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Abstract. The article investigates the Sturm–Liouville problem with one classical
and another nonlocal two-point boundary condition. We analyze zeroes, poles and
critical points of the characteristic function and how the properties of this function
depend on parameters in nonlocal boundary condition. Properties of the Spectrum
Curves are formulated and illustrated in figures for various values of parameter ξ.
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1 Introduction

During the last two decades a lot of attention has been paid to problems
of differential equations with different types of Boundary Conditions (BC).
J.R. Cannon was the first investigator of the parabolic problems with integral
boundary condition [3], now this condition is called Nonlocal Boundary Con-
ditions (NBC). Later, Bitsadze and Samarskii formulated and investigated a
Boundary Value Problem (BVP) for an elliptic equation with NBC [2]. One of
the most important problem is to find eigenvalues of differential problem with

�
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NBCs [24]. Sturm–Liouville Problem (SLP) for the second-order differential
operator with Nonlocal Condition (NC) was formulated in [10]. The eigenvalue
problem with NBCs is the part of the general nonselfadjoint operator theory [9].
In the article [18] Shkalikov described the result obtained on investigation of the
properties of eigenfunctions for integral BC. Finite Difference Schemes (FDS)
for parabolic problems with NBC were investigated in the papers [4,7,8], where
the properties of the spectrum and stability of FDS were obtained.

M. Sapagovas with co-authors began to investigate the eigenvalue problem
for one-dimensional differential operator with Bitsadze–Samarskii and integral
type NBCs [5, 15, 16]. They showed that eigenvalues, which do not depend on
some NBCs parameters can exist. Problem with NBC are not self-adjoint and
spectrum for such problems may be not positive (or real, too). So, negative,
multiple and complex eigenvalues for some values of NBC parameters can exist
[12, 17, 20, 22]. M. Sapagovas scientific group results for problems with NBC’s
see in [24]. The structure of eigenvalues for some nonlocal boundary conditions
presented in [1, 11].

In this paper we use Characteristic Function (CF) method [25] for investi-
gation of the spectrum for differential SLP with two-point NBC. We describe
zeroes, poles, critical points of CF, Constant Eigenvalue (CE) points. We in-
vestigate how Spectrum Curves depend on parameter ξ in NBC.

2 Sturm–Liouville problem with NBC

Let us analyze SLP with one classical BC and another two-point NBC

−u′′ = λu, t ∈ (0, 1), (2.1)

u(0) = 0, (2.2)

u(1) = γu′(ξ), (2.3)

where parameters γ ∈ R and ξ ∈ [0, 1]. The eigenvalue λ ∈ Cλ := C and
eigenfunction u(t) can be complex function.

If γ = 0, then we have the SLP with classical BCs. In this case eigenvalues
and eigenfunction are known:

λk = (kπ)2, uk(t) = sin(kπt), k ∈ N := {1, 2, . . .}.

We also use notation No := {2k − 1, k ∈ N}, Ne := {2k, k ∈ N}. In the case
ξ = 1, we obtain the third type (classical) BC. The case γ =∞ corresponds to
(2.1) with clasical BCs u(0) = 0 and u′(ξ) = 0, ξ ∈ [0, 1], instead of condition
(2.3) and eigenvalues and eigenfunction are:

λk =
(
(k − 1/2)π/ξ

)2
, uk(t) = sin

(
(k − 1/2)πt/ξ

)
, k ∈ N.

If λ = 0, then a function u(t) = Cu0(t), where u0(t) := t, satisfy (2.1)
equation and BC (2.2). Substituting this function into the second NBC (2.3),
we obtain that eigenvalue λ = 0 (C 6= 0) exists if and only if γ = 1.

If λ 6= 0 function u(t) = Cuq(t), uq(t) = sin(πqt)/(πq), satisfies equation

(2.1) and BC (2.2), where λ = (πq)
2
. If we consider a map λ : Cλ → C,
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λ(q) = (πq)
2
, the inverse map is multivalued and point λ = 0 is the first

order Branch Point (BP) of the second order. This point is important for our
investigation and we call q = 0 Ramification Point (RP).

In this article q ∈ Cq := Rq ∪ C+
q ∪ C−q , where Rq := R−q ∪ R+

q ∪ R0
q,

R−q := {q = x + ιy ∈ C : x = 0, y > 0}, R+
q := {q = x + ιy ∈ C : x >

0, y = 0}, R0
q := {q = 0}, C+

q := {q = x + ιy ∈ C : x > 0, y > 0} and
C−q := {q = x+ ιy ∈ C : x > 0, y < 0}. Then a map λ = (πq)2 is the bijection
between Cq and Cλ [25]. Here q = 0 corresponds to λ = 0. This bijection
is a conformal map, except the point q = 0. For each eigenvalue λ for SLP
corresponds Eigenvalue Point (EP) q ∈ Cq. Real eigenvalues are described by
EP q ∈ Rq={q ∈ Cq : λ = (πq)2 ∈ R}. If λ = 0 is eigenvalue, then q = 0 we
call as Branch Eigenvalue Point (BEP).

