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Abstract. The aim of this paper is to investigate the boundary layer of ferrofluid
flow induced by a permeable stretching sheet. Fluid is electrically non-conducting in
the presence of non-uniform magnetic field. The governing non-linear partial differ-
ential equations are reduced to non-linear ordinary differential equations by applying
a similarity transformation. Numerical solutions are obtained by using Maple. The
effects of the magnetic field, the Reynolds number and the porosity on the velocity
and thermal fields are investigated. The impact of the parameters on the skin fric-
tion and the local Nusselt number is numerically examined. The skin friction and
heat transfer coefficients are decreasing with enhancing the stretching, the values of
porosity and the ferromagnetic parameter.
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1 Introduction

The steady, laminar boundary layer flows driven by moving boundaries are
among the classical problems of theoretical fluid mechanics (see Schlichting
[30]). The investigation of fluid flow problem due to stretched surface has be-
come important due to its application in engineering science and industrial
processes, especially in metallurgical processes, drawing of plastics and elas-
tic sheets, metal and polymer extrusion, wire drawing, hot rolling, glass fibre
production, manufacturing of paper production, rubber sheet etc. [13].

The phenomenon of momentum transfer in viscous fluid flow past a steady
sheet is a basic problem of laminar boundary layer flow, which was first inves-
tigated by Blasius [5] for uniform free stream using similarity transformations.
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Results on the steady laminar boundary layer flow on a moving plate in a qui-
escent liquid have been obtained by Sakiadis [28, 29] and he gave solutions in
closed and approximate forms. Crane [12] examined the flow due to the stretch-
ing of polymer sheets in the polymer industry and obtained an analytical solu-
tion to the laminar boundary layer equations. Cranes’ problem was extended
to heat and mass transfer with the effect of suction or blowing by Gupta and
Gupta [14]. The flow and heat transfer in a saturated porous medium over a
stretching surface has been examined by Vajravelu [34]. Ariel [3] has consid-
ered the problem of boundary layer flow of a viscous fluid by stretching sheet
using the homotopy perturbation method.

Recently, Al-Housseiny [1] has investigated the laminar boundary layer flow
due to the motion of stretching sheets by taking into account both the fluid
motion as well as the motion of the sheet.

Magnetohydrodynamic flow of an incompressible viscous fluid caused by
moving plane surface has been analyzed by Pavlov [26]. The heat and mass
transfer over a stretching surface was examined by Cortell [11] and taking into
consideration it in the saturated porous medium by Vajravelu [33], with the
effects of radiation and heat source by Siddheshwar et al. [31] and with mass
transpiration through porous sheet by Singh et al. [32].

Different solution techniques are applied to obtain analytic or numeric so-
lutions to these problems. Analytic solutions to the boundary layer problem
over a stretching surface were provided in [6] and [18]. The similarity method
was applied in [7]. For solving MHD boundary-layer equations the modified de-
composition method and Padé approximants were used in [15] and the modified
differential transform method in [27].

Ferrofluid is a special type of nanofluid that contains suspended nano par-
ticles of non-magnetic carrier liquid, typically water, ethylene glycol, glycerol
or oil, containing very fine magnetized particles, for example magnetite, with
diameters of order 5-15 nm [25]. Ferrofluids are applied to enhancing the heat
transfer rate in numerous cases in the industry. This fluid behaves like a normal
fluid except that it experiences a force due to magnetization.

Neuringer [23] has investigated the saturated ferrofluids under the influence
of both thermal and magnetic fields. Andersson and Valnes [2] extended the
Cranes’ problem for a viscous non-conducting ferrofluid. The effect of the
magnetic field due to a magnetic dipole on a shear driven motion (flow over
a stretching sheet) was considered and they concluded that the magnetic field
decelerate the fluid motion as compared to the hydrodynamic case. Zeeshan
et al. [35] investigated the effects of magnetic dipole and thermal radiation
on the flow of ferromagnetic fluid on a stretching sheet. Majeed et al. [19]
examined the case of ferrofluid flow over a stretching sheet along with applied
magnetic field submerge with dipole effect. It was shown by Andersson [2] that
an external magnetic field has the same effect on the flow as the viscoelasticity.

In the recent years, Nadeem et al. [20, 21, 22] presented the heat transfer
and flow of boundary layer problem for MHD stagnation point flow of viscous
nanofluids. Li et al. [17] and Khan et al. [16] evaluated the heat transfer and
flow behavior for the stagnation point flow of nanofluids.

