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Abstract. The recently introduced higher order Haar wavelet method is treated
for solving evolution equations. The wave equation, the Burgers’ equations and the
Korteweg-de Vries equation are considered as model problems. The detailed analysis
of the accuracy of the Haar wavelet method and the higher order Haar wavelet method
is performed. The obtained results are validated against the exact solutions.
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1 Introduction

From the mathematical viewpoint evolution equations under consideration are
partial differential equations (PDEs). In case of numerical solution of PDEs
one has to approximate the partial derivatives with respect to time and space
coordinates. Local or global methods can be used for these approximations.
The finite difference method is the most typical example of local methods. In
the case of global methods, usually the function itself is approximated as a sum
of basis functions (for example trigonometric functions). However, trigonomet-
ric functions are not the only choice for basis functions. For example, in [64]
mixed Laguerre-Legendre interpolation approximation is applied. One of the
more popular global methods is the fast Fourier transform (FFT) related pseu-
dospectral method [20, 22, 55, 56, 58, 59]. In the present paper another global
approach is applied: Haar wavelets are used for approximation of partial deriva-
tives.
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Recently, the higher order Haar wavelet method (HOHWM) has been de-
veloped by Majak et. al. [42] as an improvement of the Haar wavelet method
(HWM) originally introduced by Chen and Hsiao in [15]. The HWM has been
proposed for solving differential equations [15,27, 51] as well as a wide class of
integro-differential and integral equations [5, 7, 8, 14, 35, 37, 63]. According to
HWM, as proposed in [15,27], the highest order derivative included in the dif-
ferential equation is expanded into the series of Haar functions. This approach
is based on the fact that the Haar functions are given in form of quadratic waves
which are not differentiable. A different approach was introduced in [13], ac-
cording to which the quadratic waves can be regularized. However, the latter
approach appears more complicated and has not found wider use. In addition
to the apparant simpler implementation, the former approach has commonly
been utilized in studies related to the development and application of HWM.
In pioneering works by Lepik [33, 34, 35, 36, 37, 38], integration techniques for
HWM were developed. A thorough overview of HWM and its application in
different research areas can be found in the monograph [39]. The weak formu-
lation based HWM was introduced by Majak et. al. in [41]. The complexity
issues of strong and weak formulation based HWM are also discussed in the
latter study.

One of the most common areas of application for HWM appears to be
engineering. This specific field includes solid mechanics [35, 36, 38], compos-
ites [26,28,40,66,68,69], etc. Additionally, free vibration analysis of the multi-
layer composite plate was performed in [40] and in [28,66,67,68,69] the HWM
was adopted for free vibration analysis of composite laminated conical and
cylindrical shell, and annular plate structures.

The fractional differential and integro-differential equations form a chal-
lenging application area for new numerical methods. This also applies to
HWM. Due to their specific nature, less coverage by numerical methods and
commercial software has been observed. In a pioneering study the Caputo
derivatives are utilized and the differential equations are converted to integral
equations including integer order derivatives [37]. Thus, the wavelet expan-
sion is applied to derivatives of integer order. An alternate approach was em-
ployed in [44, 53, 60, 62] where the fractional derivatives are expanded directly
to wavelet series.

Recent developments in this area have lead to HWM being treated for
multidimensional case [3, 4, 6] as well an adaptive wavelet method [23]. Other
devolopments include nonuniform HWM [48], application in inverse problems
[21], identification of software piracy [47], etc.

The key factors of any numerical method are the accuracy and convergence.
These are studied for HWM in [43,45,65]. The convergence theorem is proven
in [45], which also shows that the order of convergence of the HWM approach
based on [15] is equal to two. The latter result gives an incentive to further
improve HWM. In the comparative study [30] it was shown that HWM pro-
posed in [15,27] is not competitive with other simple strong formulation based
methods used in engineering like differential quadrature method and finite dif-
ference method. Motivated by the latter conclusions Majak et.al. developed
HOHWM in [42].
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In the current study the HOHWM is treated for solving evolution equations.
In addition, the wave equation was chosen as the first model equation for its
simplicity. The Burgers’ equation [10,11] has previosuly been studied using the
HWM [29, 36, 41, 49] and also has an anlytical solution, thus the possibility of
comparison made it a decent choice for a model equation. It finds applications
in modeling of turbulence [10] and traffic [46], as well as in weak non-stationary
shock wave in real fluids [31] and in nonlinear acoustics [24]. The HWM has
also previously been applied to the Korteweg-de Vries (KdV) equation in [50,
52]. The KdV equation was derived in order to describe the movement of
long unidirectional shallow water waves in a rectangular channel but has been
found to model different nonlinear phenomena nowadays [18,19,54]. A detailed
analysis of the improved accuracy of HOHWM over HWM is performed for all
three model equations.