3 Constant Eigenvalues and Characteristic Function

We substitute uq(t) to BC (2.3) and get uq(1) = γu′q(ξ). So, a nontrivial
solution of the problem (2.1)–(2.3) exists if q ∈ Cq is the root of a equation

sin(πq)

πq
= γ cos(ξπq). (3.1)

For NBC (2.3) we introduce two entire functions:

Z(z) :=
sin(πz)

πz
; Pξ(z) := cos(ξπz), z ∈ C. (3.2)

In this section we investigate relations between spectrum of SLP (2.1)–(2.3)
and parameter γ for fixed ξ.

Zeroes points. Zeroes of these functions are important in analyzing and
describing the spectrum. Moreover, zeroes zk of the function Z(q), q ∈ Cq,
coincide with EPs in the classical case γ = 0 (the graphs in 1a, 1d):

zl = l ∈ N.

We denote the corresponding set of points Z. All zeroes are simple, real (pos-
itive integer numbers).

In the case ξ 6= 0 all zeroes of the function Pξ(q) (see (3.2)) in Cq are simple,
real and positive:

Zξ := {pk = (k − 1/2)/ξ, k ∈ N}. (3.3)

In the case ξ = 0 the set Zξ = ∅.

We rewrite the equation (3.1) in the form:

Z(q) = γPξ(q), q ∈ Cq.

Math. Model. Anal., 25(1):53–70, 2020.
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Constant Eigenvalues. We will define a Constant Eigenvalue (CE) as the
eigenvalue which does not depend on the parameter γ [25]. Then for any CE
λ ∈ Cλ there exists the Constant Eigenvalue Point (CEP) q ∈ Cq. CEP are
roots of the system:

Z(q) = 0, Pξ(q) = 0, (3.4)

i.e., CEP c ∈ N and Pξ(c) = 0. We denote the set of all CEP as Cξ = Zξ ∩ Z.
If c ∈ Cξ and

Z(z) = (z − c)αZ̃(z), Z̃(c) 6= 0, Pξ(z) = (z − c)βP̃ (z), P̃ (c) 6= 0, (3.5)

where α, β ∈ N, then number min{α, β} is the order of CEP. For SLP (2.1)–
(2.3) all CEPs are of the first order.

Remark 1. If the parameter ξ = 0, then from the formula (3.2) we obtain that
Pξ ≡ 1. So, Zξ = ∅ and CEPs do not exist. If ξ = 1, then there are no CEPs,
because the functions sin(πq) and cos(πq) have no common zeroes (we have the
third type BC).

Remark 2. If the parameter ξ /∈ Q, then CEPs do not exist, because the equa-
tion ξl = k − 1

2 have not roots for l, k ∈ N.

Let us consider that ξ ∈ Q, ξ = m/n, m,n ∈ N, 0 < m 6 n, and
gcd(m,n) = 1, where gcd(m, n) is the greatest common divisor of two (posi-
tive) integers m and n. In this case the system (3.4) is equivalent to equation
lm/n = k − 1/2, where k, l ∈ N are unknowns. We can rewrite this equation
in the following form

nk − lm = n/2. (3.6)

Remark 3. If n ∈ Ne, then the right hand side of this equation is integer number.
If n ∈ No, then equation (3.6) has no roots.

Let a, b, c ∈ Z. Then the following theorem is valid.

Theorem 1. ([6], Gelfond 1978) If gcd(a, b) = 1 and (α, β) is any solution of
equation:

ax+ by + c = 0, (3.7)

then all solutions of this equation have a form;

x = α− bt, y = β + at, t ∈ Z.

Remark 4. Any solution (α, β) of (3.7), gcd(a, b) = 1 can be found using Eu-
clidean algorithm [6] and solving the classical equation

ax+ by = gcd(a, b).

Theorem 2. For SLP (2.1)–(2.3) Constant eigenvalues exist only for rational
parameter ξ = m/n ∈ (0, 1), m ∈ No, n ∈ Ne values and those eigenvalues are

equal to λs = (πcs)
2
, cs := (s− 1/2)n, s ∈ N.
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Proof. The case ξ /∈ Q was discussed in Remark 2. Let ξ ∈ Q, ξ = m/n, and
from Remark 3 we have that m ∈ No, n ∈ Ne. From equation (3.6) we see that
l = τn/2, τ ∈ N. We rewrite equation (3.6) as mτ = 2k − 1. Right side of
this equation is odd number. So, τ must be odd number too, i.e., τ = 2t − 1,
t ∈ N. For t and k we have equation mt − k = (m− 1)/2. Because t0 = 0
and k0 = −(m− 1)/2 satisfy this equation, then the solution of this equation
is t = s and k = −(m− 1)/2 + ms, according to Theorem 1. If s ∈ N, then
t, k ∈ N. Therefore, we obtain that q = l = (s− 1/2)n, s ∈ N, is CEP. ut

