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Abstract. Solutions of nonhomogeneous systems of linear differential equations
with multiple constant delays are explicitly stated without a commutativity assump-
tion on the matrix coefficients. In comparison to recent results, the new formulas are
not inductively built, but depend on a sum of noncommutative products in the case
of constant coefficients, or on a sum of iterated integrals in the case of time-dependent
coefficients. This approach has a potential to be more suitable for applications. Rep-
resentation of a solution of a Cauchy problem for a system of higher order delay
differential equations is also given.
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1 Introduction

Explicit representation of solutions of systems of delay differential equations
(DDEs) with constant delays and linear parts given by pairwise permutable
constant matrices was first stated in [11] motivated by a pioneering work [6] on
DDEs with one constant delay. Analogous problem with variable delays and
time-dependent matrix coefficients without the commutativity assumption was
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studied in [15] and later in [13]. In all these cases, a variation of constants
formula for DDEs (see e.g. [3]) was repeatedly used to construct a fundamental
solution of the corresponding matrix DDE. Therefore, it was expressed using
the fundamental solution of an equation with one less delay, i.e., it was built
inductively. In the particular case of constant coeflicients, the fundamental
solution had a form of a matrix polynomial of a degree depending on time.
This approach is suitable for theoretical problems, such as existence, stability,
controllability, etc. (see [8,9,11,13,14,15,20]). To obtain a representation of a
solution, which would be more suitable for applications, Laplace transform was
applied in [16] to an initial function problem consisting of a system of DDEs
with constant delays and linear parts given by pairwise permutable constants
matrices,

z(t) = Ax(t) + Biz(t — 1)+ -+ Bpa(t — 1) + f(t), t >0, (1.1)
and an initial condition
(,O(t), te [77_.70] (12)

for 7 := max{7y, 72, ..., 7, }. In this paper, we drop the commutativity assump-
tion and derive an analogous result for time-dependent matrix functions A, By,
..., Bn. Of course, the Laplace transform can not be used if the matrices vary
within time. Furthermore, we apply the obtained results to a system of nth
order DDEs. We also consider particular cases to show the agreement with
known results.

We remark that in [10], a similar problem (representation of solutions with-
out the commutativity assumption) was studied for difference equations. Rep-
resentation of solutions of systems of linear difference equations with one delay
was first presented in [4], and later in [12] the case of multiple delays and
pairwise permutable matrix coefficients was investigated.

The paper is organized as follows. In the following section, using a particular
sum of noncommutative matrix products and unilateral Laplace transform, we
derive representation of a solution of a DDE with constant coefficients. In
Section 3, we define a sum of iterated integrals and prove an analogous result
for DDEs with time-dependent coefficients. In Section 4, we consider a DDE
of higher order and derive a representation of a solution for the corresponding
Cauchy problem. In the final section, we provide a short conclusion of the
paper as well as a discussion.

In the whole paper, we shall denote | - | the norm of a vector without any
respect to its dimension. The same notation will be used for the correspond-
ing vector induced matrix norm. Further, 9y denotes the linear space of all
N x N constant matrices, N and Ny denote the set of all positive and non-
negative integers, respectively. We also assume the property of an empty sum,
> icp 2(1) = 0 for any function z. We shall use the symbol ] to denote the
noncommutative product of matrices, i.e., [[;, B; = B1Bs... B, for matrices
By, ..., B,. Finally, 8, © and I will stand for the zero vector, the zero matrix
and the identity matrix of a suitable dimension, respectively.
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2 Constant coefficients

In this section, we extend a result from [16] on a representation of a solution
of a Cauchy problem for equation (1.1) to the case without the commutativity
assumption.

First, we recall the result.

Theorem 1 [16, Theorem 3.3]. Let n € N, 0 < 71,...,7, € R, 7 :=
max{T,T2,...,Tnt, 4, B1,...,Bn € My be pairwise permutable, i.e., AB; =
B;A and B;B; = B;B; for each i,j = 1,...,n, ¢ € C([-7,0,,RY), and
f:[0,00) = RY be a given function. Then the solution of the Cauchy problem
(1.1), (1.2) has the form

o(t), —7<t<0,
z(t) = ¢ A(t)e(0) + Z?l 5 Jy At = s)p(s — ;) ds
+ fo (t —s)f(s)ds, 0<t,
where
_ LAt t=>r_, km
At) =e Z o H o
:Ln:I km'rmgt m=1
klw-,anO
for anyt € R, and Em = B,,e 4™ for eachm=1,...,n.