Regarding the above literature, we are interested in examining the magneto-
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thermomechanical interaction between heated viscous incompressible ferrofluid
above a nonlinearly stretching sheet in the presence of a spatially varying mag-
netic field. In this paper, the stream velocity and the heat transfer in fer-
romagnetic viscoelastic flow past a stretching sheet with the effect of suction
and injection are investigated. The impact of significant physical parameters
like stretching parameter, ferromagnetic parameter, suction/injection parame-
ter and Prandtl number is examined and presented graphically on the velocity
and temperature profile.

2 Mathematical formulation

We apply local similarity transformations for the boundary layer flow through a
permeable surface. The porous medium is bounded by a semi-infinite horizontal
plate (on x-axis). The free stream is quiescent and the temperature far away
from the plate is a power function of variable x.

Consider a steady two-dimensional flow of an incompressible, viscous and
electrically non-conducting ferromagnetic fluid over a flat sheet placed in a
horizontal direction.

2.1 Magnetic dipole

The ferrofluid is subjected to an external magnetizing field H, the magnetic
dipoles or line currents in the material will align and create a magnetization
M. The dipole of the magnet is placed at a distance a from the surface in both
sides, in such a way that its center lies on y-axis. The magnetic field (H) due
to the magnetic dipole is directed towards positive x-direction.

The ferrofluid flow is influenced by the dipole field whose magnetic scalar
potential can be written as [8, 9, 10]

φ(x, y) = − I0
2π

(
tan−1

y + a

x
+ tan−1

y − a
x

)
, (2.1)

where I0 denotes the dipole moment per unit length and a is the distance of
the line currents from the leading edge. The wall temperature is a decreasing
function of x and is given by Tw = Tc + Axα, where Tc denotes the Curie
temperature, A and α are real constants.

The negative gradient of the magnetic scalar potential φ equals the applied
magnetic field, i.e. H =−∇φ.

The componentsHx andHy of magnetic field intensity along the coordinates
x and y axes are

Hx =− ∂φ

∂x
= − I0

2π

[
y + a

x2 + (y + a)
2 +

y − a
x2 + (y − a)

2

]
, (2.2)

Hy =− ∂φ

∂y
= − I0

2π

[
x

x2 + (y + a)
2 +

x

x2 + (y − a)
2

]
. (2.3)
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The second derivatives are

∂2φ

∂x2
= −∂

2φ

∂y2
= − I0

2π

 2x (y + a)[
x2 + (y + a)

2
]2 +

2x (y − a)[
x2 + (y − a)

2
]2


and

∂2φ

∂x ∂y
= − I0

2π

 (y + a)
2 − x2[

x2 + (y + a)
2
]2 +

(y − a)
2 − x2[

x2 + (y − a)
2
]2
 .

In ferrohydrodynamic interactions, the existence of spatially varying fields
is required [24]. For the exposition of ferrohydrodynamic interaction we shall
use the following assumptions:

(i) the fluid temperature must be less than Curie temperature,

(ii) the applied magnetic field is inhomogeneous.

Applying the scalar potential φ, ∇H is calculated as follows

∇H =
(

[∇H]x , [∇H]y

)
=

 ∂φ
∂x

∂2φ
∂x2 + ∂φ

∂y
∂2φ
∂x ∂y√(

∂φ
∂x

)2
+
(
∂φ
∂y

)2 ,
∂φ
∂x

∂2φ
∂x ∂y + ∂φ

∂y
∂2φ
∂y2√(

∂φ
∂x

)2
+
(
∂φ
∂y

)2
 ,

where [∇H]x and [∇H]y denote the first and second components of ∇H, re-
spectively.

Since (∂φ/∂x)y=0 = 0 and
(
∂2φ/∂y2

)
y=0

= 0 at the wall, then [∇H]y
vanishes.

In the boundary layer for regions close to the wall when distances from the
leading edge large compared to the distances of the line sources from the plate,
i.e. x� a, then one gets

[∇H]x = −I0
π

1

x2
.

The variation of magnetization M is assumed as a linear function of tem-
perature M = K(Tc − T ), where K is the pyromagnetic coefficient (see [2]).

Once the ferromagnetic fluid approaches Curie temperature, furthermore,
there is no magnetization.