Characteristic Functions. Let us consider the following meromorphic func-
tion:

γc(z) = γc(z; ξ) :=
Z(z)

Pξ(z)
, z ∈ C, (3.8)

where Z and Pξ are entire functions (3.2). If limz→p γc = ∞, then we have a
Pole Point (PP) at z = p. We have pole of the β order in the case Z(p) 6= 0

and Pξ(z) = (z − p)βP̃ (z), P̃ ((p) 6= 0, β ∈ N. If p ∈ Cξ and condition (3.5) is
valid with β > α, then pole z = c is of the order β − α. In the case 0 6 β < α
function γc has zero of order α − β. If β = α, then point z = c is removable
singularity isolated point and 0 < |γc(c)| <∞.

We call the expression of the meromorphic function γc on Cq C omplex
Characteristic Function (Complex CF) [19,25]. γ-points of Complex CF define
EPs (and Eigenvalues, too) which depend on parameter γ. We call such EPs
Nonconstant Eigenvalue’s Points (NEPs) and corresponding Eigenvalues as
Nonconstant Eigenvalues.

As we noted, functions Z and Pξ for SLP (2.1)–(2.3) have simple zeroes
only. If Z(z) = 0 and Pξ(z) 6= 0, then we have zero point of CF at the point
z; if Z(p) 6= 0 and Pξ(p) = 0, then we have PP of CF at the point p. A set of
PPs for Complex CF is Pξ := ZξrZ = ZξrCξ. So, pk ∈ Zξ is PP if and only
if pk 6∈ N. The set of zeroes for this Complex CF is Zξ := Z r Zξ = Z r Cξ.
If c ∈ Cξ, i.e. Z(c) = 0 and Pξ(c) = 0, then we have removable singularity
isolated point and we have (for m ∈ No, n ∈ Ne) sequence of such points

cs = pks = zls = n(s− 1/2), s ∈ N, (3.9)

ks = m(s− 1/2) + 1/2, ls = n(s− 1/2).

Remark 5. In the case ξ = 0 function Pξ ≡ 1 and PPs do not exist. If ξ > 0,
then a set of poles Pξ is either empty or countable.

Remark 6. Case ξ = 1/n, n ∈ N. From de Moivre formula:

sin(2kz):= 2k cos2k−1 z sin z −
(
2k
3

)
cos2k−3 z sin3 z + . . .

+ (−1)k−12k cos z sin2k−1 z, k ∈ N ∪ {0},
sin((2k + 1)z) := (2k + 1) cos2k z sin z −

(
2k+1

3

)
cos2k−2 z sin3 z + . . .

+ (−1)k sin2k z, k ∈ N ∪ {0},

we have Pξ = Zξ, Cξ = ∅ for ξ = 1/(2k + 1), k ∈ N; Pξ = ∅, Cξ = Zξ for
ξ = 1/(2k), k ∈ N. So, for n ∈ No there are PPs, but CEPs do not exist, for
n ∈ Ne there are no PPs and we have CEPs.

Math. Model. Anal., 25(1):53–70, 2020.
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(a) CF (ξ = 0) (b) Spectrum Curves (ξ = 0) (c) Real CF (ξ = 0)

(d) CF (ξ = 1) (e) Spectrum Curves (ξ = 1) (f) Real CF (ξ = 1)

Figure 1. CF, Spectrum Domain, Real CF for ξ = 0, ξ = 1. – Zero Point,
– Pole Point, – Ramification Point, – Branch Eigenvalue Point, – Critical Point.

Remark 7. A point q =∞ 6∈ Cq. This point is singular (isolated essential point
if Pξ = ∅, otherwise we have cluster of poles) point.

Complex-Real Characteristic Function (CF) [25] γ = γ(q) is the restriction
of Complex CF γc on a set Dξ := {q ∈ Cq : Imγc(q) = 0}, i.e., γ : Dξ → R.
CF γ(q) describes the value of the parameter γ at the point q ∈ Dξ, such that

there exist the Nonconstant Eigenvalue λ = (πq)
2
. A set Eξ(γ0) := γ−1(γ0) is

the set of all NEPs for γ0 ∈ R. So, Dξ = ∪γ∈REξ(γ). The Spectrum Domain
Nξ is the set Dξ ∪ Cξ for fixed ξ [21]. We denote sets Dξ := Dξ ∪ Pξ ∪ {∞},
∂Dξ = Pξ ∪ {∞}. We can see the Spectrum Domain in 6 for various ξ.