In the general case, the product of matrices Em will depend on their order.
Therefore, we introduce a sum of all different products of (in general non-
permutable) matrices from a given set. Here the different products mean
products of the same factors but in different orders. More precisely, let D =
(D1,...,Dy) € MR and o = (o, ..., o) € N be a multiindex of the length
|| = a1 + -+ - + o, and the factorial a! = aq!. .. a,!. Denote

re=(1,...,1,2,...,2,...,n,...,n) € NI° (2.1)

for |a] > 0. As usually, T is the ith coordinate of the vector 7. Define

|ov]
D
> HDT:U), la| >0, PG...0p =1 (2.2)
cesTsi=1
where the sum is taken over all permutations of the set {1,...,|a|} such that

ifo,me Sﬁ;T are two distinct permutations, i.e., o # 7w (as vectors), then

(Tf(l)wuarfua\)) # (T:(l)a"'vTr?(\aD) :
To illustrate P we provide the following simple examples.

Ezxample 1. Let D = A € My, a = 3. Then T = (1,1,1) and S‘ﬁ has only
one element. Hence, PD A3,

Math. Model. Anal., 25(2):303-322, 2020.
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Ezample 2. Let D = (A, B) € M%,, a = (2,3). Then T = (1,1,2,2,2) and
81;& has exactly 2% = 10 elements, as the number of all permutations of a set
o# éve elements, two and three of which are of the same type. Consequently,

PP =A?B? + ABAB? + AB>AB + AB*A + BA*B?
+ BABAB + BAB?A+ B2A?B + B?ABA + B3A2.
Note that if AB = BA, then PP = 104%B3.

Remark 1. Let || > 0. If Dy, ..., D, are pairwise permutable, i.e., D;D; =
D;D; for each i,j =1,...,n, then
la n
— a; re
HDTfu) - HDi , Voe S\al
i=1 i=1

and the right-hand side does not depend on the order of D;s. Therefore,

The following examples show particular applications of PL.
Example 3. Let A, B € M. Then
_ A,B) _ p(A.B) (A,B) (A,B) (A,B)
(A+B)* = Z PP = Py T Pory TPas T Pos
a€NZ |a|=3
= (A%) + (A’B + ABA+ BA?) + (AB? + BAB + B*A) + (B).
Ezample 4. Let D = (A, A) € MZ%,. Then T = (1,2),

Pin= 2. DrowDran= >,  Ad=24
oe{(1,2),(2,1)} ce{(1,2),(2,1)}

Consequently,
(A+ A)? =PH oy +PE 1y +PRay = 447,
which is clearly correct.

Now, we can prove the following result on a representation of a solution of
the initial function problem consisting of

.Z‘(t) :le(t_Tl)+"'+an(t_7-n)+f(t)7 t>0, (23)
and initial condition (1.2).

Theorem 2. Let neN, 0<ry,...,7€R, T:=max{7,72,..., T}, B1,...,Bn€
My, p € C([-7,0],RY), and f: [0,00) — RY be a given exponentially bounded
function. Then the solution of the Cauchy problem (2.3), (1.2) has the form

(1), —7 <t <0,
() = { Bt)p(0) + X0_, [y Bt — 5)Bjp(s — 1) ds (2.4)
+ [y B(t— s)f(s) ds, 0<t,
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where ol
t— > oum)®
Bty= Y ( Zm'a )" pi (2.5)
aeNy |a|
iy aimi<t

for any t € R, P is given by (2.2) and B = (By,...,By).

Proof. First, we show that x is exponentially bounded. Let ¢y, cs > 0 be such
that | f(t)| < c1e®! for all ¢ > 0. By (2.3),

(0] < le0)] + [ Z|Bj||x<s—rj>|ds+/0 1)l ds
<p+ [ Z\an )l ds+ et

for all t > 0, where ¥ = max;c[_z ) |©(t)|. Denote g(t) the right-hand side of
the above inequality. Clearly, g is a nondecreasing positive function. Note that

|[z(s —75)] < Jnax, lz(s = 7)| < pax |z()]
= o { ame [of6)], ma of6)] b = max(p. ()} = 905
GE[—7,0] s€[0,s]

for any s € [0,¢] and each 5 =1,...,n. So we obtain
c - ¢
o) <7+ Lt £} |Bj|/ g(s)ds, vt >0.
C2 = 0

Using Gronwall inequality we derive

lz(t)] < g(t) < <<,0+ 1 02t) e2i=11Bilt < <<,0+ Cl) elea+ iy 1B51)t

C2 C2

for all ¢ > 0.
Now, we are able to apply the unilateral Laplace transform [17] defined as

C{R(0)}(p) = / o) di

for Rep > a and an exponentially bounded function h such that |h(t)| < ce®
for all t > 0 and some constants a,c € R. The rest of the proof is analogous to
the proof of [16, Theorem 3.1], so we skip some details. Using the properties
of the Laplace transform, from (2.3) we get

