Ω) + ‖uβ(t)‖2Hk(Ω)

+
( ∫ t

0

‖∂uβ(s)

∂s
‖Hk(Ω)ds

)2)
≤ 3e2Lth2k

(
‖u◦‖2Hk(Ω) + ‖uβ(t)‖2Hk(Ω) + t

∫ t

0

‖∂uβ(s)

∂s
‖2Hk(Ω)ds

)
≤ 3e2Lth2k

(
‖u◦‖2Hk(Ω) + ‖uβ(t)‖2Hk(Ω) + t‖∂uβ

∂t
‖2
L2
(
[0,T ];Hk(Ω)

)).
Integrating both sides of the above inequality over [0, T ] gives

‖uβ(t)− uβ,M (t)‖2
L2
(
[0,T ];L2(Ω)

) ≤ 3e2LTh2k
(
‖u◦‖2Hk(Ω) + ‖uβ‖2

L2
(
[0,T ];Hk(Ω)

)
+
T

2L
‖∂uβ
∂t
‖2
L2
(
[0,T ];Hk(Ω)

)) ≤ 3e2LTh2kC2
k(T, u◦, g),

where

Ck(T, u◦, g) =
√

3
(
‖u◦‖2Hk(Ω) +

CT 2

2L

(
‖g‖

Hk−1
(
[0,T];Hk−1(Ω)

)
+‖u◦‖Hk(Ω) + ‖f(u◦)‖Lr(Ω)

)2) 1
2

.

Thus we have

‖u−unβ,M‖L2
(
[0,T ];L2(Ω)

) ≤ eLT√
β
C(u◦, g) + Cδt2‖WM

β ‖H1
+ eLThkCk(T, u◦, g),

and from (3.19), we find

‖u− unβ,M‖L2
(
[0,T ];L2(Ω)

) ≤ eLT√
β
C(u◦, g) + Cδt2

(
‖u◦‖L2(Ω) + ‖f(u◦)‖L2(Ω)

)
+ eLThkCk(T, u◦, g)
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and briefly

‖u− unβ,M‖L2
(
[0,T ];L2(Ω)

) ≤ O(δt2 + hk +
1√
β

)
.

Now the proof is complete. ut

4 Numerical investigation

In this section, we present some numerical results and compare them with the
analytical solution to demonstrate the performance of the proposed method.
We also investigate the validity of Theorem 4, which is the main result of
this article, by considering the examples with different parameters. We solve
Equation (1.1) on various regions: a unit square, Ω◦ = [0, 1] × [0, 1], a tri-

angle, Ω1 =
{

(x, y) ∈ Ω◦

∣∣∣ x + y ≤ 1
}

, and a unit quadrilateral cir-

cle, Ω2 =
{

(x, y) ∈ Ω◦

∣∣∣ x2 + y2 ≤ 1
}

, with the final time T = 1 and

the solution ui(x, y, t) = e−t

2π

(
cos(π(x + y)) − cos(π(x − y)

)
wi(x, y) where

wi(x, y) =

 1, i = ◦,
1− (x+ y), i = 1,

1− (x2 + y2), i = 2,
for i = ◦, 1, 2, with f(u) = u2. We

apply our method to these problems for different values of the main param-
eters Nx = {n2 s.t. n = 10, . . . , 20}, Nt = {10n s.t. n = 1, . . . , 10} and
β = {10n s.t. n = 2 : 0.5 : 6}. In implementing the method, we use some
equally spaced points both for time and spatial variables with δt ∝ 1

Nt
and

h ∝ 1√
Nx

.
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Figure 1. The domain Ω and distribution of points.

The location of central nodes in the regions of the test problems are shown in
Figure 1. The Galerkin method is used with the radial basis function φ(r, c) =
(1− r

c )4+(4 rc + 1), c = 0.7. To measure the error of the numerical solution, the
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relative least square error (r.l.s.e) is used based on the following definition:

r.l.s.e =

√√√√√√
∑Nx
i=1

(
uh,δt,β(xi, yi, T )− u(xi, yi, T )

)2
∑Nx
i=1

((
∂2

∂x2 + ∂2

∂y2 + 2 ∂2

∂x∂y

)
u(xi, yi, T )

)2 ,
where uh,δt,β denotes the numerical solution when selecting the parameters h,
δt and β.

Figure 2. Comparing between the theoretical prediction (red curves) and numerical
errors (blue curves).