Remark 8. Examples of CF graphs are presented in 1a,1d for ξ = 0 and ξ = 1.
We see Spectrum Domains for these cases in 1b,1e. In the case ξ = 1 Spectrum
Domain D1 ⊂ Rq. So, all eigenvalues are real. In the case ξ = 0 part of D0

belongs to C+
q ∪C−q and complex eigenvalues exist for some values of γ. If the

parameter ξ = 0 then from the equation (3.1) we obtain that CF have no PPs
(see Figure 1 and Figures 1a–1c). If ξ = 1, then there are no CEPs, but we
have family of poles pk, k ∈ N, defined by formula (3.3) (see Figures 1d–1f).

Real Eigenvalues. Real Characteristic Function (Real CF) describes only
real nonconstant eigenvalues and it is restriction of the Complex CF γc(q) on
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the set Rq. We can use the argument x ∈ R for Real CF:

γr(x) = γr(x; ξ) :=


γ(−ıx; ξ) =

sinh(πx)

πx cosh(ξπx)
, x 6 0;

γ(x; ξ) =
sin(πx)

πx cos(ξπx)
, x > 0.

This function is useful for investigation of real negative, zero and positive eigen-
values

λ = λr(x) = λr(x; ξ) :=

{
−(πx)2, x 6 0;
(πx)2, x > 0.

(a) ξ = 2
9

(b) ξ = 1
4

(c) ξ = 0.25028

(d) ξ = 1
2

(e) ξ = 5
9

(f) ξ = ξc = 1√
3

(g) ξ = 3
4

c
1

c
2

(h) ξ = 5
6

(i) ξ = 6
7

Figure 2. Real CF γr(q; ξ) for various parameter ξ values.

For positive and zero eigenvalues EPs for CF γ and Real CF γr are the same.
For negative eigenvalues EPs for CF γ and Real CF γr are related by formula

Math. Model. Anal., 25(1):53–70, 2020.
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q = −ıx, x < 0. The graphs of these Real CFs for some parameter ξ values
are presented in Figures 1c, 1f, 2. In Figure 2 the vertical (blue) solid lines
correspond to the CEP, vertical (red) dashed lines cross the x-axis at the PPs.
Real CF for SLP (2.1)–(2.3) was investigated in [12]. In this paper values of
Real CF and it’s derivatives at CEP cs := (s− 1/2)n, s ∈ N, ξ = m/n ∈ (0, 1),
m ∈ No, n ∈ Ne, were found:

γs(ξ) := γ(cs; ξ) = (−1)s+(n−m+1)/2c−1s ξ−1π−1, (3.10)

γ′s(ξ) := γ′(cs; ξ) = −c−1s γs, (3.11)

γ′′s (ξ) := γ′′(cs; ξ) =
(
2c−2s − π2(1− ξ2)/3

)
γs.

We see, that γs 6= 0, γ′s 6= 0, γ′′s 6= 0 for all ξ and s. Graphs of Real CF in the
neighborhood CEP are presented in Figure 3b (see Figures 3a,3c, too).

(a) ξ = 0.249975 (b) ξ = 1
4

(c) ξ = 0.25001

(d) ξ = 0.25005 (e) ξ = ξ2b (f) ξ = 0.2508

Figure 3. Real CF in the neighborhood CEP x = 2 for ξ = 1/4 and in the neighborhood
of the second order critical point for ξ = ξ2b ≈ 0.25028.

Some results about the first two real eigenvalues are presented in Table 1.
We note, that in the case ξ = 0 and γr < γb real eigenvalues do not exist.
The location of these two eigenvalues can be more accurate if we take smaller
intervals of parameter ξ. In [14] statements about negative eigenvalues were
formulated. For example, if ξ = 1/

√
3, then double negative eigenvalue exists.

Some results about Real CF one can find in [12,13].
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Table 1. The first two real eigenvalues λ0 = λr(x0) and λ1 = λr(x1) (γ 6= 0).

ξ γ x0 x1

ξ = 0 γb 6 γ < 0 (1, xb] [xb, 2)
γb = min

1<x<2
γr(x) = γr(xb) 0 < γ 6 γbb (0, 1) (2, xbb]

γbb < γ < 1 (0, 1) −
γbb = max

2<x<3
γr(x) = γr(xbb) γ = 1 = 0 −

γ > 1 < 0 −
0 < ξ < 1/2 γ < 0 > 1 > 1

0 < γ < 1 (0, 1) > 1
γ = 1 = 0 > 1
γ > 1 < 0 > 1

ξ = 1/2 γ < γm = 1 = 2
γm 6 γ < 0 = 1 (2, xm]
0 < γ < γc = 1 (1, 2)

γc = 2/π γ = γc = 1 = 1
γm = min

2<x<3
γr(x) = γr(xm) γc < γ < 1 (0, 1) = 1

γ = 1 = 0 = 1
γ > 1 < 0 = 1

1/2 < ξ < 1/
√

3 γ 6 γbb (p1, xbb] [xbb, 2)
γb = min

0<x<p1
γr(x) = γr(xb) γbb < γ < γb (p2, 3) (4, p3)