(pHZBe ™ )£} ) = ZB {0t = 7)}p) + £} (),

j=1

where

Math. Model. Anal., 25(2):303-322, 2020.
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Now, if p satisfies |Z?:1 Bje™PTi| < p, then the matrix I — > Bje;wj is
invertible (see e.g. [18, Proposition 7.5]). Clearly, it holds for any p sufficiently
large. Moreover, since

R )

j=1 k=0 \j=1 P

[es} —py
>y ey
k=0

» L=k aeNy

k2
Q1,0 >0

e P 2= 95T
PB
plel a?

assuming that p is so large that the above Laplace images exist, we obtain

x(t)=Ao+ Y Aj+A; t>0,
j=1

a€eNy
A= 3 e S PRI | O

X(t) = {0’ <0 (2.6)

1, t>0,

it is easy to see that
r (t _ )\)K—lx(t _ )\) (p) _ /OO (t _ )\)H—le—Pt U
(k= 1)! A (k—1)!
(k=1 J, (k— 1)!pr "

forall p > 0, A > 0, K € N, where I' is the Euler gamma function [7]. Using
the uniqueness of the inverse of Laplace transform, we have

2.7)

=30 )yt =30
AO _ Z ( Zz—l )|a|'( Z =1 ) 'Pfgo(()) — B(t)g&(O)
aeNy ’
Next, by convolution theorem for Laplace transform [17, Theorem 2.39] and
(2.7), we obtain for each j =1,...,n,

Pt—s— 20 oum) oyt —s — 30 oy

!

a€eNy
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t min{¢,7;}
:/ B(t — s)Bjy(s — ;) ds :/ B(t — s)Bjp(s —7;)ds
0 0

:/OTj B(t — s)Bjp(s — ;) ds.

Here the last equality follows from B(t) = © whenever ¢ < 0 due to the empty
sum property. Analogously to A;, we derive

—s— eyt — g — S .
Af—Z/ (t—s— i cim)®Ix(t = lelo‘m)?ff(s)ds

!
aeNy

:/ B(t—s)f(s)ds
0

This completes the proof. O

The above proof provides a construction of the solution of (2.3), (1.2). Never-
theless, the obtained formula holds in a more general case:

Corollary 1. Theorem 2 remains valid if the function f is not exponentially
bounded.

Proof. Considering equation (2.3) as a matrix equation with f = © and an

initial condition
6, tel|-7,0),
olt) = { =7.0) 23)

one can see that B of (2.5) is a matrix solution of this equation and the initial
condition, i.e.,

B(t)=BiB(t—711)+---+ BBt —7,), t>0

considering the right-hand derivative at t = 0, and

Direct differentiation of (2.4) for ¢ > 0 along with the just shown properties of
B prove the statement (for details see [16, Corollary 3.2]). O

Now, we involve the linear nondelayed term.

Theorem 3. Letn € N, 0 < 1q,...,7, € R, 7 := max{m,72,...,7n}, A, B1,

., Bn € My be such that A commutes with each B;, i.e., AB; = B;A for
eachi=1,...,n, ¢ € O([-7,0,RN), and f: [0,00) — RY be a given function.
Then the solution of the Cauchy problem (1.1), (1.2) has the form

(1), —7 <t <0,
z(t) = ¢ B(t)e (0) + 3250 S’ B(t — s)Bjp(s — ;) ds
+ 7 B(t — s)f(s) ds, 0<t,

Math. Model. Anal., 25(2):303-322, 2020.
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where ol
: (=5, ) g
B(t) = e =1 P
o
i i<t
for any t € R, PP is given by (2.2), B = (By,...,B,) and By, = Bpe 4™
for each m =1,...,n.

Proof. Let us set y(t) = e~4x(t). Then y satisfies an initial value problem
of the form (2.3), (1.2), and Theorem 2 can be applied. Then the statement is
obtained when one returns to z (for the details see [16, Theorem 3.3]). O

Remark 2. 1. If we further suppose that all the matrices B; are pairwise
permutable, as it was in Theorem 1, then so are the matrices B;. Hence, by
Remark 1 we have

~ (t— Z ;Ti)
B(t)=et Y = H By
a€eNy
i i<t

So, Theorem 3 coincides with Theorem 1.
2. To better see the effect of A in B we can use

||

735 = Z HB Tl = Z HB T3 e_ATyg(i)

cestT -1 oesTe i=1
la|
_ efA Z] 1 QT H B _ e—A Do Ty rPB
E re a
ceSTY ()

le

for |a] > 0 to write

21 (t*Z 104171)‘ ol QA= " ;1) B
B(t) = Z al (=i @) pB
a€eNy ’
Doiy o<t

3. The assumption AB; = B;A for each i = 1,...,n in the above theorem
was needed for y to satisfy the equation of the form (2.3). Otherwise, we would
not be able to apply Theorem 2. A result without this assumption will be
proved in the next section (see Corollary 2).