The article is structured as follows. Firstly, the Haar wavelet family is
introduced in Section 2. Secondly, the model equations used are described in
Section 3. Section 4 outlines the HWM and HOHWM. The analysis of the
results is presented in Section 5 and conclusions are drawn in the final section.

2 Haar wavelet family

In the following the Haar wavelet family is defined utilizing the notation intro-
duced by Lepik in [38]. 2M subintervals of equal length ∆x = (B − A)/(2M)
form the integration domain x ∈ [A,B]. The maximum level of resolution J
is defined as J = log2(M). The Haar wavelet family for a fixed M can be
described as

hi(x) =


1, for x ∈

[
ξ1(i), ξ2(i)

)
,

−1, for x ∈
[
ξ2(i), ξ3(i)

)
,

0, elsewhere,

(2.1)

where

ξ1(i) = A+ 2kµ∆x, ξ2(i) = A+ (2k + 1)µ∆x, ξ3(i) = A+ 2(k + 1)µ∆x,

µ = M/m, m = 2j , ∆x = (B −A)/(2M). (2.2)

In (2.1) and (2.2) j = 0, 1, ..., J is the dilation parameter, k = 0, 1, ...,m − 1
is translation parameter, m corresponds to the maximum number of square
waves in the interval x ∈ [A,B] for the given dilation and index i is calculated
from i = m + k + 1. Therefore (2.2) corresponds to i ≥ 2 since m ≥ 1 and
k ≥ 0. The scaling function h1(x) = 1 is constant, in this case the values
m = 0, ξ1 = A, ξ2 = B, ξ3 = B are considered. The other Haar functions
contain a single square wave each. The Haar functions are orthogonal to each
other and therefore form a good transform basis

∫ B

A

hi(x)hl(x)dx =

{
2−j , i = l = 2j + k,

0, i 6= l.
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Thus, any square integrable function f(x) can be expanded into Haar wavelets
as

f(x) =

∞∑
i=1

aihi(x), (2.3)

where ai denote the Haar coefficients.
According to [38] the integrals of the Haar functions (2.1) of order n can be

calcualted analytically as follows

pn,i(x)=



0, for x ∈
[
A, ξ1(i)

)
,

(x−ξ1(i))n
n! , for x ∈

[
ξ1(i), ξ2(i)

)
,

(x−ξ1(i))n−2(x−ξ2(i))n
n! , for x ∈

[
ξ2(i), ξ3(i)

)
,

(x−ξ1(i))n−2(x−ξ2(i))n+(x−ξ3(i))n
n! , for x ∈

[
ξ3(i), B

)
.

(2.4)

Within the present paper the matrix form of the above formulation is used.
Therefore, the elements of (2M) × (2M) matrix H, are given as values of the
Haar functions

Hil = hi(xl) (2.5)

at collocation points xl = (l − 1/2)∆x. The (2M) × (2M) matrix Pn with
elements

(Pn)il = pn,i(xl), (2.6)

denotes the nth integral of the Haar wavelet matrix for a given resolution J .
Using (2.5) and (2.6) and considering the coefficient vector a one obtains

f(x) = a ·H instead of (2.3) and∫
· · ·
∫ x

A︸ ︷︷ ︸
n

H dξ . . . dξ︸ ︷︷ ︸
n

= Pn.

It must be noted, that the matrices H and Pn depend on vector x of collocation
points. The statements in (2.4) imply that in boundary points A and B hold(

Pn(A)
)
i

= 0, ∀n > 0, ∀i, (2.7)(
Pn(B)

)
i

= pn,i(B) =

(
B − ξ1(i)

)n − 2
(
B − ξ2(i)

)n
+
(
B − ξ3(i)

)n
n!

. (2.8)

Pn(0) and Pn(B) form column vectors which will be used when forming a
system of equations that satsify the boundary conditions. These expressions
can often be simplified due to equation (2.7).

3 Model equations

The wave equation
utt = c2uxx, (3.1)

subject to the initial and boundary conditions

u(x, 0) = u0(x), ut(x, 0) = v0(x), u(A, t) = ul(t), u(B, t) = ur(t),
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was considered as the first model equation. The particular exact solution used
was a travelling wave solution of the form

u(x, t) =
(

1 + ec1(x−ct−x0)
)−1

, (3.2)

where c1 is a parameter that varies the steepness of the shockwave, c is its
travelling speed and x0 its initial phase.

