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Abstract. In this paper we obtain some new explicit results for nonlinear equations
involving Laguerre derivatives in space and/or in time. In particular, by using the
invariant subspace method, we have many interesting cases admitting exact solutions
in terms of Laguerre functions. Nonlinear diffusive-type and telegraph-type equa-
tions are considered and also the space and time-fractional counterpart are analyzed,
involving Caputo or Prabhakar-type derivatives. The main aim of this paper is to
point out that it is possible to construct many new interesting examples of nonlinear
diffusive equations with variable coefficients admitting exact solutions in terms of
Laguerre and Mittag-Leffler functions.
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1 Introduction and preliminaries

In this note we apply the invariant subspace method [5] to solve nonlinear
partial differential equations involving space and/or time Laguerre derivatives
of first order

DL :=
d

dx
x
d

dx
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and n-order

DnL :=
d

dx
x
d

dx
x . . . x

d

dx
, (1.1)

that is the first order derivative applied to n-times the operator x d
dx .

It is well-known that a wide class of nonlinear partial differential equations
admits a solution by separating variables in spaces generated by exponential,
trigoniometric, hyperbolic and polynomial functions, according to the general
theory developed by V. Galaktionov and S. Svirshchevskii in [5]. Here we con-
sider some nonlinear equations with variable coefficients that admit solutions
in terms of Laguerre (or Tricomi) functions and we will try to explain their pos-
sible meaning and utility in physics. Laguerre derivatives have been studied by
different authors from the mathematical point of view (e.g. [4]) and for relevant
applications. For example, in [1] population dynamics models have been stud-
ied by applying Laguerre derivatives. More recently, for example in [18], the
applications of Laguerre derivatives in space have been studied in the context
of heat propagation models. On the other hand, from the mathematical point
of view, the role of Laguerre derivatives in the framework of the so called mono-
miality principle has been pointed out for example in [3]. Nonlinear equations
involving Laguerre derivatives was not considered previously and the aim of
this paper is to show that there are wide classes of nonlinear PDEs (also in-
volging fractional derivatives) involving Laguerre derivatives that admit exact
solutions. Many of these equations can be seen as a generalization of classical
nonlinear models. This can be a starting point to understand the possible role
of Laguerre derivatives in nonlinear models.

We first recall (see e.g. [3, 4]) that the so-called Laguerre-exponential func-
tion or Tricomi function

C0(−x) =

∞∑
k=0

(−x)k

(k!)2

is an eigenfunction of the Laguerre derivative, i.e.(
d

dx
x
d

dx

)
C0(−λx) = −λC0(−λx).

Dattoli and Ricci in [4] considered L-circular and L-hyperbolic functions asso-
ciated to the Tricomi function C0(−x). For example, the so-called L-circular
functions are

cos1(−x) =

∞∑
k=0

(−1)k
x2k

((2k)!)2
, sin1(−x) =

∞∑
k=0

(−1)k
x2k+1

((2k + 1)!)2
.

Dattoli and Ricci in the same paper showed that the last trigonometric func-
tions cos1(−x) and sin1(−x) are solutions of the classical harmonic equation of
second order with Laguerre derivative:

(D2
L)u+ u = 0, (1.2)

where D2
L = ∂2

∂x2x
2 ∂2

∂x2 .
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Moreover, the function

C1(−x) =

∞∑
k=0

(−x)k

(k!)3

is an eigenfunction of the Laguerre derivative of second order, i.e.(
d2

dx2
x2

d2

dx2

)
C1(−λx) = −λC1(−λx).

More generally it is possible to prove that

Cn(−x) =

∞∑
k=0

(−x)k

(k!)n+2
(1.3)

solves the equation
DnLf(x) = −f(x). (1.4)

In this paper we consider a number of exact results about nonlinear diffusive-
type equations involving Laguerre derivatives. The solutions are obtained in a
separating variable form by using the invariant subspace method or by gener-
alized separating variable method. We also obtain some exact results for the
space or time-fractional counterpart of these interesting equations involving
Caputo or Prabhakar derivatives (see e.g. [6, 12] and the references therein).

