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1 Introduction

Let Ω ⊆ RN be a bounded domain with a C2-boundary ∂Ω. We study the
following nonlinear parametric Robin problem−div a(∇u(z)) + ξ(z)|u(z)|p−2u(z) = λf(z, u(z)) in Ω,

∂u

∂na
+ β(z)|u|p−2u = 0 on ∂Ω, λ > 0, 1 < p < +∞.

(Pλ)

In this problem, the map a : RN → RN involved in the differential operator
of (Pλ), is strictly monotone and continuous, hence maximal monotone too.
It satisfies certain other growth and regularity conditions, listed in hypotheses
H(a) below. These conditions are not restrictive and provide a broad frame-
work in which we can fit many differential operators of interest such as the
p-Laplacian, the (p, q)-Laplacian (that is, the sum of a p-Laplacian and of a q-
Laplacian) and the modified capillary differential operator. We point out that
the differential operator is not homogeneous and this is a source of difficulties
in the analysis of problem (Pλ). The potential function ξ(·) ∈ L∞(Ω) and
ξ(z) ≥ 0 for a.a. z ∈ Ω. The source term λf(z, x) is parametric with λ > 0 be-
ing the parameter and f(z, x) a Carathéodory function (that is, for all x ∈ R,
z → f(z, x) is measurable and for a.a. z ∈ Ω, x → f(z, x) is continuous).
The interesting and distinguishing feature of our work is that this source term
f(z, ·) is only locally defined, that is, we only fix the properties of f(z, ·) near
zero. Away from that neighborhood of zero, f(z, ·) can be arbitrary.

In the boundary condition, ∂u
∂na

denotes the conormal derivative of u cor-
responding to the map a(·). This derivative is understood via the nonlinear
Green’s identity (see Papageorgiou-Rǎdulescu-Repovš [16], Corollary 1.5.16, p.
34) and when u ∈ C1(Ω), then

∂u

∂na
= (a(∇u), n)RN

with n(·) being the outward unit normal on ∂Ω. The boundary coefficient
β(·) is nonnegative. The case β ≡ 0 is also included and corresponds to the
Neumann problem.

Using suitable cut-off techniques together with variational tools based in
the critical point theory, we show that for all λ > 0 big problem (Pλ) has at
least three nontrivial smooth solutions all with sign information, a positive, a
negative and a nodal (sign changing) solutions.

The first to examine parametric elliptic equations with a source term defined
only locally, was Wang [20], who studied a semilinear equation driven by the
Dirichlet Laplacian. Imposing a local symmetry condition on the source term
(it is assumed that it is odd), Wang [20] proves that for every parameter value
λ > 0, the problem has a whole sequence {un}n≥1 ⊆ H1

0 (Ω) ∩ L∞(Ω) of weak
solutions such that ‖un‖∞ → 0 as n → +∞. The work of Wang [20] was
extended by Li-Wang [7] to semilinear Schrödinger equations. Extensions of
these results were obtained by Papageorgiou-Vetro-Vetro [18] (semilinear Robin
problems), Papageorgiou-Rǎdulescu-Repovš [15] (nonlinear Robin problems)
and Papageorgiou-Rǎdulescu-Repovš [14] (Dirichlet (p, 2)-equations). In all
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the aforementioned works the source term is symmetric near zero and this
leads to an application of a version of the symmetric mountain pass theorem,
which generates the desired sequence of distinct nodal solutions. In contrast
here we do not impose any symmetry condition on f(z, ·). Finally we should
mention the recent paper of Guarnotta-Marano-Papageorgiou [5]. There the
authors also deal with a nonlinear Robin problem driven by a nonhomogeneous
differential operator plus an indefinite potential term. However, in [5] the
reaction term is nonparametric and this changes the hypotheses on the reaction
and consequently the geometry of the problem and the approach used. In [5] it
is assumed that the reaction has constant sign near zero (see hypothesis (f1))
and this is crucial in the analysis since is the reason for which the reaction is
only locally defined. In contrast here we rely on cut-off techniques. Moreover,
the asymptotic condition as x→ 0 on the reaction is in our case different and
do not require the presence of a concave term near zero (compare H(f) (i), (ii)
of this paper with (f3), (f4) of [5]). All these facts distinguish our work here
from that of [5] and for that reason the tools and techniques are different.

2 Mathematical background – hypotheses

Let l ∈ C1((0,+∞)) with l(t) > 0 for all t > 0. We assume the following:

0 < ĉ ≤ tl′(t)/l(t) ≤ c0 and c1t
p−1 ≤ l(t) ≤ c2[ts−1 + tp−1]

for all t > 0, with 1 ≤ s < p < +∞, c1, c2 > 0.
Then the hypotheses on the map a(·) involved in the definition of the dif-

ferential operator are the following:

H(a): a(y) = a0(|y|)y for all y ∈ RN with a0(t) > 0 for all t > 0 and

(i) a0 ∈ C1((0,+∞)), t→ a0(t)t is strictly increasing on (0,+∞), a0(t)t→ 0+

as t→ 0+ and lim
t→0+

a′0(t)t
a0(t)

> −1;

(ii) there exists c3 > 0 such that |∇a(y)| ≤ c3 l(|y|)|y| for all y ∈ RN \ {0};

(iii) (∇a(y)ξ, ξ)RN ≥ l(|y|)
|y| |ξ|

2 for all y ∈ RN \ {0}, all ξ ∈ RN ;

(iv) if G0(t) =
∫ t
0
a0(s)s ds for all t > 0, then pG0(t)− a0(t)t2 ≥ 0 for all t > 0

and for some q ∈ (1, p) we have lim
t→0

G0(t)
tq ≤ c∗, some c∗ > 0.