As the second model equation, the Burgers’ equation

ut + uux = νuxx (3.3)

was chosen. Here ν is the diffusion coefficient. The Burgers’ equation subjected
to the initial and boundary conditions

u(x, 0) = u0(x), u(A, t) = ul(t), u(B, t) = ur(t),

was considered. Its analytical solution has been found in the form of

u(x, t)=
2νπ

L

∑∞
n=1 exp(−Ent)nIn

(
R0/(2π)

)
sin(nπx/L)

I0
(
R0/(2π)

)
+2
∑∞
n=1 exp(−Ent)In

(
R0/(2π)

)
cos(nπx/L)

, (3.4)

where R0 = u0L/ν is the Reynolds number, En = νn2π2/L2, In represents
the modified Bessel functions of first kind and L = B − A is the x domain
range [9, 16].

The third model equation was chosen to be the KdV equation of the form

ut + αuux + uxxx = 0 (3.5)

subjected to the initial and boundary conditions

u(x, 0) = u0(x), u(A, t) = ul(t), u(B, t) = ur(t), ux(A, t) = ul,x(t).

An exact one soliton solution for the KdV equation (3.5) is known in the form
of

u(x, t) =
3c

α
sech2

(
1

2

√
c(x− ct− x0)

)
, (3.6)

where c is the speed of the travelling soliton, α is the nonlinear coefficient in
the equation and x0 denotes the initial phase. There exists also a two-soliton
solution [1, 32,57,70] in the form

u(x, t) =
3(cB − cS)

|α|

(
cBcsch2 (ξB) + cSsech2 (ξS)

)(√
cB coth (ξB)−√cS tanh (ξS)

)2 , (3.7)

where ξB = 1
2

√
cB(x− cBt− x0B), ξS = 1

2

√
cS(x− cSt− x0S), and cB and cS

are the speeds of the bigger and smaller soliton, respectively, x0B and x0S are
the initial phases for the bigger and smaller soliton, respectively and α is the
nonlinear parameter. Using (3.7) soliton interactions can be observed.
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4 Haar wavelet methods

In many numerical studies [2, 12, 25, 41], spatial derivatives are expanded into
Haar wavelet series while finite difference type schemes are used for integration
with respect to time. In the present study, MATLAB’s ode45 [61] solver based
on Runge–Kutta (4,5) formula [17] is used for integration with respect to time.
This allows one to calculate the value of the function at each time moment
from its values at previous time moments without the need to expand both
axes into the Haar series. The latter often results in extremely large matrices
which can get computationally expensive.

The well known HWM involves expanding in the Haar wavelet series the
highest order derivative present within the equation. One then obtains for the
nth spatial derivative

unx(x) = a ·Hx, (4.1)

where the subscript notes the axis along which the HWM (as well as the HO-
HWM) is deployed and a is the Haar wavelet coefficient vector. After integrat-
ing n times one arrives at the function itself as

u(x) = a ·Pxn +

n−1∑
i=0

(
ci
xi

i!

)
,

where the unkown coefficients ci can be calculated by using the boundary con-
ditions and xi denotes the collocation vector with its elements raised to the
power of i. The superscript of the vector of collocation points will refer to the
element wise multiplication throughout the rest of the present study.

When it comes to the HOHWM, one needs to start with a derivative of
a higher order than that which is present in the equation. In general, an
additional 2s derivatives are used. However, in the current study, only s = 1
is considered. Thus, one starts with

u(n+2)x(x) = a ·Hx (4.2)

and after integration arrives at

u(x) = a ·Px(n+2) +

n+2∑
i=0

(
ci
xi

i!

)
,

where two extra coefficients, cn and cn+1 are introduced. In order to calculate
those extra coefficients, some extra information is needed. In the present study
the equation is evaluated at the boundary.

When the unkown coefficients ci have been obtained, the function u can be
described as

u(x, t) = a ·Rxn + Sxn, for HWM,

u(x, t) = a ·Rx(n+2) + Sx(n+2), for HOHWM,

where Rxm is a matrix and Sxm a vector obtained only from the Haar matrices
and boundary conditions. They both depend on x. Sxm can also depend on t



Application of Higher Order Haar Wavelet Method 277

(depending on the boundary conditions). Thus for the kth derivative (k < m)
of u one can write

ukx(x, t) = a ·Rx(n−k) + Sx(n−k), for HWM,

ukx(x, t) = a ·Rx(n+2−k) + Sx(n+2−k), for HOHWM.
(4.3)

It must be noted that Rx0 = Hx and Sx0 = 0 due to (4.1) and (4.2) in case of
HWM. Once Rxm and Sxm have been found, one can arrive at

a = (u(x, t)− Sxm) ·R−1xm, (4.4)

where m = n (HWM) or m = n+ 2 (HOHWM). Equation (4.4) can be used to
find the wavelet coefficient vector a from the previous iteration.