3 Time-dependent coefficients

In this section, we allow the matrix coefficients to vary in time and we derive
formulas for solutions of the corresponding initial function problems.

We start by defining sums of iterated integrals of all different products of
(in general nonpermutable) matrix functions from a given set. Let D = D(t) =
(D1(t),...,Dn(t)) be a vector of continuous matrix functions, 7* be given by



DDEs with Nonpermutable Nonconstant Coefficients 311

(2.1) for a multiindex o = (a1,...,a,) € Ny and 7 = (74,...,7,) be a vector
of delays. Define

R(DO’”_,O) (t, S) = I[,

IS t fh*‘rrgm
Ry (t,5) = E Dre (q1) Dre_(g2) -
S+ QT o s+HY" | aiTi—Tra (2)
JGSTT i=17 0 i=1 ST

9la|—1—Trx Sal-1)
X - Dyg(‘u‘)(q|a‘)dq‘a| coodgadq, Jal >0  (3.1)
+Zl 1 ¥ TZ_Z a(i)

for t > s > 0. Clearly, for any o € NP and any fixed s > 0, R?(-,s) is C*-
smooth on [s,00). If Dy, ..., D,, are constant, a relation between R (¢, s) and
PD of (2.2) can be derived (see Remark 3 below).

For the derivative of RZ (-, s) we have the following result.

Lemma 1. Letn € N, 0 < 74,...,7, € R, @ € N§, D = (D1(t),...,Dn(t))
and RE(t,s) be given by (3.1). Then

9 b - D
R0 = Yoty ~ DDJORE 0= re0h 125 (@D
(considering the right-hand derivative at t = s) where x is given by (2.6) and
e; =(0,...,0,1,0,...,0) € R™ is the jth vector of the standard basis in R™.

Proof. 1If |a| = 0, then %RaD(t, s) = © which agrees with (3.2).
Now, let || > 0. Differentiating (3.1) with respect to ¢ gives

0 = T
GRECs) = 3 ey o) [ Dr, ()
O'ES‘Q;T +Z, 1 QT — T‘I‘OO)

q2—Tro
(2)
<[ Drs, (4s) .

n 2
s T onTi— Y TT;’K(I.)

9la)—1— TTU(M 1
X / Dre .. @al) dgja) - - - dgs dgs.
+>o0 T — Ziifl TTO‘('L)

Let us collect all the summands in which Tg(l) = j. Note that if a; = 0, this
can not occur (that is why we employ the step function). So we get

8 n t— Tj

ERD(t s) = xla; =1)D;(t) > Dire, (q1)

n
i=1 Jra STt aiTi—T;
J €SI,

QI_ij-a<1)
X / D'ij:(z) (C]Q) cee

3 n . PR — .
ST QT TJT;V(I)

dlaj-2— TJTa(m\ 2)
></ - Dire (qa)-1) dgjaj-1 -- - dg2 dq:
sty QT =T =Y 2 Tiya 5

Math. Model. Anal., 25(2):303-322, 2020.
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where 77 := (1,...,1,....5—1,...,5—1,5,....5,5+1,....5+1,
N—— —_—
(5] Qj—1 (Xj—l Q41
..,n,...,n) € Nl“I=1 Noting that /7* = 7*~¢ we immediately obtain the
——

Qn
statement. 0O

Next, we apply RZ (¢, s) to express a solution of the matrix equation

n

X(t,s)=AM)X(t,s)+ Y _ Bi(t)X(t—7;,5), t>s (3.3)
=1
satisfying
X(t,s) = {9’ b<s (3.4)
I, t=s.

Here the dot stands for the derivative with respect to t.

Theorem 4. Let s > 0, A € C([0,00),My), B1,...,B, € C([s,00),My).
Then the solution of the matriz initial function problem (3.3), (3.4) has the
form ~
X(t,s) = Y e@RE ()P (s), (3.5)
a€eNy
s+zy 1 o<t

where RE(t, s) is given by (3.1), B = (Bi,...,By), By = & 1(t) B (t)D(t —

Tm) for each m =1,... n, and ®(t) is a fundamental matriz such that
=A — >
b(t) = A(t)o(t), teR, with A(t) = At), t>0,
2(0) =1, A(0), t<0.