Remark 1. Hypotheses H(a) (i), (ii), (iii) come from the nonlinear regularity
theory of Lieberman [8] and the nonlinear maximum principle of Pucci-Serrin
[19], while hypothesis H(a) (iv) is motivated by the particular needs of our
problem. However, the condition is mild and it is satisfied in all cases of
interest.

Clearly G0(·) is strictly increasing and strictly convex. We set G(y) =
G0(|y|) for all y ∈ RN . Then G(·) is convex and differentiable and we have

∇G(y) = G′0(|y|) y
|y|

= a0(|y|)y = a(y) for all y ∈ RN \ {0}.
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Therefore G(·) is the primitive of a(·) and from the convexity of G(·) and since
G(0) = 0, we have

G(y) ≤ (a(y), y)RN for all y ∈ RN . (2.1)

Hypotheses H(a) lead to the following properties of the map a(·) (see Papa-
georgiou-Rǎdulescu [11]).

Lemma 1. If hypotheses H(a) (i), (ii), (iii) hold, then

(a) a(·) is continuous and strictly monotone (thus maximal monotone too);

(b) |a(y)| ≤ c4[|y|s−1 + |y|p−1] for some c4 > 0, all y ∈ RN ;

(c) (a(y), y)RN ≥
c1

p− 1
|y|p for all y ∈ RN .

This lemma and (2.1) lead to the following bilateral growth estimates for
the primitive G(·).

Corollary 1. If hypotheses H(a) (i), (ii), (iii) hold, then

c1
p(p− 1)

|y|p ≤ G(y) ≤ c5[1 + |y|p] for some c5 > 0, all y ∈ RN .

The examples that follow show that the framework provided by these con-
ditions on a(·), is broad an includes as special cases many differential operators
of interest (see Papageorgiou-Rǎdulescu [11]).

Example 1. (a) a(y) = |y|p−2y with 1 < p < +∞.
This map corresponds to the p-Laplace differential operator defined by

∆pu = div (|∇u|p−2∇u) for all u ∈W 1,p(Ω).

(b) a(y) = |y|p−2y + |y|q−2y with 1 < q < p < +∞.
This map corresponds to the (p, q)-Laplace differential operator defined by

∆pu+∆qu for all u ∈W 1,p(Ω).

Such operators arise in many models of physical phenomena which involve
the combination of two operators of different nature. We mention the works
of Benci-D’Avenia-Fortunato-Pisani [2] (quantum physics – soliton solutions),
Cherfils-Il′yasov [3] (reaction-diffusion systems) and Zhikov [21, 22] (elasticity
theory). A survey of some recent results concerning such equations, can be
found in the paper of Marano-Mosconi [9]. Also, we mention the work of
Papageorgiou-Vetro [17] on (p, q)-equations with variable exponents.

(c) a(y) =
[
1 + |y|2

] p−2
2 y with 1 < p < +∞.

This map corresponds to the modified capillary differential operator, given by

div
[ (

1 + |∇u|2
) p−2

2 ∇u
]

for all u ∈W 1,p(Ω).

(d) a(y) = |y|p−2y
[
1 + 1

1+|y|p

]
with 1 < p < +∞.
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The differential operator corresponding to this map is

∆pu+ div
( |∇u|p−2

1 + |∇u|2
∇u
)

for all u ∈W 1,p(Ω)

and appears in problems of plasticity theory (see [11]).

By A : W 1,p(Ω)→W 1,p(Ω)∗ we denote the nonlinear map defined by

〈A(u), h〉 =

∫
Ω

(a(∇u),∇h)RNdz for all u, h ∈W 1,p(Ω).

This map is bounded (that is, maps bounded sets to bounded sets), con-
tinuous and monotone (thus maximal monotone too). If u, v ∈ W 1,p(Ω) and
v ≤ u, then

[v, u] =
{
h ∈W 1,p(Ω) : v(z) ≤ h(z) ≤ u(z) for a.a. z ∈ Ω

}
.

Also by intC1(Ω)[v, u] we denote the interior in the C1(Ω)-norm topology of

[v, u] ∩ C1(Ω). Finally by δkm we denote the Kronecker symbol defined by

δkm =

{
1 if k = m

0 if k 6= m
, k,m ∈ N0.