Finally, the equation in question will need to be arranged in the form ut =
f(u, ux, uxx, ..., unx) or utt = f(u, ux, uxx, ..., unx). Then, (4.4) can be used to
calculate a, after which (4.3) can be used to substitute u and its derivatvies
into the right hand side of the equation in question. This routine has to be
followed for each time step.

In the following subsections, the numerical approach is described for each
model equation. Firstly, the HWM is described. Then the extra conditions to
find the extra coefficients added by HOHWM are introduced. Finally, HOHWM
is described. The domain is fixed as A = 0 and B = 1.

4.1 Wave equation

Given constant boundary conditions

u(0, t) = 1, u(1, t) = 0, (4.5)

one obtains

Rx2 = Px2 −Px2(1) · x, Sx2 = cl(1− x) + crx (4.6)

for HWM. For HOHWM the equation is evaluated at the boundary points as

utt(0, t) = c2uxx(0, t), utt(1, t) = c2uxx(1, t).

Since the boundary conditions (4.5) are constant in time ut(0, t) = ut(1, t) =
utt(0, t) = utt(1, t) = 0. Thus one arrives at

uxx(0, t) = 0, uxx(1, t) = 0. (4.7)

The addition of (4.7) gives

Rx4 = Px4 −Px4(1) · x−Px2(1) · (x3 − 1), Sx4 = 1− x.

4.2 Burgers’ equation

Given the homogeneous boundary conditions

u(0, t) = 0, u(1, t) = 0, (4.8)

Math. Model. Anal., 25(2):271–288, 2020.
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one again obtains the same results (4.6) for HWM. However, for HOHWM the
equation is again evaluated at the boundary points as

ut(0, t) + u(0, t)ux(0, t)− νuxx(0, t) = 0,

ut(1, t) + u(1, t)ux(1, t)− νuxx(1, t) = 0. (4.9)

Since the boundary conditions (4.8) are homogeneous ut(0, t) = ut(1, t) = 0
and (4.9) simplifies to

uxx(0, t) = 0 uxx(1, t) = 0. (4.10)

The addition of (4.10) gives

Rx4 = Px4 −Px4(1) · x + Px2(1) · x− x3

6
, Sx4 = 0.

4.3 KdV equation

Given homogeneous boundary conditions

u(0, t) = u(1, t) = ux(1, t) = 0, (4.11)

for HWM one obtains

Rx3 = Px3 + Px2(1) · (x− x2) + Px3(1) · (x2 − 2x), Sx3 = 0.

For HOHWM the equation is yet again evaluated at the boundary points as

ut(0, t)+αu(0, t)ux(0, t)+uxxx(0, t)=0, ut(1, t)+αu(1, t)ux(1, t)+uxxx(1, t)=0.

Since the boundary conditions (4.11) are homogeneous ut(0, t) = ut(1, t) = 0
and the above simplifies to

uxxx(0, t) = 0, uxxx(1, t) = 0. (4.12)

The addition of (4.12) gives

Rx5 =Px5 +
1

2
Px3(1) ·

(
−x4 + 2x3 − x2

)
+

1

2
Px4(1) ·

(
4x4 − 10x3 + 6x2

)
+

1

2
Px5(1) ·

(
−6x4 + 16x3 − 12x2

)
,

Sx5 =0.

5 Numerical results

Numerical experiments were carried out for equations (3.1), (3.3) and (3.5) with
both HWM and HOHWM for different values of the resolution parameter J .
The results were compared to the corresponding exact solutions (3.2), (3.4) and
(3.6), respectively. The maximal deviation of the calculated result with respect
to the exact solution is traced. In case of the Burgers’ equation, the time at
which calculations become insufficiently accurate was measured in addition to
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the deviation. This is because given the near-singular behaviour of the exact
solution at the boundary at the low values of ν used the integration scheme can
become unstable. In case of the KdV equation, since the absolute value of the
solution can be rather large, maximum relative deviation is traced in addition
to maximum deviation. The results of HWM are compared with HOHWM.

Calculations for wave equation were carried out with initial condition from
the exact solution (3.2) at t = 0 as

u0(x) =
(

1 + ec1(x−x0)
)−1

(5.1)

and the boundary conditions (4.5). In case of HOHWM the additional con-
ditions (4.7) were added. The maximum deviation from the exact solution in
case of c = 1/2 and x0 = 1/4 for c1 = 60, 70, 80 within the domain x ∈ [0, 1],
t ∈ [0, 1] can be seen in Table 1.