Proof. Clearly, X (-, s) is continuous on [s,00). The empty sum property yields
that X (t,s) = © whenever t < s. On the other side,

X(s,8) = D()RE,__o)(s,8)071(s) = L

Hence, initial condition (3.4) is verified. Denoting X (¢,s) = @(t)Y (¢, s), one
can see that X (¢, s) satisfies (3.3) if and only if

Yit,s)= > RE(ts)87(s)
a€eNy
syt <t

satisfies

n

Y(t,s)=> &' () Bi(t)D(t—7)Y (t—;, s Z Y (t—7i,5), t > 5. (3.6)

i=1 o
Let ¢ > s > 0 be arbitrary and fixed, and § > 0 be small. Then

{aENg s—l—ZainSt}:{aeNS s—i—ZaiTiSt—i—é}. (3.7
i=1

i=1
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Hence, we get

lim Y(t+0,8)—Y(ts) _ Z %RB(t B1(s).

§—0+ 1) -
aeNg
s+ o<t

Next, if 0 < s <t # s+, ;7 for each a € N, and § < 0 is such that |d|
is small, then (3.7) is still valid. So,

lim Yit+o, s()s “Yhs) oy %Rf )P ().  (38)

aeNy
AR, aimist

For the other case, ie., 0 <s <t=s+) .  alr for some a’ = (af,...,ad) €
N7, 6 < 0 such that || is small, we apply the identity R7 (¢, s) = © to see
that (3.8) holds. By these arguments, we can apply Lemma 1 to compute the

derivative of Y'(-, s) for t > s:

Y(t,s) = > %RB(t $)P1(s) = > ZX

aeNg aGN"
sy o<t s+yo0 Z7'7<t
x Bi(ORE_, (t-75,8)07 ()= B;(t) Y. RE, (t-7;,5)8 Y (s)
Jj=1 a€Ny, a; >1

s+2iey aiTi<t

B(t) 3 RE(t — 15, 5)87(s).

1 a€eNY
s+ 0 T <t—Ty

Here in the last step, we used the substitution o — e; — «. This proves (3.6)
and, as a consequence, the proof is complete. O

It is worth to mention that, as was explained in [13, Remark 2.1], instead
of A(t) we can use any extension of A(t). The values of &(t) for t < 0 do
not affect X (t,s). Consequently, if A is constant, then we can set ®(t) = e
for any ¢t € R. Moreover, if AB,,(t) = B (t)A for all t € [s,00) and some
m € {1,...,n}, then By, (t) = By (t)e 4™ as in Theorem 3. Therefore, we
use the similar notation.

On setting (2.8) and f = © in [13, Theorem 2.2], one can see that the
function

X(t,s) = B()XB1Bn (1, 5)0 1 (s)

$T7‘L

is a matrix solution of (3.3), (3.4), i.e., of the same Cauchy problem as X(t s)
of (3.5). So, X(t,s) = X(t,s) for all t,s € R. Let us recall that XBirBn was

.....

Math. Model. Anal., 25(2):303-322, 2020.
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given by
O, t<s, Y(ts), s<t<s+mm,
Y(ts)+ [1, YV(tq)Bm(q)Y (@ — Tm, s) dar
t
+oo [, Yt a1)Bm(q)
By,...,B 1—Tm
XTI» Tm <t S) X qq—',-(k ) Tm Y((h _Tm>QQ)Bm(q2>-~-
fsqul " Y (qr—1 = T @) B ()
X Y (qk — Tm, s) dgy - . dgz dau,
sS+krm <t<s+(k+ D7y, keN,
Bi,....Bp_1
where Y (t,8) = X7V 5 "7 (L, 8), form=2,...,n, and

O, t<s, I, s<t<s+r,
t t
XB(t5) = I+ [ Bla)dg + -+ [, Bla)
’ X Sq_,’l_(kT_l)TB(QQ)... Sq_i;l 7—B(qk)qu ... dgadqq,

s+kr<t<s+(k+1)1,keN.

So, we can rewrite [13, Theorem 2.2] with our function X (¢, s).

Theorem 5. Let n € N, 0 < 7q,...,7, € R, 7 := max{r,72,...,7n}, A, B,
, B, € C([0,00),Mn), p € C([-7,0],RY), and f: [0,00) = RN be a given
function. Then the solution of the Cauchy problem consisting of the equation

&(t) = A(t)x(t) + Bi(t)z(t — 1) + - -+ Bp(t)x(t — 7)) + f(t), t>0, (3.9)
and initial condition (1.2) has the form

z(t) = { X(¢,0)p(0 ) Z] 1 Jo? X (t.5)Bj(s)p(s — ;) ds
+ fo s)ds, 0<t
for X(t,s) given by (3.5).
In particular, we obtain the result promised in Remark 2.3.