2.2 Flow analysis

The stretching of the sheet induces a fluid velocity field (u(x, y), v(x, y)) which
satisfies the equations governing the flow [35]

∂u

∂x
+
∂v

∂y
= 0,

u
∂u

∂x
+ v

∂u

∂y
= −Ioµ0K

πρ
(Tc − T )

1

x2
+ ν

∂2u

∂y2
,

c

[
u
∂T

∂x
+ v

∂T

∂y

]
= k

∂2T

∂y2
,



Ferrofluid Flow in Magnetic Field 465

where the x and y axes are taken parallel and perpendicular to the plate, u and
v are the parallel and normal velocity components to the plate, respectively,
µ0 means the permeability of the vacuum, ν is the kinematic viscosity and ρ
denotes the density of the ambient a fluid, which will be assumed constant. The
appropriate boundary conditions to the problem are at the surface (y = 0):

u(x, 0) = uw, v(x, 0) = V (x), T (x, 0) = Tw (2.4)

with Tw = Tc +Axα and

u(x, y)→ u∞, T (x, y)→ T∞ (2.5)

as y leaves the boundary layer (y →∞) with T∞ = Tc, and uw is the stretching
speed which is assumed throughout the paper to be uw = Uwx

m and u∞ = 0.
Parameter α is relating to the power law exponent. The value α = 1 refers to a
linear temperature profile and m = 0 for constant exterior streaming speed. In
case of α = 2, the temperature profile is quadratic and for m = 1 the streaming
speed is linear. The value of α = 0 corresponds to no temperature variation on
the surface.

The sheet is permeable and subjected to suction velocity (0;V (x)) (see [30],

Ch. 11, pp. 302), where V (x) = −V0
√

m+1
2

(
x
L

)m−1
2 , m > −1. As a convention,

V (x) > 0 implies suction while V (x) < 0 implies injection of the fluid at y = 0.
Introducing the stream function ψ, defined by u = ∂ψ/∂y and v = −∂ψ/∂x,

problem (2.1)–(2.3) can be formulated as

∂ψ

∂y

∂2ψ

∂y∂x
− ∂ψ

∂x

∂2ψ

∂y2
= ν

∂3ψ

∂y3
− I0µ0K

πρ
(Tc − T ) ,

c

[
∂ψ

∂y

∂T

∂x
− ∂ψ

∂x

∂T

∂y

]
= k

∂2T

∂y2
.

Boundary conditions (2.4) and (2.5) are transformed to

∂

∂y
ψ(x, 0) = Uwx

m,
∂

∂x
ψ(x, 0) =V (x), T (x, 0) = Tc +Axα,

∂

∂y
ψ(x, y)→ 0, T (x, y) =Tc as y →∞.

We look for similarity solutions of a class of solutions ψ and T in the form
(see [4])

ψ(x, y) = C1x
κf(η), T = Tc +AxαΘ (η) , η = C2x

τy,

where κ and τ satisfy the scaling relation κ+τ = m and for positive coefficients
C1 and C2 the relation C1/C2 = ν. The real numbers κ and τ are such that
κ− τ = 1 and C1C2 = U∞, hence κ = (α− 1)/4, τ = (α− 3)/4, C1 =√
νU∞/λ, C2 =

√
U∞/νλ.

Then, we get the following similarity system of ordinary differential equa-
tions for α = 2m+ 1:

f ′′′ − (α− 1) (f ′)
2

+
α+ 1

4
f f ′ − β

λ2
Θ = 0, (2.6)
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Θ′′ + Pr

(
α+ 1

4
f Θ′ − αΘ f ′

)
= 0, (2.7)

where prime denotes differentiation with respect to η. The boundary conditions
for the similarity functions f and θ are

f(0) =Vc, f ′(0) =λ, Θ(0) = 1, (2.8)

f ′(η) =0, Θ(η) =0 as η →∞, (2.9)

where Pr = cν/k is the Prandtl number, β = I0µ0KA/(πρU
2
w), λ = Uw/(C1C2)

and the dimensionless measure of suction/injection known as the mass transpi-
ration parameter is Vc = V0L

√
Re/v with Reynolds number Re = UwL/v.

The components of the non-dimensional velocity v = (u, v) can be expressed
by

u = Uw xm f ′(η),

v =
V (x)

Vc

(
m+ 1

2
f (η) +

m− 1

2
f ′(η) η

)
.

Skin friction and local Nusselt number are defined as Cf = 2τw
ρU2

w
and Nux =

x qw
Tw−T∞ and

τy=0 = νρ

(
∂u

∂y

)
y=0

and qw = −k
(
∂T

∂y

)
y=0

,

where τw ∼ f ′′(0) and qw ∼ Θ′(0) and f ′′(0) denotes the skin friction coefficient
and Θ′(0) stands for the heat transfer coefficient [33].

We note that form = 0 and β = 0, equation (2.6) is equivalent to the Blasius
equation for laminar boundary-layer problem of Newtonian fluids (see [4]):

f ′′′ +
1

2
f f ′ = 0.