Table 1. Results for the wave equation: maximal deviation of the numerical solution from
the exact solution max∆u against the resolution parameter J with initial conditions (5.1)
and boundary conditions (4.5) (c = 1/2, x0 = 1/4, x ∈ [0, 1], t ∈ [0, 1], c1 = 60, 70, 80).

J 2M

max∆u

c1 = 60 c1 = 70 c1 = 80

HWM HOHWM HWM HOHWM HWM HOHWM

3 16 0.1336325 0.1106219 0.1799650 0.1614320 0.2428010 0.2203232

4 32 0.1127782 0.0480090 0.1420468 0.0695581 0.1687752 0.0912491

5 64 0.0522854 0.0077165 0.0744285 0.0138613 0.0987152 0.0220050

6 128 0.0159480 0.0006604 0.0242365 0.0013906 0.0342071 0.0025845

7 256 0.0042292 0.0000415 0.0066610 0.0000903 0.0098198 0.0001786

Table 2. Results for the Burgers’ equation: maximal time tf at which the numerical
solutions deviates from the exact solution less than 10−3 against the resolution parameter
J with initial conditions (5.2) and boundary conditions (4.8) (x ∈ [0, 1], t ∈ [0, 1], ν =

1
100π

, 1
110π

, 1
120π

).

J 2M

tf

ν = 1
100π

ν = 1
110π

ν = 1
120π

HWM HOHWM HWM HOHWM HWM HOHWM

3 16 0.1625 0.2375 0.1625 0.2375 0.1625 0.2375

4 32 0.225 0.2875 0.225 0.275 0.225 0.275

5 64 0.275 0.2875 0.275 0.3181 0.2625 0.3

6 128 0.3106 0.3580 0.308 0.3542 0.3038 0.3475

7 256 0.3400 0.5 0.3364 0.4646 0.3317 0.4143

8 512 0.3801 0.5 0.3671 0.5 0.3657 0.5

The Burgers’ equation was solved for diffusion coefficient values of ν =
1

100π ,
1

110π ,
1

120π within the domain x ∈ [0, 1], t ∈ [0, tf ]. The initial condition

u0(x) = sin(πx) (5.2)

Math. Model. Anal., 25(2):271–288, 2020.
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and boundary conditions (4.8) were used. In case of HOHWM the additional
conditions (4.10) were added. Due to the near-singular nature of the solution,
the numerical solution can get unstable near the steep slope. Thus the time at
which sufficient accuracy was lost tnf is shown instead of the maximum error.
The numerical result was taken to be sufficiently accurate if the maximum devi-
ation with respect to the exact solution was smaller than 10−3. Corresponding
results can be seen in Table 2. Figure 1 shows how the maximum error behaves
in time for different resolutions at different values of ν.
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Figure 1. Maximum deviation in case of Burgers’ equation for ν = 1
100π

(top),

ν = 1
110π

(middle) and ν = 1
120π

(bottom).

The KdV equation was numerically solved for the nonlinear parameter val-
ues α = 1, 6 with c = 1000 and x0 = 1/4 within the domain x ∈ [0, 1],
t ∈ [0, 0.5× 10−3]. The initial condition

u0(x) =
3c

α
sech2

(
1

2

√
c(x− x0)

)
(5.3)

and boundary conditions (4.11) were used. In case of HOHWM the additional
conditions (4.12) were added. The maximum deviation from the exact solution
can be seen in Table 3.

In case of the KdV equation, the two-soliton exact solution (3.7) was also
used. In this case the initial condition was taken from the exact solution as

u0(x) =
3(cB − cS)

(
cBcsch2

√
cB(x−x0B)

2 + cSsech2
√
cS(x−x0S)

2

)
|α|
(√

cB coth
√
cB(x−x0B)

2 −√cS tanh
√
cS(x−x0S)

2

)2 . (5.4)

Boundary conditions (4.11) as well as additional conditions (4.12) were used
in this case as well. The results of these calculations can be found in Tables 5
and 6.
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Table 3. Results for the KdV equation: maximal deviation of the numerical solution from
the exact solution max∆u and maximal relative deviation maxrel∆u against the resolution
parameter J with initial conditions (5.3) and boundary conditions (4.11) (α = 1, c = 1000,
x0 = 1/4, x ∈ [0, 1], t ∈ [0, 0.5× 10−3]).