Corollary 2. Letn e N0 < 1q,...,7, € R, 7 := max{7, 72, ..., T}, A, B1,...,
B, € My, ¢ € C([-7,0],RY), and f: [0,00) — RY be a given function. Then
the solution of the Cauchy problem (1.1), (1.2) has the form

o(t), —F<t<O,
z(t) = ¢ X(t,0)p ()+Z; L Jo? X(t,5)Bjip(s — 1) ds
—|—f0 s)ds, 0<t

for

X(t,s) = Z eAtRf(t, s)e= A%

a€eNy
s> o<t

where R2(t, s) is given by (3.1), B = (By,...,By), Bp(t) = ¢ A1 B,,eAl=mm)
foreach m=1,...,n.
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Remark 3. If Dy, ..., D, are constant, we obtain
t q1—Tro
D o(1)
R (t,s) = g / ’ / .
cests sty @i st caTimTre
el 17T 1) e
% / 1 dqia| - - - dgz dgi HDT:“)
s+>27 aiTi*ZLilf ™20 i=1

for any t > s > 0 and |a| > 0. Then, substituting g,, — ELi‘m Tra,, — dm for

each m = 1,...,|a| and using ZL‘;"l Tro

_ n
o = D il uT; we get

||

O t=>70" T Q1 dlal-1
Ra (t, 8) = Z / / NN / dq\al e dQQ dQ1 H DT:(i) .
s s i=1

ra Js
UGS‘M

Now, applying the identity (see e.g. [15, Lemma 3.1])

[ e [ stw [* st aa - din = 3 ([ 10 dq>k

for any f € C([s,0),R), s,t e R, t > s, k € N, we derive

_yn jp— laf || n
1 =300 i (t—s—3 O(.7-.)|01\
D _ _ =1 "' D
RE(t5)=" Tali </ dq> [Iore, = ol s
p s i=1

le]

for any t — >, a;7; > s > 0, whenever |a] > 0. Clearly, Rf%,...,o)(tﬁ) =
P(Do7,..,o)' So, if A = @, we have shown that X (¢,s) = B(t — s) for X(¢,s) and
B(t) given by (3.5) and (2.5), respectively.

4 Higher order DDEs

In this section, we apply the results of the preceding sections to systems of
higher order DDEs. In what follows, we add the lower indices to denote the
dimensions of the zero and identity matrix (single index means square matrix).
Here, we consider the equation

2® (1) + My ()zF V() + -+ My (0)i(t) = A(t)z(t)
+Bi(t)x(t —71)+ -+ Ba(t)x(t — 1) + f(t), t>0. (4.1)

Theorem 6. Let k,n e N, k> 1,0<7,...,7 € R, T:=max{r,72,...,Tn},
A By,...,By,My,..., M1 € C([0,00),Mn), ¢ € C*L([-7,0],RY), and
f:[0,00) = RY be a given function. Then the solution of the Cauchy problem
(4.1), (1.2) has the form

z(t) = (In  Onx@p—1n) y(b),

Math. Model. Anal., 25(2):303-322, 2020.
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i.e., it is equal to the first N coordinates of y(t), where

(1), -7 <t<0,
y(t) = { Y(t,0)£(0 ) Z] L Jo Y (t,5)Dj(s)é(s — 1) ds
+ fo )g(s)ds, 0<t
for () = ()T, )T, ..., k=D (#)")T, g(t) = (@M(k,l)N,f(t)T)T and

Yit,s)= > wORD(t (),
a€eNy
s+ o<t

where RE(t,s) is given by (3.1), D = (Dy,...,Dy,), Dp(t) = W=(£) Dy (t)
XW(t — Typ) for eachm=1,...,n,

O_ O_
D, (1) = [FkE-DNxN (k—1)N )
) ( B(t) ONx(k—1)N )’

and U (t) is a fundamental matriz such that

N .
U(t)y=C@t)o(t), teR, with T(t) = Cc), t>0
W(O) =N, (0), t<0
and
On In ON e Oy
On On Iy Oy ... On
o) = : : ' e :
On On On Iy On
ON On Iy
Aty —Mi(t) oo —Mj_1(t)
Proof. Let us denote yy(t) = z(t), yo(t) = &(t), ..., yr(t) = 2*~D(t). Then

y(t) = ()7, . .., ye(t)T)T solves the Cauchy problem
y(t) = C(t)y(t) + Dy (t)y(t - Tl) +eee Dm(t)y(t - Tm) + g(t)v t>0
y(t) =¢@), tel-7,0],

which is of the form (3.9), (1.2). The proof is finished by application of Theorem
5. 0O

Next, we present examples showing the agreement with known results.
Ezample 5. Let us consider the matrix DDE
X(t)=-B*X(t—7), t>0 (4.2)
for a constant matrix B € 9y along with the non-smooth initial condition

On, t<O0,

4.3
Iy, t=0. (43)

X(t)=0On, te[-1,0], X(t):{
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Applying Theorem 6 one can see that X (¢) = (In,On)Y () where

0= (1) (5) v
for t > 0, where
o @QNXN, te [—T,O),

50 = {(@N, Iy)", t=0.