The numerical errors for the unit square are shown in Figure 2 in three parts
each showing the effect of one parameter, h, δt, or β on the r.l.s.e using log-log
plot. The red charts in each part of the Figure demonstrate the predictions of
the error via the theoretical results, and the blue curves denote the error based
on the observed numerical results. Figure 2a indicates the graph of the r.l.s.e
against the ratio of the spatial parameter h over the initial value h1 while Figure
2b and c, respectively, show the error values with respect to the time and the
auxiliary parameter β with the initial values δt1 and β1. Also, Figure 2a and
b show that the numerical results are in a good agreement with the theoretical
conclusion. In Figure 2a, the r.l.s.e is plotted against the spatial parameter
h/h1 with constant values of the other parameters β = 106, δt = 0.01 and
the same plot is shown in Figure 2b for the time parameter δt/δt1 with the
parameter values β = 106, h = 1

40 . Also in Figure 2c δt = 0.01, h = 1
40 . As is

observed, by decreasing the parameters h and δt the accuracy is increased which
confirms the theoretical results. But in the implementation of our method, the
condition numbers of the stiff and mass matrices are growing up as h is declining
and this causes serious computational challenges for spatial discretization (
see [17,18]). Since the closeness of the time trial points leads to the correlated
basis functions of the produced RKHS method, the practical use of this method
increases the error of calculating the Gram-Smith coefficients. Figure 2c shows
the relationship between the auxiliary parameter β and r.l.s.e. We observe
that the convergence rate is faster than the theoretical prediction. The green
curve is a linear regression curve made by the r.l.s.e values excluding the last
two error values which are farther from the others. This curve shows that
the computational results may be more accurate than that of the theoretical
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expectation. It turns out that the error analysis stated in this article can be
improved with respect to the parameter β (see [10]). The numerical errors
shown in parts b and c are dominated by the mixed errors produced by two
other parameters. By Theorem 4, we can guess the behavior of the upper
bound of r.l.s.e. This analysis will be mentioned in details in the conclusion
section.

A similar discussion can be made for the other regions but we do not present
it in here. Some more results computed for different parameters h, β and
δt = 0.01 are given in Tables 1 and 2 with uniform and non-uniform grid
points, respectively. The accuracy of numerical results is apparently increasing
when the boundary is smooth.

We construct the non-uniform grid points as xi = Xi + di cos(αi) and
yi = Yi + di sin(αi) where the point (Xi, Yi) is the i−th point in the uniform
grid points, di and αi are stochastic variables whose probability distribution
are discrete uniform distribution with their support set [0, 1

π2 ] and [0, 2π], re-
spectively.

Table 1. Comparing − log10(r.l.s.e) errors for δt = 0.01 by different parameters β and h
for uniform gird points and different domains.

Region h = 0.1 h = 0.05
log10 β = 3 4 5 6 log10 β = 3 4 5 6

Ω◦ 1.05 1.69 1.87 2.26 1.90 2.23 2.95 3.21
Ω1 1.00 1.55 1.88 2.41 2.01 2.37 3.08 3.39
Ω2 1.56 1.99 2.56 3.07 2.54 2.96 3.69 4.18

Table 2. Comparing − log10(r.l.s.e) errors for δt = 0.01 by different parameters β and h
for non-uniform gird points and different domains.

Region h = 0.1 h = 0.05
log10 β = 3 4 5 6 log10 β = 3 4 5 6

Ω◦ 0.99 1.51 1.67 1.98 1.75 2.03 2.06 2.89
Ω1 0.91 1.53 1.69 2.19 2.00 2.35 2.95 3.21
Ω2 1.33 1.86 2.44 2.97 2.33 2.56 3.41 3.81

5 Conclusions

A mixed method of meshless Galerkin radial basis functions and reproducing
kernel Hilbert space methods was proposed in this work. Also, the stability of
the solution for the underlying problem was signified in the Lp, Sobolev and
Hölder spaces. In addition, the uniqueness and boundedness of the solution
were considered. An auxiliary problem with Neumann boundary condition,
related to the main problem, was obtained using a parametrization technique,
and this boundary condition was imposed on the weak form of the problem
(2.1). Moreover, we showed that the weak solution of the auxiliary problem
converges to the weak solution of the main problem as β →∞. An approximate
solution was obtained for the auxiliary problem using the Galerkin method for
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spatial variables. We theoretically demonstrated that the new method was
more accurate than the other meshless methods.
The reproducing kernel Hilbert space method was employed to compute a se-
quence of approximate solutions for the system of nonlinear ordinary differential
equations applying the Galerkin method to the auxiliary problem.
It seems that the new method has the advantages of both methods. The ap-
proximate solution has the main properties of the Galerkin method based on
the radial basis functions and also it is independent from the dimension of the
problem. A convergence growth rate of O

(
δt2 + hk + 1√

β

)
was shown for the

method . Finally, it turns out that if 1√
β
≤ O(δt2 + hk), then the convergence

depends only on the spatial-time approximation method without any depen-
dence on the auxiliary parameter which seems to be a general property for any
spatial-time discretization method.
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