J 2M
max∆u maxrel∆u

HWM HOHWM HWM HOHWM

4 32 134.5414 32.85357 0.0448471 0.0109512

5 64 68.76035 3.316314 0.0229201 0.0011054

6 128 19.26319 0.8202067 0.0064211 0.0002734

7 256 5.066037 0.844972 0.0016887 0.0002817

Table 4. Results for the KdV equation: maximal deviation of the numerical solution from
the exact solution max∆u and maximal relative deviation maxrel∆u against the resolution
parameter J with initial conditions (5.3) and boundary conditions (4.11) (α = 6, c = 1000,
x0 = 1/4, x ∈ [0, 1], t ∈ [0, 0.5× 10−3]).

J 2M
max∆u maxrel∆u

HWM HOHWM HWM HOHWM

4 32 22.42356 5.475594 0.0448471 0.0109512

5 64 11.46226 0.5527193 0.0229245 0.0011054

6 128 3.210801 0.1367652 0.0064216 0.0002735

7 256 0.8443429 0.0016887 0.0016887 0.0002816

Typical numerical results for the wave equation, the Burgers’ equation and
the KdV equation can be seen in Figure 2.

In case of both the Burgers’ equation as well as the KdV equation the steep
slope can be observed. The soliton interaction and subsequent phase shift can
also be observed in case of the KdV interaction.

Table 5. Results for the KdV equation soliton interaction: maximal deviation of the
numerical solution from the exact solution max∆u and maximal relative deviation maxrel∆u
against the resolution parameter J with initial conditions (5.4) and boundary conditions
(4.11) (α = 1, cB = 10000, x0B = 1/5, cS = 10000/3, x0S = 2/5, x ∈ [0, 1], t ∈ [0, 0.6 ×
10−4]).

J 2M
max∆u maxrel∆u

HWM HOHWM HWM HOHWM

4 32 3951164 2246754 131.7054667 74.8918000

5 64 6210848 202544.7 207.0282667 6.7514900

6 128 1567.924 199.7707 0.052264 0.0066590

7 256 542.1262 14.4892 0.0180709 0.0004830

Tables 1–6 show that HOHWM generally gives a more accurate result than
HWM. In case of the wave equation (Table 1), the increase in c1 (which trans-
lates into an increase in the slope) also increases the error of both methods
while HOHWM remains more accurate. The Burgers’ equation at the values
of ν that were used introduces such a steep slope that at lower resolutions,
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Figure 2. Typical calculated results for HOHWM. (a) Wave equation (c1 = 60, J = 7
with boundary conditions (4.5) and initial condition (5.1)); (b) Burgers’ equation

(ν = 1
100π

, J = 7 with boundary conditions (4.8) and initial condition (5.2)); (c) KdV
single soliton solution (α = 1, c = 1000, x0 = 1/4, J = 7 with boundary conditions (4.11)

and initial conditions (5.3)); (d) Interaction of KdV solitons (α = 1, cB = 10000,
x0B = 1/5, cS = 10000/3, x0S = 2/5, J = 7 with boundary conditions (4.11) and initial

conditions (5.4)).

Table 6. Results for the KdV equation soliton interaction: maximal deviation of the
numerical solution from the exact solution max∆u and maximal relative deviation maxrel∆u
against the resolution parameter J with initial conditions (5.4) and boundary conditions
(4.11) (α = 6, cB = 10000, x0B = 1/5, cS = 10000/3, x0S = 2/5, x ∈ [0, 1], t ∈ [0, 0.6 ×
10−4]).

J 2M
max∆u maxrel∆u

HWM HOHWM HWM HOHWM

4 32 215719.2 380037.1 43.1438400 76.0074200

5 64 104514.6 31103.69 20.9029200 6.2207380

6 128 260.845 33.305 0.0521690 0.0066610

7 256 90.35663 2.415028 0.0180713 0.0004830

neither method is able to successfully calculate the solution. This is due to
the fact that the collocation points are used and at a low resolution, no collo-
cation point falls within the slope. However, it is clear that HOHWM is able
to perform calculations further in time before diminishing in accuracy, making
it advantageous here as well. Figure 1 shows that HOHWM remains stable
for a longer time than HWM since the former does not reach such high error
throughout the integration.

In case of the one soliton solutions of the KdV equation, HOHWM again
shows a higher accuracy than HWM. It can be noted from Tables 3 and 4 that
the HOHWM is more accurate at J = 5 (2M = 64) than HWM is at J = 7
(2M = 256).

While the results are not directly comperable with [50] due to the difference
in domain as well as values of c and differences in presenting error analysis,
some comparison can be made. The maximum relative deviation from the exact
solution can be compared. Such a comparison between [50] and results in Table
4 is carried out in Table 7. While the result with HWM is not as accurate as
that of [50] the results with HOHWM surpass the referenced results.
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Table 7. Comparison to [50]: maximal relative deviation from the exact solution at J = 7.