The hypotheses on the potential function ξ(·) and the boundary coefficient
β(·) are:

H(ξ) : ξ(·) ∈ L∞(Ω), ξ(z) ≥ 0 for a.a. z ∈ Ω.

H(β) : β(·) ∈ C0,α(∂Ω) with α ∈ (0, 1) and β(z) ≥ 0 for all z ∈ ∂Ω.

H0 : ξ 6≡ 0 or β 6≡ 0.

Remark 2. Evidently the case β ≡ 0 is included and corresponds to the Neu-
mann problem.

The next lemma can be found in Mugnai-Papageorgiou [10] (Lemma 4.11).
In the sequel by ‖ · ‖ we denote the norm of the Sobolev space W 1,p(Ω) defined
by

‖u‖ =
[
‖u‖pp + ‖∇u‖pp

]1/p
for all u ∈W 1,p(Ω).

Lemma 2. If ξ0(·) ∈ L∞(Ω), ξ0(z) ≥ 0 for a.a. z ∈ Ω and ξ0 6≡ 0, then there
exists c6 > 0 such that ‖∇u‖pp +

∫
Ω
ξ0(z)|u|pdz ≥ c6‖u‖p for all W 1,p(Ω).

Let σ(·) denote (N − 1)-dimensional Hausdorff (surface) measure on ∂Ω.
Using this measure, we can define in the usual way the boundary Lebesgue
spaces Lr(∂Ω) with 1 ≤ r ≤ +∞. We know that there exists a unique con-
tinuous linear map γ0 : W 1,p(Ω) → Lp(∂Ω), known as the “trace map”, such
that

γ0(u) = u
∣∣∣
∂Ω

for all u ∈W 1,p(Ω) ∩ C(Ω).
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This map is compact, im γ0 = W
1
p′ ,p(∂Ω)

(
1
p + 1

p′ = 1
)

and ker γ0 =

W 1,p
0 (Ω). In the sequel, for the sake of notational simplicity, we drop the

use of the trace map γ0(·). All restrictions of Sobolev functions are understood
in the sense of traces.

The next lemma can be found in Gasiński-Papageorgiou [4] (Proposition
2.4).

Lemma 3. If β0(·) ∈ L∞(∂Ω), β0(z) ≥ 0 for σ-a.a. z ∈ ∂Ω and β0 6≡ 0, then

u→
[
‖∇u‖pp +

∫
∂Ω

β0(z)|u|pdσ
]1/p

is an equivalent norm on W 1,p(Ω).

Consider the C1-functional γ : W 1,p(Ω)→ R defined by

γ(u) =

∫
Ω

pG(∇u)dz +

∫
Ω

ξ(z)|u|pdz +

∫
∂Ω

β(z)|u|pdσ for all u ∈W 1,p(Ω).

From Corollary 1 and Lemmata 2 and 3, we infer that there exists c7 > 0
such that

c7‖u‖p ≤ γ(u) for all u ∈W 1,p(Ω). (2.2)

Now we introduce the conditions on the source term f(z, x). Note that by
p∗ > 1 we denote the critical Sobolev exponent corresponding to p and defined
by

p∗ =


Np

N − p
if N > p,

+∞ if p ≥ N.

H(f) : f : Ω × R → R is a Carathéodory function such that f(z, 0) = 0 for
a.a. z ∈ Ω and

(i) there exist ĉ1, ĉ2 > 0 and r ∈ (p, p∗) such that uniformly for a.a.
z ∈ Ω

−ĉ1 ≤ lim inf
x→0

f(z, x)

|x|r−2x
≤ lim sup

x→0

f(z, x)

|x|r−2x
≤ ĉ2

,

(ii) if F (z, x) =
∫ x
0
f(z, s)ds, then there exists τ ∈ (r, p∗) such that

lim
x→0

F (z, x)

|x|τ
= +∞ uniformly for a.a. z ∈ Ω;

(iii) if x 6= 0, then f(z, x) 6= 0 for all z ∈ Ω.

Remark 3. We emphasize that conditions (i) and (ii) concern only the behavior
of f(z, ·) near zero. There are no conditions concerning the behavior of x →
f(z, x) for |x| big. Also we point out that no local sign condition is assumed
on f(z, ·).

On account of hypotheses H(f) (i), (ii) we see that we can find δ0 ∈ (0, 1]
and c8 > 1 such that

|f(z, x)| ≤ c8|x|r−1, |F (z, x)| ≤ c8
r
|x|r, F (z, x) ≥ |x|τ (2.3)

Math. Model. Anal., 25(3):374–390, 2020.
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for a.a. z ∈ Ω, all |x| ≤ δ0.
Let ϑ ∈ (0, δ0) and consider a cut-off function η ∈ C1

c (R) such that

supp η ⊆ [−ϑ, ϑ], 0 ≤ η ≤ 1, η
∣∣
[−ϑ/2,ϑ/2] ≡ 1. (2.4)

We introduce the following modification of the source term

f̂(z, x) = η(x)f(z, x) + (1− η(x))|x|r−2x. (2.5)

Evidently f̂(z, x) is a Carathéodory function. We set F̂ (z, x)=
∫ x
0
f̂(z, s)ds.