The coupled boundary-layer equations for m = 0 were first examined for uw = 0
and u∞ = const. in [23].

3 Numerical results with suction or injection

The coupled ordinary differential equations (2.6)–(2.7) are highly non-linear.
Exact analytical solutions are not possible for the complete set of transformed
equations subject to the boundary conditions (2.8)–(2.9). Hence, we apply a
numerical method for the solution process.

The self-similar non-linear differential equations (2.6)–(2.7) subjected to
the boundary conditions (2.8)–(2.9) are solved numerically using BVP solution
technique built in Maple. The boundary conditions are considered in such a way
that the far field boundary conditions are satisfied at a finite value, say ηmax.
The impact of physical parameters, namely the ferromagnetic parameter β,
suction parameter Vc, power exponent m and Prandtl number Pr on boundary
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Figure 1. Effect of parameter m on the dimensionless velocity along horizontal wall for
Vc = −1.

layer flow and heat transfer in ferrofluid, are examined numerically. The value
ηmax for numerical purpose is taken as ηmax = 10.

The ferromagnetic parameter β highlights the effect of the external magnetic
field. We want to study the parametric dependence of the boundary layer flow.
Figure 1 illustrates the effect of the power-law parameter m on the horizontal
velocity profile f ′(η) for the set of parameters: the Prandtl number Pr=10 and
the values of β = 0.1 λ = 1 and Vc = −1. With increasing stretching power
parameter the fluid flow velocity is decreasing, the flow slows down.

We define the boundary layer thickness to be h(x), such that as y → h(x),
∂u/∂y → 0 and for y > h(x), u = 0. It is also observed that the boundary
layer thickness h(x) is decreasing with increasing value of m. Similarly, the
temperature shows also decreasing tendency for increasing the power-law m
with the same set of parameters (see Figures 2–3). However, the thermal
boundary layer thickness is smaller than the hydrodynamic boundary layer
thickness h(x).

The effect of various physical parameters including ferromagnetic interac-
tion parameter β, Prandtl number Pr and suction/injection parameter Vc on
the temperature profiles is investigated. Figures 4 and 5 represent the influ-
ence of suction/injection parameter Vc on velocity and on temperature profiles.
Both the velocity and the temperature profiles depreciate with increasing suc-
tion parameter Vc. Figures 6–11 represent the influence of suction/injection
parameter Vc on velocity and temperature profiles for both suction and injec-
tion. The dashed curve always belongs to the case no suction or injection,
Vc = 0.

The skin friction coefficient Cf is negative. In the case of injection (Vc > 0)
the decrease of f ′′(0) is greater than for suction with increasing value of either
that the m or β.

Math. Model. Anal., 25(3):461–472, 2020.
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Figure 2. Effect of stretching
power m on the temperature for

Vc = −1.

Figure 3. Effect of Prandtl
number Pr on the temperature for

Vc = −1.

Figure 4. Effect of suction
parameter Vc on the velocity

distribution.

Figure 5. Effect of suction
parameter Vc on the temperature

distribution.

Figure 6. Effect of ferromagnetic
interaction parameter β on the skin

friction coefficient.

Figure 7. Effect of parameter λ
on the skin friction coefficient.
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Figure 8. Effect of power-law
exponent m on the skin friction

coefficient.

Figure 9. Effect of ferromagnetic
parameter β on the heat transfer

coefficient.

Figure 10. Effect of parameter λ
on the heat transfer coefficient.

Figure 11. Effect of power-law
exponent m on the heat transfer

coefficient.

It can be seen that temperature profile depreciates with suction parameter
(Vc = −1) and with injection (Vc = 1), but its degree is significantly different
(see Figures 9–11). The values of θ′(0) are smaller for injection than for suction.

4 Conclusions

The purpose of this paper was to investigate the two-dimensional ferrofluid
flow and heat transfer of ferrofluid past a nonlinearly stretching sheet with
suction/injection with the effect of a magnetic dipole. The governing partial
differential equations of motion and heat transfer are transformed into nonlin-
ear coupled ordinary differential equations using appropriate similarity trans-
formations. Numerical computations are carried out to obtain the results for
the boundary layer flow and heat transfer induced by a horizontal stretching
sheet in magnetic field.

Math. Model. Anal., 25(3):461–472, 2020.
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Values of the skin friction and the local Nusselt number for different values of
the physical parameters were investigated. The influence of the applied external
magnetic field due to magnetic dipole is demonstrated through ferromagnetic
interaction parameter β in the skin friction and heat transfer coefficients. The
impact of the parameters are introduced on figures.
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