[50] HWM HOHWM

0.00041236 0.001688031 0.0002817978

The KdV soliton interactions show an interesting phenomenon, however.
From Tables 5 and 6 one can see that at lower resolutions neither method can
successfully solve the problem. This is caused by the fact that one now has two
relatively localized solitary waves and at lower resolutions no collocation point
falls within these localized solitary waves. However, at higher resolutions, one
can clearly see the advantages of HOHWM over HWM as the former shows a
significant boost in accuracy.

6 Conclusions

The HOHWM has been adapted for solving partial differential equations nu-
merically. The results obtained by the widely used HWM were compared with
those obtained by the HOHWM. The Burgers’ equation and the KdV equation
were considered as model equations.

Our numerical experiments demonstrated that both methods, the HWM
and the HOHWM, were able to provide numerical solutions that are in good
agreement with the exact analytical solutions. The detailed comparison of
the accuracy of the HWM and the HOHWM was performed in Section 5. It
is shown that HOHWM can be preferred where high accuracy is required.
Furthermore, the HOHWM can also be preferred in cases where high accuracy
is not required by applying the method at a lower resolution in comparison
with HWM.

Solving the system of algebraic equations is the most computationally ex-
pensive task within Haar wavelet based methods. However, the algebraic sys-
tems of equations are of the same dimension and have the same symmetric
properties for the HWM as well as for the HOHWM. Even though some ex-
pressions needed to evaluate are more complex in case of HOHWM, in general
it can be concluded that the numerical complexity of the HOHWM is only
slightly higher than that of the HWM at the same resolution. It would be
more pragmatic to estimate computational complexity of the solution provid-
ing the same accuracy, however. For example, in the case of single KdV-soliton
solution (Tables 3 and 4), one can use HWM with 256 collocation points or
HOHWM with 64 collocation points in order to obtain the same degeree of
accuracy. Solving a 64 × 64 algebraic system is substantially computationally
cheaper than solving a 256 × 256 system. Therefore, it is possible to obtain
the results with the same accuracy as HWM with lower computational cost by
applying HOHWM.

The Fourier transform related pseodospectral method is known as a power-
ful tool for numerical solution of evolution equations because it is able to pro-
duce high accuracy at relatively low number of collocation points [22]. However,
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this method has a disadvantage: because of the nature of the Fourier transform
one must apply periodic boundary conditions. Haar wavelet related methods
do not have such a disadvantage and one can solve PDEs numerically applying
arbitrary boundary conditions in case of the HWM and arbitrary time inde-
pendent boundary conditions in case of the HOHWM. In order to use time
dependent boundary conditions with HOHWM a different numerical scheme
must be applied to approximate the temporal derivatives.
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[53] Ö. Oruç, A. Esen and F. Bulut. A Haar wavelet approximation for two-
dimensional time fractional reaction–subdiffusion equation. Eng. Comput.,
35(1):75–86, Jan 2019. ISSN 1435-5663. https://doi.org/10.1007/s00366-018-
0584-8.

[54] M. Remoissenet. Waves called solitons: concepts and experiments. Springer,
2013.

[55] A. Salupere. The pseudospectral method and discrete spectral analysis. In Ewald
Quak and Tarmo Soomere(Eds.), Applied Wave Mathematics: Selected Topics
in Solids, Fluids, and Mathematical Methods, pp. 301–333. Springer, 2009.

[56] A. Salupere, J. Engelbrecht, O. Ilison and L. Ilison. On solitons in microstruc-
tured solids and granular materials. Math. Comput. Simulation, 69:502–513,
2005. https://doi.org/10.1016/j.matcom.2005.03.015.

[57] A. Salupere, P. Peterson and J. Engelbrecht. Long-time behaviour of soliton
ensembles. Part I–Emergence of ensembles. Chaos Solitons Fractals, 14(9):1413–
1424, 2002. https://doi.org/10.1016/S0960-0779(02)00069-3.

[58] A. Salupere and M. Ratas. On the application of 2D discrete spectral anal-
ysis in case of the kp equation. Mech. Research Comm., 93:141– 147, 2018.
https://doi.org/10.1016/j.mechrescom.2017.08.010.