Also, we consider the positive and negative truncations of f̂(z, ·), namely the

Carathéodory functions f̂±(z, x)=f̂(z,±x±). We set F̂±(z, x)=
∫ x
0
f̂±(z, s)ds.

From (2.3)–(2.5) it follows that

|f̂(z, x)| ≤ c9|x|r−1 for a.a. z ∈ Ω, all x ∈ R, some c9 > 0,

⇒ |F̂ (z, x)| ≤ c9
r
|x|r for a.a. z ∈ Ω, all x ∈ R. (2.6)

Finally we recall the definition of critical groups for a C1-functional at
an isolated critical point. We will use critical groups to distinguish between
critical points. So, let X be a Banach space and ϕ ∈ C1(X). We introduce the
following sets

Kϕ = {u ∈ X : ϕ′(u) = 0} and ϕc = {u ∈ X : ϕ(u) ≤ c} with c ∈ R.

For every topological pair (Y1, Y2) with Y2 ⊆ Y1 ⊆ X and every integer
k ≥ 0, by Hk(Y1, Y2) we denote the kth-singular homology group with integer
coefficients. Then for u ∈ Kϕ isolated and c = ϕ(u), the critical groups of ϕ at
u are defined by

Ck(ϕ, u) = Hk(ϕc ∩ U,ϕc ∩ U \ {u}) for all k ∈ N0

with U a neighborhood of u such that Kϕ ∩ ϕc ∩ U = {u}. The excision
property of singular homology guarantees that this definition is independent of
the choice of the isolating neighborhood.

3 Constant sign solutions

In this section we show that for all λ > 0 big problem (Pλ) has at least two
smooth constant sign solutions.

Proposition 1. If hypotheses H(f) hold, then the functions f̂±(z, x) satisfy
the AR-condition (the Ambrosetti-Rabinowitz condition, see [1]).

Proof. We do the proof for the positive truncation f̂+(z, x). The proof for the
negative truncation is done similarly.

Let x > ϑ. We have

F̂ (z, x) =

∫ x

0

f̂(z, s)ds =

∫ ϑ

0

[η(s)f(z, s) + (1− η(s))sr−1]ds+

∫ x

ϑ

sr−1ds

≤ c10
r
ϑr +

1

r
[xr − ϑr] for some c10 > 0 (see (2.3)–(2.5)). (3.1)
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Also since x > ϑ, we have f̂(z, x)x = |x|r (see (2.4), (2.5)). Let µ ∈ (p, r).
We have (see (2.6), (3.1)):

f̂(z, x)x− µF̂ (z, x) ≥
[
1− µ

r

]
xr − µ

r
[c8 − 1]ϑr. (3.2)

We choose M+ > ϑ big so that[
1− µ

r

]
Mr

+ ≥
µ

r
[c8 − 1]ϑr > 0 (recall c8 > 1).

Using this in (3.2), we infer that

f̂(z, x)x ≥ µF̂ (z, x) for a.a. z ∈ Ω, all x ≥M+ > ϑ. (3.3)

Also note that

F̂ (z,M+) ≥
∫ M+

ϑ

sr−1ds =
1

r

[
Mr

+ − ϑr
]

for a.a. z ∈ Ω,

⇒ essinfΩF̂ (·,M+) > 0. (3.4)

Moreover, from the above it is also clear that

F̂ (z, x) > 0 for a.a. z ∈ Ω, all x ≥M+. (3.5)

From (3.3)–(3.5) it follows that f̂+ satisfies the AR-condition. Similarly for

f̂−(z, x). ut

We consider the following nonlinear parametric Robin problem−div a(∇u(z)) + ξ(z)|u(z)|p−2u(z) = λf̂(z, u(z)) in Ω,
∂u

∂na
+ β(z)|u|p−2u = 0 on ∂Ω.

(Qλ)

For this problem when λ > 0 is big, we can have constant sign smooth solutions.
Recall that the Banach space C1(Ω) is ordered with positive (order) cone

C+ =
{
u ∈ C1(Ω) : u(z) ≥ 0 for all z ∈ Ω

}
.

This cone has a nonempty interior given by

intC+ =
{
u ∈ C+ : u(z) > 0 for all z ∈ Ω

}
.

Proposition 2. If hypotheses H(a), H(ξ), H(β), H0, H(f) hold, then there
exists λ0 > 0 such that for all λ ≥ λ0 problem (Qλ) has a positive solution
uλ ∈ intC+ and a negative solution vλ ∈ −intC+.

Proof. We do the proof for the positive solution, the proof for the negative
solution being similar.

We consider the C1-functional ϕ̂+
λ : W 1,p(Ω)→ R defined by

ϕ̂+
λ (u) =

1

p
γ(u)− λ

∫
Ω

F̂+(z, u)dz =
1

p
γ(u)− λ

∫
Ω

F̂ (z, u+)dz

Math. Model. Anal., 25(3):374–390, 2020.
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for all u ∈W 1,p(Ω). Using (2.2) and (2.6), we have

ϕ̂+
λ (u) ≥ c7‖u‖p − λc11‖u‖r for some c11 > 0, all u ∈W 1,p(Ω)

= [c7 − λc11‖u‖r−p]‖u‖p.