γb 6 γ < 1 (0, xb] [xb, p1)
γbb = max

1<x<2
γr(x) = γr(xbb) γ = 1 = 0 (xb, p1)

γ > 1 < 0 (xb, p1)

ξ = 1/
√

3 γ < 0 (p1, 1) (2, p2)

p1 =
√

3/2, p2 = 3
√

3/2, 0 < γ 6 γbb (1, xbb] [xbb, 2)

p3 = 5
√

3/2 γbb < γ < 1 (p2, 3) (4, p3)
γbb = max

1<x<2
γr(x) = γr(xbb) γ = 1 = 0 = 0

γ > 1 < 0 (0, p1)

1/
√

3 < ξ < 1 γ < γb (p1, p3) > 1
γb 6 γ < 1 6 xb [xb, 0)

γb = min
x<0

γr(x) = γr(xb) γ = 1 < xb = 0
γ > 1 < xb (0, p1)

ξ = 1 γ < 0 (p1, 1) (p2, 2)
p1 = 1/2, p2 = 3/2 0 < γ < 1 < 0 (1, p2)

γ = 1 = 0 (1, p2)
γ > 1 (0, p1) (1, p2)

Ramification Point. The Taylor series for CF γ(q) at RP q = 0 is:

γ(q; ξ) := 1 +
(
− 1

6 + 1
2ξ

2
)
π2q2

+
(

1
120 −

1
24ξ

4 −
(
1
2 ( 1

6 −
1
2ξ

2)
)
ξ2
)
π4q4 +O(q6), q ∈ Cq. (3.12)

Multiplier of q2 is positive if, ξ > ξc = 1/
√

3, and negative if ξ < ξc. When
ξ = ξc the second term vanishes in (3.12), and the coefficient in the third term
of this series is positive and equal π4/270 > 0. Graphs of Real CF in the
neighborhood RP q = 0 are presented in Figure 4.

Critical Points. For the SLP (2.1)–(2.3) with two-points NBCs we obtain
three types of critical points: the first, the second and the third order. Let
to consider function γc (3.8). If γ′c(b) = 0, b ∈ C, then b we call Critical

Math. Model. Anal., 25(1):53–70, 2020.
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(a) ξ = 0.51 (b) ξ = ξc = 1√
3
≈ 0, 5773 (c) ξ = 0.7

Figure 4. Real CF at RP q = 0.

Point (CP) of the function γc, and value γc(b) is a critical value of the function
γc [22]. CPs are saddle points of Complex CF. For Real CF it can be a half-
saddle points, maximum or minimum points and also can be inflection points.
CPs of the CF are important for investigation of multiple eigenvalues. The
critical point b depend on the parameter ξ continuously. If the function γc at

CP b ∈ Cq satisfies γ′c(b) = 0, . . . , γ
(k)
c (b) = 0, γ

(k+1)
c (b) 6= 0, then b is called

the k-order critical point (kCP). The set of CPs we denote Kξ.

Remark 9. In the case ξ = ξc = 1√
3

the point q = 0 is 3CP in the domain Cq,
but for λ = 0 it is only 1CP, because q = 0 is RP for map λ = (πq)2. In the
complex plane Cλ the Taylor series (3.12) have a form

γ(λ, ξ) := 1 +
(
− 1

6 + 1
2ξ

2
)
λ+

(
1

120 −
1
24ξ

4 −
(
1
2 ( 1

6 −
1
2ξ

2)
)
ξ2
)
λ2 +O(λ3).

If ξ 6= ξc, then point q = 0 and λ = 0 are not CPs.

The first order real critical point (1CP) b ∈ R̊q = R−q ∪R+
q can be found as

root of an equation
γ′(b; ξ) = 0

for fixed ξ. For example, when ξ = 0 we can see 1CP (b1,2 ≈ 1.43, b2,3 ≈ 2.46)
in Figure 1. If 1CP is between two zeroes of Real CF, then these zeroes we use
to numerate CP in most cases. More precisely, the index of CP we explain in
the next section.

The second order critical points (2CP) arise when two 1CP coincide in the

same point b. 2CP b ∈ R̊q and ξ value we can find by solving system:

γ′(b; ξ) = 0, γ′′(b; ξ) = 0.

For example, 2CP we obtain in the inflection point (see Figure 2c, when
ξ = ξ2b ≈ 0.25028 at the point b1,3,2 ≈ 1.883). Graphs of Real CF in the
neighborhood 2CP are presented in Figure 3e (see Figures 3d, 3f, too).

The third order real critical point (3CP) b ∈ R̊q satisfies the following sys-
tem:

γ′(b; ξ) = 0, γ′′(b; ξ) = 0, γ′′′(b; ξ) = 0.
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For problem (2.1)–(2.3) we have only one 3CP, b2,1 = 0, ξ = ξc. But as we
note in Remark 6, this point is 1CP in the domain Cλ (see in Figure 2f and
Figure 4b at the point b2,1, ξ = ξc).