2 The invariant subspace method

The invariant subspace method was introduced by Galaktionov and Svirschevs-
kii in order to find exact explicit solutions for nonlinear partial differential
equations, we refer in particular to [5] for a full treatment. Starting from a re-
cent paper by Gazizov and Kasatkin [7], many papers have been devoted to the
application of this method to find particular interesting classes of solutions also
for fractional PDEs. We refer for example to the recent papers [10, 13, 15, 17].
Indeed, there are few exact results regarding nonlinear fractional models that
are motivated by different applications. The invariant subspace method is play-
ing a central role to find new results for nonlinear physical models with memory
or nonlocality that can be useful to better understand the main differences from
the known classical models.

We here recall the main idea of this method. Let us consider for example a
scalar evolution equation

∂u

∂t
= F

[
u,
∂u

∂x
, . . .

]
, (2.1)

where u = u(x, t) and F [·] is a nonlinear differential operator. Given n linearly
independent functions f1(x), f2(x), . . . , fn(x) we call Wn the n-dimensional lin-
ear space Wn = 〈f1(x), . . . , fn(x)〉. This space is called invariant under the
given operator F [u], if F [y] ∈Wn for any y ∈Wn. This means that there exist
n functions Φ1, Φ2, . . . , Φn such that

F [C1f1(x)+ . . . Cnfn(x)]=Φ1(C1, . . . , Cn)f1(x) + . . .+ Φn(C1, . . . , Cn)fn(x),
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where C1, C2, . . . , Cn are arbitrary constants. Once the set of functions fi(x)
that form the invariant subspace has been determined, we can search an exact
solution of (2.1) in the invariant subspace in the form u(x, t) =

∑n
i=1 ui(t)fi(x),

where fi(x) ∈Wn. In this way, we arrive to a system of ODEs. In many cases,
this problem is simpler than the original one and allows to find exact solutions
by just separating variables [5]. We refer to the monograph [5] for further
details and applications of this method.

It is not the aim of this paper to give a complete classification of the possible
solutions that can be obtained by means of the invariant subspace method. Here
we are going to study the solutions belonging to Laguerre exponential-invariant
subspaces since we would like to understand the utility and applications of the
known results regarding Laguerre derivatives in the context of nonlinear PDEs
(also of fractional order). This choice is also motivated by the fact that these
solutions are, in our view, the most interesting, in view of the central role
played by L-functions to obtain meaningful mathematical results.

3 Nonlinear Laguerre-type diffusion equations

The following result plays a key-role in the construction of Laguerre-type in-
variant subspaces for nonlinear diffusion equations.

Theorem 1. The nonlinear Laguerre-type diffusion equation with quadratic ab-
sorption term

∂u

∂t
+ u

∂

∂x
x
∂u

∂x
= −u2 (3.1)

admits a solution in the invariant subspace W2 : 〈1, C0(−x)〉 of the form

u(x, t) =
[1 + C0(−x)]

(t0 + t)
, t0 > 0.

Proof. Equation (3.1) can be written as

∂u

∂t
= F

[
u,
∂u

∂x
,
∂2u

∂x2

]
,

where

F
[
u,
∂u

∂x
,
∂2u

∂x2

]
:= −u ∂

∂x
x
∂u

∂x
− u2.

Since F [c1 + c2C0(−x)] = −c21 − c1c2C0(−x), the equation (3.1) admits the
invariant subspace W2 : 〈1, C0(−x)〉 and therefore we can find a solution by
separating variable of the form

u(x, t) = a(t) + b(t)C0(−x). (3.2)

In order to find the explicit form of a(t) and b(t), substituting (3.2) in (3.1) we
obtain the system of nonlinear coupled ODEs

ȧ = −a2, ḃ = −ab,
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and we finally obtain the claimed result. ut

Regarding the physical meaning of the considered equation (3.1), we can ob-
serve that it coincides with a nonlinear diffusive equation involving an advective
term, a quadratic absorption term and a nonlinear diffusive term, belonging to
the more general class of equations

∂u

∂t
+ u

∂u

∂x
+ k(x, u)

∂2u

∂x2
= −u2,

where k(x, u) = xu.