We see that, if we choose ρλ < [c7/(λc11)]
1
r−p , then

ϕ̂+
λ (u) ≥ m̂+

λ > 0 for all u ∈W 1,p(Ω) with ‖u‖ = ρλ. (3.6)

Let u+ = ϑ/2 ∈W 1,p(Ω). We have (see (2.3)–(2.5)):

ϕ̂+
λ (u+) ≤ ϑp

p

[
‖ξ‖1 + ‖β‖L1(∂Ω)

]
− λϑτ |Ω|N

⇒ ϕ̂+
λ (u+) ≤ c12 − λc13 for some c12, c13 > 0.

Here by |Ω|N we denote the Lebesgue measure of Ω.

Note that ρλ → 0+ as λ→ +∞. So, we can find λ+0 ≥
c12
c13

such that

ϕ̂+
λ (u+) ≤ 0 and ‖u+‖ > ρλ for all λ ≥ λ+0 . (3.7)

From Proposition 1 we know that f̂+ satisfies the AR-condition. It follows
that

ϕ̂+
λ satisfies the PS-condition. (3.8)

From (3.6)–(3.8) we see that we can apply the mountain pass theorem and
find uλ ∈W 1,p(Ω) such that

uλ ∈ Kϕ̂+
λ

and ϕ̂+
λ (0) = 0 < m̂+

λ ≤ ϕ̂
+
λ (uλ). (3.9)

From (3.9) we have uλ 6= 0 and

(ϕ̂+
λ )′(uλ) = 0, ⇒ 〈A(uλ), h〉+

∫
Ω

ξ(z)|uλ|p−2uλhdz

+

∫
∂Ω

β(z)|uλ|p−2uλhdσ = λ

∫
Ω

f̂(z, u+λ )hdz (3.10)

for all h ∈W 1,p(Ω). In (3.10) we choose h = −u−λ ∈W 1,p(Ω) and obtain

c1
p− 1

‖∇u−λ ‖
p
p +

∫
Ω

ξ(z)(u−λ )pdz +

∫
∂Ω

β(z)(u−λ )pdσ ≤ 0 (see Lemma 1),

⇒ c14‖u−λ ‖
p ≤ 0 for some c14 > 0 (see Lemmata 2, 3 and hypothesis H0),

⇒ uλ ≥ 0, uλ 6= 0.

From (3.10) we have−div a(∇uλ) + ξ(z)up−1λ = λf(z, uλ) for a.a. z ∈ Ω,
∂uλ
∂na

+ β(z)up−1λ = 0 on ∂Ω.
(3.11)
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From (3.11) and Proposition 2.10 of Papageorgiou-Rǎdulescu [12], we have
that uλ ∈ L∞(Ω). Hence from Lieberman [8], we infer that uλ ∈ C+ \ {0}.
From (3.11) we have

div a(∇uλ) ≤
[
‖ξ‖∞ + λ‖uλ‖r−p∞

]
up−1λ for a.a. z ∈ Ω, ⇒ uλ ∈ intC+

(from the nonlinear maximum principle, see Pucci-Serrin [19]).

Similarly, if we work with the C1-functional ϕ̂−λ : W 1,p(Ω)→ R defined by

ϕ̂−λ (u) =
1

p
γ(u)− λ

∫
Ω

F̂−(z, u)dz =
1

p
γ(u)− λ

∫
Ω

F̂ (z,−u−)dz

for all u ∈ W 1,p(Ω), via the mountain pass theorem, we produce a negative
solution vλ ∈ −intC+ for all λ ≥ λ−0 .

Let λ0 = max{λ+0 , λ
−
0 }. Then for λ ≥ λ0 problem (Qλ) has two constant

sign solutions uλ ∈ intC+, vλ ∈ −intC+. ut

Proposition 3. If hypotheses H(a), H(ξ), H(β), H0, H(f) hold and λ ≥ λ0,
then uλ, vλ → 0 in C1(Ω) as λ→ +∞.

Proof. From the proof of Proposition 2 we know that

ϕ̂+
λ (uλ) = inf

γ̂∈Γ
max
0≤t≤1

ϕ̂+
λ (γ̂(t)), (3.12)

where Γ = {γ̂ ∈ C([0, 1],W 1,p(Ω)) : γ̂(0) = 0, γ̂(1) = u+} (since uλ ∈ Kϕ+
λ

is

of mountain pass type). From (2.3) and (2.5) we see that

F̂ (z, x) ≥ c15|x|τ for a.a. z ∈ Ω, all |x| ≤ δ0, some c15 > 0. (3.13)

Consider the function kλ : R+ → R defined by

kλ(t) =
tpup+
p

[
‖ξ‖1 + ‖β‖L1(∂Ω)

]
− λc15tτuτ+|Ω|N , t > 0.