Lemma 1. Zero point of CF can not be CP.

Proof. First of all q = 0 is not a zero. For CF (3.8) (see (3.2), too) we have

γ′ =
( sin(πq)

πq cos(ξπq)

)′
=
−1

q2π
· sin(πq)

cos2(ξπq)
+
ξ

q
· sin(πq)

cos(ξπq)
sin(ξπq) +

1

q
· cos(πq)

cos(ξπq)

=
(
πξ sin(ξπq)/cos(ξπq)− 1/q

)
γ(q) + cos(πq)/cos(ξπq)/q.

If γ(qz) = 0, then qz 6∈ Cξ (see (3.10)), sin(πqz) = 0, cos(πqz) 6= 0, cos(ξπqz) 6=
0. So, γ′(qz) 6= 0. ut

Remark 10. Pole Point of CF is not CP. Function γ−1 has CP at this point
only if order of the pole is greater than the first.

4 Spectrum Curves

Spectrum Domain is a union Nξ = Dξ ∪ Cξ in the complex domain Cq. In the
classical case γ = 0 Spectrum is N = Zξ + Cξ, Zξ = Eξ(0).

First of all, we consider q0 ∈ Dξ = ∪γ∈REξ(γ) and γc
′(q0) 6= 0, i.e., q0 is not

CP. Then Eξ(γ) is a smooth parametric curve N : (γ0 − δ1, γ0 + δ2) ⊂ R→ Cq
in the neighborhood of the point q0 and N (γ0) = q0 (see Figures 5a,5e). We
can add arrows to this curve.

(a) (b) (c) (d)

= (  )

(e) (f) (g) (h)

Figure 5. Spectrum Curves. – Pole Point of the second order, – Branch Point
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First of all, we consider q0 ∈ Dξ = ∪γ∈REξ(γ) and γc
′(q0) 6= 0, i.e., q0 is not

CP. Then Eξ(γ) is a smooth parametric curve N : (γ0 − δ1, γ0 + δ2) ⊂ R→ Cq
in the neighborhood of the point q0 and N (γ0) = q0 (see Figures 5a,5e). We
can add arrows to this curve.

(a) ξ = 2
9

(b) ξ = 2
5

(c) ξ = 1
2

(d) ξ = 5
9

(e) ξ = 4
5

(f) ξ = 5
6

Figure 6. (a)–(f) Spectrum Domain (Spectrum Curves) for various parameter ξ values.
– Constant Eigenvalue Point.

Arrows show the direction in which γ is increasing. So, EP from Eξ(γ) is
moving along this curve. We call this curve the Spectrum Curve. Zero Point
is not CP (see Lemma 1) and in the neighborhood of Zero Point the Spectrum
Curve belongs to R+

q (see Figure 5a). When γ → ±∞ the Spectrum Curve
N (γ) is approaching to ∂Dξ = Pξ ∪ {∞} (see Figure 6). PP is not CP, too,
and all Poles are of the first order. So, in the neighborhood of PP, Spectrum
Curves belong to R+

q (see Figure 5b), and γ values in the limit correspond to
−∞ and +∞. For other problems the structure of Spectrum Curves may be
more complex (see Figure 5f for a pole of the second order [19,21]).

If q0 ∈ Kξ and q0 6= 0, i.e. we have CP, then 0 < |γ(q0)| <∞ (see Lemma 1).
At this point eigenvalue is not simple. The view of Spectrum Curves near to
CPs is shown in Figure 5c (3CP) and Figure 5g (1CP). For SLP (2.1)–(2.3)
CPs of the first order and the second order exist (see Figure 6 and Figure 7).
Since 0 < |γ(q0)| < ∞ at CP q0, we can assume that a few Spectrum Curves
are intersecting at this CP when parameter γ = γ(q0). At kCP Spectrum
Curves change direction and the angle between the old and new direction is
π/(k + 1) (see Figure 5c and Figure 5g). We use the “right hand rule”. So,
the Spectrum Curve turns to the right. Then the parameter γ ∈ R for all
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(a) ξ = 0.247 (b) ξ = 1
4

(c) ξ = 0.25026

(d) ξ = ξ2b ≈ 0.25028 (e) ξ = 0.2503 (f) ξ = 0.253

Figure 7. Spectrum Curves for various parameter ξ values, bifurcations.