Here we have a« = a1 = |a], 7% = (1,...,1) € N* and S@T ={(1,...,1)}, ie.,
it consists of one element only. Moreover,

_(En Iy _(On ©On
c=(oy av) 2= (% &)

Hence, we can take

&P(t):eCt:<gjv t&) teR (4.4)

and write D(t) = &~ (r)@~(t — 1) D¥(t — 7). So, we obtain for a > 0,

t

~ q1—T
REGs) = [ v a)Dva-n) [ 0 gD ).
s+aT s+(a—1)T
qoo—1—T t
X / W_l(qa)DW(Qa—T) dqy ... dgaydgy = W_l(on')/ W‘l(ql—ar)
s+T st+aT
q1—T
X D!P(ql—aT)/ T gy — (a— 1)7)D¥(qo — (. — 1)7) ...
s+(a—1)7
qao—1—T
X / w_l(QQ _T)DW(Qa _T) dqe ... dgadqy.
s+T
Next, we apply the substitution ¢, — (&« — m + 1)7 — ¢y, for each m=1,... «

to get
~ t—aT q1
RE(ts) =0 ar) [ 0 ) DW(@) [0 @) DV (@)
S S
QQ—I
></ (o) D¥(qa) dga - - - dgz dgi.

To simplify the notation, we introduce the Kronecker product of matrices (see
[21]) and, in particular, its property (A ® B)(C ® D) = (AC) ® (BD) for any
matrices A, B, C, D of appropriate dimensions. So we can write

st [ )on] {7 ) on] (€ o
(0 B VOB R e (P

Math. Model. Anal., 25(2):303-322, 2020.
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oud [ o]0 Docan][6 )en
o) (7 AL ()

Tt (—qe —q2 5
></ < 1a "“) dge ... dquql] ® (—B)“.

Qo
To go on with computations, we need the following lemma.

Lemma 2. For any o € N, t,s € R it holds

To(t,s) = o - [T~ —B) [T (-t -& da
o\t e )y N ) )y U1 q) "

o (t—s5)2*"1((2a—1)t+5) B (t—5)22 1 (12 4 (2a—1)ts+52)
.. dgadg = < (2)! a+1)(2a—1)! ) .

(t—s)2o—1 (t—s)2* "1 (t+(2a—1)s)
(2a—1)! (2a)!

Proof. We prove the statement by mathematical induction with respect to a.
Clearly,

e (-2 (-3
Il(t,s):/s<1q ;1)dq=( Lt (t2—s2)/2>
:<—(t—s)(t—|—s)/2 —(t—s)(t2—|—ts—|—s2)/3>

(t—s)/1 (t—s)(t+s)/2 '

Now, let the statement be valid for & € N. Then

t s 2
Ia+1(t58) :/ ( 1q ;] )Ia(qu) dq

t 2 _(g=9)* " (2a=1)g+s) _ (g=9)>*"'(¢’+(2a—1)gs+s?)
7/ <—q —q ) ( (2a)! 2a+1)(2a—1)! > d
= 1 )2a—l q

q (g=8)™" (a=5)** " (g+(2a=1)s)
(2a—=1)! a)!

t _q(cg—S)lz"‘ _q(q—S)Z“(q;2as)
_ 2a)! 2a+1)!
_/ (qis)ga (qfs)ga(qﬁas) dq

s 2a)! (2a+1)!

_ (=) (@at)its)  _ (t-5)22 (2 +(2a+1)ts+s7)
= (20+2)! 2a+3)(2a+1)!
o ( (t=s)?ott (t—35)>* T (t+(2a+1)s) ) )

S+l (2a+2)!

which proves the lemma. 0O

Using the above result, we obtain

RD(1,5) = K(l) ‘f”) To(t— o, s)} © (—B%)°,

Therefore,
Y (t) :a%;]o Ké f) ®HN} (Ké _f”) Z.(t - ar, 0)] ® (32)a> (%J)

at<t
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-5 (6 )] ecor) @)

at<t
(t— 047')20‘ (t—a7)2a+1 o
a)! « ! «
= Z [( t— 2427)2a 1 (52—o¢t§%°‘ >®(_B2) (H;{V)
a€Ng (2a—1)! (2a)!
aT<t
(t—aT) T cw')z("*'1
2a+1 2\«
-3 (B )t
a€Np 2a)!
at<t

In conclusion, we have proved the following result.