This function is differentiable, unbounded below (recall that τ > p) and attains

its supremum on R+ at t0 > 0. Let c16 =
up+
p

[
‖ξ‖1 + ‖β‖L1(∂Ω)

]
> 0 and

c17 = c15u
τ
+|Ω|N > 0. We have

k′λ(t0) = 0, ⇒ pc16t
p−1
0 = λτc17t

τ−1
0 , ⇒ t0 =

[
pc16
λτc17

] 1
τ−p

.

We have
kλ(t0) ≤ c18/λ

p
τ−p for some c18 > 0, all λ ≥ λ0.

On account of (3.12) we have

ϕ̂+
λ (uλ) ≤ max

0≤t≤1
ϕ̂+
λ (tu+) ≤ max

0≤t≤1
kλ(t) ≤ kλ(t0) (since t0 > 0 is

the maximizer of kλ(·) on R+) ≤ c18/λ
p

τ−p . (3.14)
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Now consider a sequence λn → +∞ and let un = uλn ∈ intC+ for all n ∈ N.
With µ ∈ (p, r) as in the proof of Proposition 1, we have

µϕ̂+
λ (un) =

µ

p
γ(un)− λn

∫
Ω

µF̂ (z, un)dz ≤ µc18/λ
p

τ−p
n (3.15)

for all n ∈ N (see (3.14)). Also, for all n ∈ N, we have

〈(ϕ̂+
λn

)′(un), un〉 = 0 ⇒ −
∫
Ω

(a(∇un),∇un)RNdz

−
∫
Ω

ξ(z)upndz −
∫
∂Ω

β(z)upndσ + λn

∫
Ω

f̂(z, un)undz = 0. (3.16)

Adding (3.15) and (3.16), we obtain

(µ− p)
∫
Ω

G(∇un)dz +

∫
Ω

[pG(∇un)− (a(∇un),∇un)RN ] dz

+

(
µ

p
− 1

)∫
Ω

ξ(z)upndz +

(
µ

p
− 1

)∫
∂Ω

β(z)upndσ

+ λn

∫
Ω

[
f̂(z, un)un − µF̂ (z, un)

]
dz ≤ µc18/λ

p
τ−p
n ≤ µc18/λ

p
τ−p
1 .

Using Lemma 1, hypothesis H(a) (iv) and Proposition 1 (see its proof), we
obtain(

µ

p
− 1

)
c1‖∇un‖pp +

(
µ

p
− 1

)∫
Ω

ξ(z)upndz +

(
µ

p
− 1

)∫
∂Ω

β(z)upndσ

≤ c19/λ
p

τ−p
1 for some c19 > 0, all n ∈ N, ⇒ {un}n≥1 ⊆W 1,p(Ω) is bounded

(3.17)

(see Lemmata 2, 3 and recall µ > p). Recall that for all n ∈ N, we have−div a(∇un) + ξ(z)up−1n = λnf̂(z, un) for a.a. z ∈ Ω,
∂un
∂na

+ β(z)up−1n = 0 on ∂Ω.
(3.18)

Then from (3.17), (3.18) and Proposition 2.10 of Papageorgiou-Rǎdulescu
[12], we know that we can find c20 > 0 such that

un ∈ L∞(Ω) and ‖un‖∞ ≤ c20 for all n ∈ N.

Then the nonlinear regularity theory of Lieberman [8] implies that there exist
α ∈ (0, 1) and c21 > 0 such that

un ∈ C1,α(Ω) and ‖un‖C1,α(Ω) ≤ c21 for all n ∈ N. (3.19)

On account of (3.19) and the compact embedding of C1,α(Ω) into C1(Ω),
we have, at least for a subsequence, that un → û in C1(Ω). We must have û ≡ 0
or otherwise from (3.18) and hypothesis H(f) (iii), we have a contradiction.



Constant Sign and Nodal Solutions for Nonlinear Robin Equations 385

Therefore we conclude that λ → +∞ ⇒ uλ → 0 in C1(Ω). Similarly we
show that λ→ +∞⇒ vλ → 0 in C1(Ω). ut

We introduce the following two solution sets: Ŝ+
λ ={set of positive solutions

of (Qλ)}, Ŝ−λ = {set of negative solutions of (Qλ)}.
From Proposition 2, we have

∅ 6= Ŝ+
λ ⊆ intC+ and ∅ 6= Ŝ−λ ⊆ −intC+ for all λ ≥ λ0.

Moreover, from Papageorgiou-Rǎdulescu-Repovš [13] (see the proof of Propo-
sition 3.2), we have that

Ŝ+
λ is downward directed

(that is, if u1, u2∈Ŝ+
λ , then we can find û∈Ŝ+

λ such that û≤u1, û≤u2),

Ŝ−λ is upward directed

(that is, if v1, v2∈Ŝ−λ , then we can find v̂ ∈ Ŝ−λ such that v1 ≤ v̂, v2 ≤ v̂).