Spectrum Curves, but we have exception in the case ξ = 1 when Spectrum
Curve belongs to imaginary axis for γ ∈ (0; 1] and real axis for γ ∈ [1; +∞)
(see Figures 5d–5f). We enumerate Spectral Curves by classical case: if for
γ = 0 the point q = l ∈ Zξ belongs to the Spectrum Curve, then we denote this
regular Spectrum Curve Nl. So, Nl = {N (γ), γ ∈ R,N (0) = l}, l ∈ Zξ. In the
case ξ = 1 we have additional semi-regular Spectrum Curve N0 := {N (γ), γ ∈
(0; +∞),N (1) = 0} = R−q ∪ [0; 1/2). Then we have Dξ = ∪l∈ZξNl for ξ 6= 1
and Dξ = ∪l∈{0}∪ZξNl for ξ = 1.

Remark 11. In the case ξ = 1 and γ 6= 0 we can consider boundary condition
u′(1) = γ̃u(1), γ̃ ∈ R, where γ̃ = γ−1. Now CF is γ̃ = πq cos(πq)/ sin(πq)
and its zeroes are pk, k ∈ N, poles are zk, k ∈ N (CEPs do not exist). For
parameter γ̃ ∈ R all Spectrum Curves will be regular. More generally, we can
investigate SLP with parameter γ ∈ RP 1 (projective line). In the case ξ = 1
we can consider one “super” Spectrum Curve for CF γ : Rq → RP 1 (see [23],
too).

The point q = 0 is RP. This point belongs to the regular Spectrum Curve in
the case ξ 6= 1, ξ 6= 1/

√
3 and semi-regular Spectrum Curve in the case ξ = 1.

RP q = 0 is CP for ξ = ξc = 1/
√

3 (see 9). The Spectrum Curve near to this
RP q = 0 and BP λ = 0 has different properties. For example, the Spectrum
Curve turns perpendicular to the right at this BEP for ξ ∈ [0; 1/

√
3) and the

Spectrum Curve turns perpendicular to the left for ξ ∈ (1/
√

3; 1]. In Cλ the
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image of the Spectrum Curve lies in the real axis. For ξ = ξc we have different
angles (see Figures 5d, 5h) for Cq and Cλ.

The index of CP is formed by the indices of the Spectrum Curves, intersect-
ing in this CP. If the CP is real, then the left index coincides with the index
of Spectral Curve, which is defined by the smaller real λ values, and the right
index is defined by greater λ values (see Figures 6,7,8). We put the indices of
other Spectrum Curves in the ascending order between left and right indices
(see Figure 7d).

(a) ξ = 0.45 (b) ξ = 1
2

(c) ξ = 0.55

(d) ξ = 0.577 (e) ξ = ξc = 1√
3

(f) ξ = 0.584

Figure 8. Spectrum Curves for various parameter ξ values.
– Critical Point at Branch Eigenvalue Point.

For every CEP cj = j we define non-regular Spectrum Curve (consisting of
one point only) Nj = {cj}. We note, that non-regular Spectrum Curves can
overlap with a point of a regular Spectrum Curve. In this point eigenvalue is
not simple and generalized eigenvectors exist. Finally, we have that Nξ is a
countable union of Spectrum Curves Nl, where l ∈ N for ξ 6= 1 and l ∈ {0}∪N
for ξ = 1.

4.1 Dynamics of Spectrum Curves

There are many papers, in which real eigenvalues of the Sturm–Liouville prob-
lem are analyzed. However, a complex spectrum of this problem is investigated
that much and it is more complicated. By changing the value of the parameter
ξ we get various type projection of Spectrum Curves in the complex domain
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Cq. In Figures 1b,1e and 6 we can see qualitative view of Spectrum Curves
dependence on the parameter ξ.

If ξ ∈ [0, 1] is increasing from 0 to 1, then zeroes pk = (k − 1/2)/ξ, k ∈ N,
of the function Pξ(q) are moving to the left and zeroes zl = l, l ∈ N, of the
function Z(q) remain unchanged. In the limit case ξ = 1 PPs are pk = k−1/2,
k ∈ N, and we do not have PPs for ξ = 0. So, every pk coincides with zl = l,
l = k, k + 1, . . . , for ξ = (2k − 1)/(2l) and we have CEP cs = pks = zls =
n(s−1/2), ks = m(2s−1)/2 + 1/2, ls = n(s−1/2), s ∈ N (see (3.9)). Formula
(3.11) shows that we have the same situation for all CEPs. In Figures 3a–3c
we can see how the Real CFs depend on the value of the parameter ξ in the
neighbourhood of ξ = 1

4 . The Spectrum Curves near to ξ = 1
4 are presented

in Figures 7a–7c. When ξ . 1
4 the PP p1 is moving from right side to the

zero point z2 = 2. For ξ = 1/4 we have CEP at c1 = 2. Next, if the value
of ξ & 1

4 is increasing, the PP p1 moves to the left from the zero point. A
loop type curve appears, which consists of Spectrum Curves N2, N3 and two
critical points b3,2 and b2,3 of the first order. While the value of ξ is increasing,
the PP p1 is moving to the left and the loop grows. We denote such Zero and
Pole bifurcation type by βZP : (zls , pks)→ cs → (bls+1,ls , pks , zls , bls,ls+1). The
CEPs exist for all rational ξ = m/n, m ∈ No, n ∈ Ne. We have such type
bifurcation for ξ = 1/2 and ξ = 3/4 in the neighborhood of CEPs c1 = 1 and
c1 = 2, respectively (see Figures 8a–8c and Figures 9a–9c).