Proposition 1. The solution of the matriz initial function problem (4.2), (4.3)
has the form

—ar 2a41
X(t) = Z;? “(2031)!(—32)@.

We note that the above statement coincides with [2, Lemma 2.1] (see also [5]

and [19]).

Ezample 6. Let us consider the nonhomogeneous DDE

Z(t)=Bix(t—71)+ -+ Bpax(t —71,) + f(t), t>0 (4.5)
for pairwise permutable matrices B, ..., B, € My along with initial condition
(1.2) for ¢ € C*([-7,0],RYN).

On Oy
B; Oy
Example 5, we apply Lemma 2 to show

n t— > " QT
R = 3 ot (o) [T 0 i, v
i=1 s

UESTQ

Here we have D; = < ), t=1,...,n and take ¥ given by (4.4). As in

a(lal)

n n |a\
Z g1 (Z OziTi> |:I|a (t — Zaﬂ%s) ® (HBT"‘<,.)>:|
oesly i=1 i=1 -
I|a\ (t - iaﬂi,s> (024] <ﬁ Bf‘l)
=1 =1

by (Z am>

for any t > s > 0, a € N{J, || > 0. Hence,

Y(ts)= Y, IO" (t—zam) [104 (t—zam, >® (ﬁBaN

a€eNy i=1
sy 0 o<t

q1 dla|—1
></ W_l(Q2)DT§<2)W(Q2)”'/ Y (qja))Dre, ¥(qia) dqja| - - dgz dg:
S S
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xU1(s) = Z % [ ((1) t— 22:1 ozﬂi) Tia| (t - iam, 8>

aeNy =1
s> o<t

X(é?ﬁ}®<ﬁ3?>: > b

1=1 a€Ny
syt o<t

(t=>7 aimi—s) (t=>7; aimi—s) n
2[al)! Cla[+D)! i
o P e L R S o ®<H&>

@lal-1)! @lal)! =1

2] 2|al+1

for t > s > 0. Application of Theorem 6 gives the next result.

Proposition 2. Solution of the initial function problem (4.5), (1.2) has the
form

(,D(t), —T7<t<0,
2(t) = § X()p(0) + Y()2(0) + X7, [i7 V(t = 5)Bjp(s — 75) ds
+ [y V(t—s)f(s)ds, 0<t,
where
laf! (t = >0, oy 3)2la‘ .
o= 2 g (2la) 117
El_laion-<t
_ ot (t= S agm — o)
) = EN: ol Qlal + 1) 115
Doy i<t

Proposition 2 coincides with [1, Theorem 7].

5 Conclusions and discussion

In the present paper, we stated representations of solutions of systems of DDEs
with multiple constant delays and constant as well as time-dependent coeffi-
cients. To be able to drop the commutativity assumption on matrix coefficients
used in previous works, we introduced a sum of all different products of con-
stant matrices, P2, and a sum of iterated integrals of all different products of
matrix functions, R (¢, s). A connection between them was shown for constant
matrices. Previously, in the case of n > 1 variable coefficients, to compute the
fundamental matrix solution one needed to compute the fundamental matrix
solution of an equation with n — 1 delays, the fundamental matrix solution of
an equation with n — 2 delays, ...an equation with 1 delay. Using the method
proposed in this paper, computation of RZ(9,0) for all 0 < 37 ;7 < ¢,
0 <o <9 <tisenough. This can be done in advance before actually solving
the equation. So it should be more suitable for practical computations than
the induction approach.
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Finally the results were applied to a system of higher order DDEs to obtain
a representation of its solution. This was done by rewriting the system as a
larger system of first order DDEs. To show the agreement with known results,
we considered systems of second order DDEs with one and multiple delays,
respectively. Kronecker product of matrices appeared to be a convenient tool
for simplifying the notation. As was shown in the examples, for second order
DDEs in the case of one constant matrix coefficient or multiple pairwise per-
mutable constant matrix coefficients the formulas resulting from an application
of Theorem 6 can be simplified by an explicit calculation of iterated integrals of
matrix products. To our best knowledge, for systems of DDEs of order higher
than 2 there are no results on explicit representation of solutions to compare
our approach with. So to conclude, Theorem 6 covers a wide class of higher
order DDEs, but to simplify the resulted formula in particular cases can require
some effort.
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