Proposition 4. If hypotheses H(a), H(ξ), H(β), H0, H(f) hold and λ ≥ λ0,

then problem (Qλ) has a smallest positive solution u∗λ ∈ Ŝ+
λ ⊆ intC+ and a

biggest negative solution v∗λ ∈ Ŝ
−
λ ⊆ −intC+.

Proof. Since Ŝ+
λ is downward directed, using Lemma 3.10, p. 178, of Hu-

Papageorgiou [6], we can find a decreasing sequence {un}n≥1 ⊆ Ŝ+
λ such that

inf
n≥1

un = inf Ŝ+
λ and 0 ≤ un ≤ u1 for all n ∈ N. (3.20)

We have

〈A(un), h〉+

∫
Ω

ξ(z)up−1n hdz +

∫
∂Ω

β(z)up−1n hdσ = λ

∫
Ω

f̂(z, un)hdz (3.21)

for all h ∈ W 1,p(Ω), all n ∈ N. Choosing h = un ∈ W 1,p(Ω) in (3.21) and
using (3.20), we infer that

{un}n≥1 ⊆W 1,p(Ω) is bounded.

Then as before (see the proof of Proposition 3), using the nonlinear regularity
theory, we show that

un → u∗λ in C1(Ω) as n→ +∞. (3.22)

Using h = un ∈W 1,p(Ω) in (3.21) and on account of Lemma 1, we have

c1
p− 1

‖∇un‖pp +

∫
Ω

ξ(z)|un|pdz +

∫
∂Ω

β(z)|un|pdσ

≤ λ
∫
Ω

f̂(z, un)undz for all n ∈ N,

⇒ c22‖un‖p ≤ λ
∫
Ω

f̂(z, un)undz for some c22 > 0, all n ∈ N (3.23)

(see Lemmata 2 and 3).
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Suppose that u∗λ = 0. Then

un → 0 in C1(Ω) (see (3.22)). (3.24)

Let yn = un/‖un‖, n ∈ N. Then ‖yn‖ = 1 for all n ∈ N and so we may assume
that

yn
w−→ y in W 1,p(Ω) and yn → y in Lp(Ω) and in Lp(∂Ω).

On account of (2.5), (3.24) and hypothesis H(f) (i), we have

f(z, un)

up−1n

=
f(z, un)

ur−1n

ur−pn → 0 for a.a. z ∈ Ω.

From (3.23) and via Fatou’s lemma, we have

0 < c22 ≤ lim sup
n→+∞

∫
Ω

f̂(z, un)

ur−1n

ur−pn yndz ≤ 0,

a contradiction. So, u∗λ 6= 0. Passing to the limit as n → +∞ in (3.21) we
conclude that

u∗λ ∈ Ŝ+
λ and u∗λ = inf Ŝ+

λ .

Similarly we obtain
v∗λ ∈ Ŝ−λ and v∗λ = sup Ŝ−λ .

Note that in this case, since Ŝ−λ is upward directed, we can find an increasing

sequence {vn}n≥1 ⊆ Ŝ−λ such that supn≥1 vn = sup Ŝ−λ . ut

From Proposition 3, we have at once the following corollary.

Corollary 2. If hypotheses H(a), H(ξ), H(β), H0, H(f) hold and λ ≥ λ0, then
u∗λ, v

∗
λ → 0 in C1(Ω) as λ→ +∞.

4 Nodal solutions

In this section, using the extremal constant sign solutions produced in Propo-
sition 4, we will produce a nodal solution.

Proposition 5. If hypotheses H(a), H(ξ), H(β), H0, H(f) hold, then there
exists λ∗ ≥ λ0 such that for all λ > λ∗ problem (Qλ) has a nodal (sign chang-
ing) solution.

Proof. Let u∗λ ∈ intC+ and v∗λ ∈ −intC+ be the two extremal constant sign
solutions of problem (Qλ) produced in Proposition 4. We introduce the follow-
ing truncation of the source term of the problem

k(z, x) =


f̂(z, v∗λ(z)) if x < v∗λ(z),

f̂(z, x) if v∗λ(z) ≤ x ≤ u∗λ(z),

f̂(z, u∗λ(z)) if u∗λ(z) < x.

(4.1)
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This is a Carathéodory function. We also consider the positive and negative
truncations of k(z, ·), namely the Carathéodory functions k±(z, x) = k(z,±x±)
(recall x± = max{±x, 0}). We set

K(z, x) =

∫ x

0

k(z, s)ds and K±(z, x) =

∫ x

0

k±(z, s)ds.

We consider the C1-functionals ψλ, ψ
±
λ : W 1,p(Ω)→ R defined by

ψλ(u) =
1

p
γ(u)− λ

∫
Ω

K(z, u)dz,

ψ±λ (u) =
1

p
γ(u)− λ

∫
Ω

K±(z, u)dz for all u ∈W 1,p(Ω).

Using (4.1) we can easily see that

Kψλ ⊆ [v∗λ, u
∗
λ] ∩ C1(Ω), Kψ+

λ
⊆ [0, u∗λ] ∩ C+, Kψ−λ

⊆ [v∗λ, 0] ∩ (−C+).