(a) ξ = 0.735 (b) ξ = 3
4

(c) ξ = 0.7535

(d) ξ = ξ2b ≈ 0.7539... (e) ξ = 0.7545 (f) ξ = 0.76

Figure 9. Spectrum Curves for various parameter ξ values.

Every such ξ is a point of bifurcation near to all CEPs for this value of ξ.

Math. Model. Anal., 25(1):53–70, 2020.
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Remark 12. For ξ = 1/4 we have c1 = 2, c2 = 6. βZP bifurcations at these two
CEPs give similar view Spectrum Curves but the directions are opposite. The
direction of Spectrum Curves depends on sign γ(cs; ξ) in formula (3.10).

CEP c1 = 1 exists only for ξ = 1/2. If ξ < 1/2, then R−q and interval [0, 1)
belong to regular Spectrum Curve N1. For ξ = 1/2 we have βZP type bifur-
cation and there are no CPs on N2 for γ > 0. If ξ & 1

2 , then the smallest real
eigenvalue is described by Spectrum Curve N2. We note that after bifurcation
the CP b2,1 exists (see Figure 8c) and this CP is moving to the left (Figure 8d).
For ξ = ξc = 1/

√
3 this CP is at BEP q = 0. For ξ > ξc this CP is moving

along R−q (the imaginary axis) to ∞. So, for ξ : ξc < ξ < 1, we have loop type
curve with one CP in R−q and another CP in R+

q (see Figures 8e–8f).

Remark 13. During βZP bifurcation we get CEP cs (see 2) and have a new
configuration of Spectrum Curves:

1) regular Spectrum Curve Nls becomes non-regular;

2) on the left and on the rigth of CEP we get the same regular Spectrum
Curve Nls+1;

3) the CP bls−1,ls (if exists) becomes bls−1,ls+1, and the CP bls,ls−1 ∈ R−q (if
exists) becomes bls+1,ls−1; at these CPs we have Spectrum Curves Nls−1
and Nls+1 instead Nls−1 and Nls .

The βZP bifurcation create configuration of the points bls−1,ls+1, bls+1,ls ,
pks , zls , bls,ls+1 (see Figures 3c,3d, 7c, 9c) and loop type curve (formed by
parts of the Spectrum Curves Nls and Nls+1) in complex part of Cq. While
value of the parameter ξ is increasing, this loop type curve grows, the PP pks
is moving to the left and is pushing the CP bls+1,ls towards the CP bls−1,ls+1.
These two 1CPs are between zero point zls−1 and PP pks . For ξ = ξ2b these
CPs merge into one 2CP bls−1,ls+1,ls (see Figures 3e, 7d, 9d) and we have the
second order CP bifurcation β2B . We note, that ξ2b depends on s and we can
calculate the location of bls−1,ls+1,ls only numerically (zls−1 < bls−1,ls+1,ls <
pks). When ξ & ξ2b loop type curve (around pks and zls) disappears and we
have two Spectral Curves Nls and Nls+1 which intersect in CP bls,ls+1 (see
Figures 3f,7e,7f, 9e,9f). So, β2B : (bls−1,ls+1, bls+1,ls)→ bls−1,ls+1,ls → ∅.

Remark 14. During β2B bifurcation we have a new configuration of Spectrum
Curves:

1) the part of Spectrum Curve Nls−1 becomes as part of Spectrum Curve
Nls ;

2) after bifurcation Spectrum Curve Nls−1 starts in PP pks and not at in-
finity.

Finally, these two bifurcations βZP and β2B interchange sequence of the
points (bls−1,ls , zls , pks) → (pks , zls , bls,ls+1) for zls 6= 1. If ξ = 1/2, then the
loop type curve around q = 1 exists for 1/2 < ξ < 1. When value of ξ is
increasing, then more and more zeroes and poles get inside the loop. This loop
disappears only for ξ = 1. In Figures 1b, 6, 1e we see how global view of
Spectrum Curves depends on parameter ξ ∈ [0, 1].
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5 Conclusions

Investigation of the Spectrum Curves allows to get useful information about the
spectrum for problems with two-point NBC. The properties of the spectrum for
this problem depend on zeroes, poles, constant eigenvalue points and critical
points of Characteristic Function. Critical points of Characteristic Function
are important for analysis of complex eigenvalues and the Spectrum Curves in
complex plane. In this paper we described how the Spectrum Curves depend
on parameter ξ and find two types bifurcations. Some results are given as a
graphs of Characteristic Function and Spectrum Curves in the complex domain
Cq.
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