Math. Model. Anal., 25(2):271–288, 2020.

https://doi.org/10.1063/1.4952346
https://doi.org/10.1016/j.compstruct.2015.02.050
https://doi.org/10.1143/JJAP.17.811
https://doi.org/10.1016/j.matcom.2019.04.010
https://doi.org/10.1016/j.camwa.2018.11.018
https://doi.org/10.1007/s10910-015-0507-5
https://doi.org/10.1007/s12043-016-1286-7
https://doi.org/10.1007/s00009-016-0682-z
https://doi.org/10.11121/ijocta.01.2017.00396
https://doi.org/10.1007/s00366-018-0584-8
https://doi.org/10.1007/s00366-018-0584-8
https://doi.org/10.1016/j.matcom.2005.03.015
https://doi.org/10.1016/S0960-0779(02)00069-3
https://doi.org/10.1016/j.mechrescom.2017.08.010


288 M. Ratas

[59] I. Sertakov, J. Engelbrecht and J. Janno. Modelling 2D wave motion
in microstructured solids. Mech. Research Comm., 56:42 – 49, 2014.
https://doi.org/10.1016/j.mechrescom.2013.11.007.

[60] A. Setia, B. Prakash and A.S. Vatsala. Haar based numerical solution of
Fredholm–Volterra fractional integro-differential equation with nonlocal bound-
ary conditions. In AIP Conference Proceedings, volume 1798, p. 020140. AIP
Publishing, 2017. https://doi.org/10.1063/1.4972732.

[61] L.F. Shampine and M.W. Reichelt. The MATLAB ODE suite. SIAM J. Sci.
Comput., 18(1):1–22, 1997. https://doi.org/10.1137/S1064827594276424.

[62] X. Si, C. Wang, Y. Shen and L. Zheng. Numerical method to initial-
boundary value problems for fractional partial differential equations with
time-space variable coefficients. Appl. Math. Model, 40(7-8):4397–4411, 2016.
https://doi.org/10.1016/j.apm.2015.11.039.

[63] Siraj-ul-Islam, I. Aziz and A.S. Al-Fhaid. An improved method based on Haar
wavelets for numerical solution of nonlinear integral and integro-differential equa-
tions of first and higher orders. Comput. Appl. Math., 260:449–469, 2014.
https://doi.org/10.1016/j.cam.2013.10.024.

[64] T.J. Wang and T. Sun. Mixed pseudospectral method
for heat transfer. Math. Mod. Anal., 21(2):199–219, 2016.
https://doi.org/10.3846/13926292.2016.1146925.

[65] N. Wichailukkanaa, B. Novaprateepa and C. Boonyasiriwatc. A conver-
gence analysis of the numerical solution of boundary-value problems by
using two-dimensional Haar wavelets. ScienceAsia, 42(5):346–355, 2016.
https://doi.org/10.2306/scienceasia1513-1874.2016.42.346.

[66] X. Xiang, J. Guoyong, L. Wanyou and L. Zhigang. A numerical so-
lution for vibration analysis of composite laminated conical, cylindrical
shell and annular plate structures. Compos. Struct., 111:20–30, 2014.
https://doi.org/10.1016/j.compstruct.2013.12.019.

[67] X. Xie, G. Jin and Z. Liu. Free vibration analysis of cylindrical shells
using the Haar wavelet method. Int. J. Mech. Sci., 77:47–56, 2013.
https://doi.org/10.1016/j.ijmecsci.2013.09.025.

[68] X. Xie, G. Jin, Y. Yan, S.X. Shi and Z. Liu. Free vibration analysis of composite
laminated cylindrical shells using the Haar wavelet method. Compos. Struct.,
109:169–177, 2014. https://doi.org/10.1016/j.compstruct.2013.10.058.

[69] X. Xie, G. Jin, T. Ye and Z. Liu. Free vibration analysis of functionally graded
conical shells and annular plates using the Haar wavelet method. Appl. Acoust.,
85:130–142, 2014. https://doi.org/10.1016/j.apacoust.2014.04.006.

[70] T. Yoneyama. The Korteweg–de Vries two-soliton solution as interact-
ing two single solitons. Progr. Theoret. Phys., 71(4):843–846, 1984.
https://doi.org/10.1143/PTP.71.843.

https://doi.org/10.1016/j.mechrescom.2013.11.007
https://doi.org/10.1063/1.4972732
https://doi.org/10.1137/S1064827594276424
https://doi.org/10.1016/j.apm.2015.11.039
https://doi.org/10.1016/j.cam.2013.10.024
https://doi.org/10.3846/13926292.2016.1146925
https://doi.org/10.2306/scienceasia1513-1874.2016.42.346
https://doi.org/10.1016/j.compstruct.2013.12.019
https://doi.org/10.1016/j.ijmecsci.2013.09.025
https://doi.org/10.1016/j.compstruct.2013.10.058
https://doi.org/10.1016/j.apacoust.2014.04.006
https://doi.org/10.1143/PTP.71.843

	Introduction
	Haar wavelet family
	Model equations
	Haar wavelet methods
	Wave equation
	Burgers' equation
	KdV equation

	Numerical results
	Conclusions
	References