The extremality of u∗λ ∈ intC+ and of v∗λ ∈ −intC+ implies that

Kψλ ⊆ [v∗λ, u
∗
λ] ∩ C1(Ω), Kψ+

λ
= {0, u∗λ}, Kψ−λ

= {0, v∗λ}. (4.2)

From (4.1), (2.4) and Lemmata 2 and 3, it follows that ψ+
λ is coercive.

Using the Sobolev embedding theorem, we see that ψ+
λ is sequentially

weakly lower semicontinuous. So, by the Weierstrass-Tonelli theorem, we can
find ũ∗λ ∈W 1,p(Ω) such that

ψ+
λ (ũ∗λ) = inf[ψ+

λ (u) : u ∈W 1,p(Ω)]. (4.3)

Hypothesis H(a) (iv) and Corollary 1 imply that there exists c23 > 0 such
that

G(y) ≤ c23[|y|q + |y|p] for all y ∈ RN . (4.4)

Let û1(q) denote the positive principal eigenfunction of the q-Laplacian with
Robin boundary condition. We know that û1(q) ∈ intC+ (see [11]). Also
intC1(Ω)

[
1
2u
∗
λ, u
∗
λ

]
6= ∅. Then on account of Proposition 4.1.22, p. 274, of

Papageorgiou-Rǎdulescu-Repovš [16], we can find t̂ > 0 such that

t̂ û1(q) ∈ [u∗λ/2, u
∗
λ] ∩ intC+. (4.5)

From Corollary 2, we see that there exists λ∗0 ≥ λ0 such that

u∗λ(z) ∈ (0, δ0] for all z ∈ Ω, all λ ≥ λ∗0,

⇒ F̂ (z, t̂ û1(q)(z)) ≥ t̂τ û1(q)(z) for a.a. z ∈ Ω (4.6)

(see (2.3), (2.5) and recall δ0 ≤ 1, τ > r).

So, we have

ψ+
λ (t̂ û1(q)) ≤ c23

[
t̂qλ̂1(q) + t̂p‖∇û1(q)‖pp

]
− λt̂τ‖û1(q)‖ττ
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(see (4.4), (4.1), (4.5), (4.6)).

Then, if λ∗1 = c23

[
t̂qλ̂1(q) + t̂p‖∇û1(q)‖pp

]
/t̂τ‖û1(q)‖ττ , for λ > λ∗

= max{λ∗0, λ∗1} we have

ψ+
λ (t̂û1(q)) < 0, ⇒ ψ+

λ (ũ∗λ) < 0 = ψ+
λ (0) (see (4.3)),

⇒ ũ∗λ 6= 0 and ũ∗λ ∈ Kψ+
λ
, ⇒ ũ∗λ = u∗λ ∈ intC+. (4.7)

From (4.1) it is clear that ψλ

∣∣∣
C+

= ψ+
λ

∣∣∣
C+

. Then from (4.3) and (4.7) it follows

that

u∗λ is a local C1(Ω)-minimizer of ψλ,

⇒ u∗λ is a local W 1,p(Ω)-minimizer of ψλ, λ > λ∗,

(see Papageorgiou-Rǎdulescu [12], Proposition 2.12).

Similarly using this time the functional ψ−λ , we show that v∗λ is a local
W 1,p(Ω)-minimizer of ψλ, λ > λ∗. The functional ψλ is coercive and so it
satisfies the PS-condition (see Papageorgiou-Rǎdulescu-Repovš [16], Proposi-
tion 5.1.15). Since we have two distinct local minimizers, we can apply the
mountain pass theorem and obtain yλ ∈W 1,p(Ω) such that

yλ ∈ Kψλ ⊆ [v∗λ, u
∗
λ] ∩ C1(Ω) (see (4.2)) and yλ 6∈ {u∗λ, v∗λ}. (4.8)

From Theorem 6.5.8 of Papageorgiou-Rǎdulescu-Repovš [16], we have

C1(ψλ, yλ) 6= 0. (4.9)

On the other hand from the proof of Proposition 2, we know that for λ > λ∗,
u = 0 is a local minimizer of ψλ. Hence

Ck(ψλ, 0) = δk0Z for all k ∈ N0. (4.10)

From (4.8)–(4.10), it follows that yλ ∈ C1(Ω) is a nontrivial solution of
(Qλ) λ > λ∗, distinct from {u∗λ, v∗λ}. Since yλ ∈ [v∗λ, u

∗
λ], the extremality of u∗λ

and v∗λ implies that yλ ∈ C1(Ω) is nodal. ut

Finally using Corollary 2 and (2.5), we have the following multiplicity result
for problem (Pλ).

Theorem 1. If hypotheses H(a), H(ξ), H(β), H0, H(f) hold, then there exists

λ̂∗ ≥ λ∗ such that for all λ > λ̂∗ problem (Pλ) has at least three nontrivial
smooth solutions uλ ∈ intC+, vλ ∈ −intC+, yλ ∈ [vλ, uλ] ∩ C1(Ω) nodal.
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