Remark 1. Since the function (1.3) solves the equation (1.4), by using similar
methods we can treat also the higher order nonlinear diffusive equation

∂u

∂t
+ u∂Ln,xu = −u2, (3.3)

where ∂Ln,x is the n-order Laguerre partial derivative (1.1) with respect to the
x-variable. In this case we have that the higher order nonlinear equation (3.3)
is solved by

u(x, t) =
[1 + Cn(−x)]

(t0 + t)
, t0 > 0.

In a similar way we can treat a wide family of nonlinear PDEs that admit
solutions in the Laguerre-invariant subspace.

Remark 2. By using (1.2), it is possible to prove that the nonlinear equation

∂u

∂t
+ u

∂2

∂x2
x2

∂2

∂x2
u = −u2

admits a solution, given by

u(x, t) =
[c1 cos1(x) + c2 sin1(x)]

(t0 + t)
, t0 > 0,

where c1 and c2 are arbitrary constants.

3.1 The time-fractional case

In the recent literature, many studies have been devoted to the analysis of non-
linear space or time-fractional nonlinear equations by means of the invariant
subspace method and the Lie group method (see for example [2, 7, 11,14]).
Here we consider nonlinear fractional equations involving Laguerre derivatives.
This is a new interesting topic, since Laguerre derivatives introduce space or
time-dependent coefficients in the nonlinear fractional equations that are gen-
erally not trivially solvable. We will use fractional derivatives in the sense of
Caputo and in the sense of Prabhakar. This choice is essentially motivated by
the central role played by these approaches in the theory of fractional calculus
and its applications (see e.g. [12] and [16]). Obviously some of these results can
be generalized in a simple way to other models involving Hadamard derivatives
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or tempered derivatives.
We first recall that the Caputo fractional derivative of order ν ∈ (0, 1) is defined
as

Dν
t f(t) =

1

Γ (1− ν)

∫ t

0

(t− τ)−ν
df

dτ
dτ.

Moreover, in the fractional calculus theory, a key role is played by the one-
parameter Mittag-Leffler function

Eν(λt) =

∞∑
k=0

(λt)k

Γ (νk + 1)
,

since it is an eigenfunction of the Caputo derivative, i.e.

Dν
t Eν(−λtν) = −λEν(λtν).

Recently, also the regularized Prabhakar derivative (see [6] and [16] for a full
discussion) has gained a relevant interest in the literature in view of its physical
applications. It is defined as

CDγ
ρ,µ,λ;0f(t) = E−γρ,m−µ,λ;0

(
dm

dtm
f

)
(t), (3.4)

where m = dµe,

Eγρ,µ,λ;af(t) =

∫ t

0

(t− y)µ−1Eγρ,µ [λ(t− y)ρ] f(y)dy

is the Prabhakar fractional integral and

Eγρ,µ(t) =
1

Γ (γ)

∞∑
k=0

Γ (γ + k)tk

k!Γ (ρk + µ)

is the three-parameter Mittag-Leffler function. We refer to the monograph
[9] for a complete reference about Mittag-Leffler function. Observe that the
Prabhakar derivative (3.4) is a generalization of the Caputo derivative that is
included as a special case for γ = 0. Hereafter, we will consider in the following
Theorems Prabhakar derivatives with γ, ρ > 0 and µ ∈ (0, 1). The more general
case can be simply derived by using the results reported in Section 5 of the
recent review paper on this topic [8].

It is possible to prove (by Laplace transform method) that a solution to the
equation

CDγ
ρ,µ,−λ;0+f(t) = −f(t) (3.5)

is given by

f(t) =

∞∑
k=0

(−tµ)kEγkρ,µk+1(−λtρ).

In analogy with the previous section, we can state the following
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Theorem 2. The nonlinear Laguerre-type diffusion equation with quadratic
sink term

∂ν

∂tν
u+ u

∂

∂x
x
∂u

∂x
= −u2

admits a solution in the invariant subspace W2 : 〈1, C0(−x)〉 of the form

u(x, t) = − Γ (1− ν)

Γ (1− 2ν)

[1 + C0(−x)]

tν
, t > 0, ν ∈ (0, 1) \ {1/2}. (3.6)

Observe that we exclude the value ν = 1/2 due to the divergence of the Gamma
function appearing in the solution. Moreover, the sign of the solution depends
by ν because to the Gamma coefficients appearing in (3.6).

Theorem 3. The fractional nonlinear PDE with regularized Prabhakar time
derivative

CDγ
ρ,µ,−φ;tu(x, t) + u∂Ln,xu = −u2 − u (3.7)

admits a solution of the form

u(x, t) = Cn(−x) ·
∞∑
k=0

(−tµ)kEγkρ,µk+1(−λtρ).

In (3.7), we denoted by CDγ
ρ,µ,−φ;t the Prabhakar fractional partial deriva-

tive w.r.t. the t-variable.

Proof. By (1.3) and (1.4) we can find a solution in separating variable form
u(x, t) = Cn(−x)f(t) and by substituting f(t) we have to solve equation (3.5),
whose solution is given by (see [6])

f(t) =

∞∑
k=0

(−tµ)kEγkρ,µk+1(−λtρ).

ut

Theorem 4. The fractional PDE with Prabhakar time derivative and Caputo
space derivative of order β ∈ (0, 1) for x ≥ 0

CDγ
ρ,µ,−λ;tu(x, t) + u

∂β

∂xβ
u(x, t) = −u2 − u

admits a solution of the form

u(x, t) = Eβ(−xβ) ·
∞∑
k=0

(−tµ)kEγkρ,µk+1(−λtρ).

Proof. Since the function

Eβ(−xβ) =

∞∑
k=0

(−xβ)k

Γ (βk + 1)
,

solves the equation
∂β

∂xβ
h(x) = −h(x),

we obtain the claimed result by direct calculations. ut
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4 Nonlinear diffusive equations involving Laguerre time-
derivatives

We now consider the following nonlinear diffusive-type equation involving La-
guerre time-derivatives

∂

∂t
t
∂

∂t
u =

∂

∂x
uγ
∂u

∂x
− λu, γ > 0. (4.1)

The appearence of Laguerre derivatives in time lead to a telegraph-type equa-
tion with a non-linear diffusive term, suggesting the physical meaning of such
equation. We have the following particular result

Theorem 5. The nonlinear diffusive-type equation (4.1) admits a solution of
the form

u(x, t) = C0(−λt) · (x+ c)
1

1+γ ,

where c is a real constant.

Proof. We first observe that the function g(x) =
[
(x+ c)

1
1+γ

]
is such that

∂

∂x
gγ
∂g

∂x
= 0.

Therefore we can find a solution in separating variable form u(x, t) = g(x)f(t)
and by substitution f(t) must solve

∂

∂t
t
∂

∂t
f(t) = −λf(t)

as claimed. ut

Example 1. The nonlinear PDE

u
∂2

∂t2
t2
∂2

∂t2
u =

∂

∂x
uγ
∂u

∂x
− u2, γ > 0

has a solution of the form

u(x, t) = (c1 cos1 t+ c2 sin1 t) · (x+ c)
1

1+γ ,

where c1 and c2 are arbitrary constants.

Example 2. A nonlinear PDE

∂2

∂t2
t2
∂2

∂t2
u = u

∂2

∂x2
x2

∂2

∂x2
u− u+ u2

has a solution of the form

u(x, t) = (c1 cos1 t+ c2 sin1 t) (c3 cos1 x+ c4 sin1 x) ,

where c1, c2, c3 and c4 are arbitrary constants.
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Example 3. The nonlinear Laguerre type PDE

∂

∂x
x
∂

∂x
u = u

∂

∂t
t
∂

∂t
u− λu+ νu2

admits a solution of the form

u(x, t) = C0(−λx) · C0(−νt).

We finally consider a multidimensional extension of the previous results
about nonlinear diffusive equations involving Laguerre time-derivatives by em-
ploying the previous results, we have the following result

Theorem 6. The equation

∂

∂t
t
∂

∂t
u =

n∑
i=1

∂

∂xi
uγi

∂u

∂xi
− λu, λ ∈ R, γi > 0

admits a solution of the form

u(x1, x2, . . . , xn, t) = C0(−λt) ·
n∏
i=1

(xi + ci)
1

1+γi ,

where ci, i=1,2,. . . ,n are arbitrary real constants.
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