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1 Introduction

We consider the following problem
Find (u, χ) ∈W 1,A(Ω)× L∞(Ω) such that:

i) 0 ≤ u ≤M, 0 ≤ χ ≤ 1, u(1− χ) = 0 a.e. in Ω,

ii) ∆Au = −div(χH(x)) in (W1,A
0 (Ω))′,

(1.1)

where Ω is an open bounded domain of Rn, n ≥ 2, x = (x1, ..., xn), M is a

positive constant, A(t) =

∫ t

0

a(s)ds, and ∆A is the A-Laplacian

∆Au = div
(a(|∇u|)
|∇u|

∇u
)

�
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with a a C1 function from [0,∞) to [0,∞) such that a(0) = 0 and satisfies for
some positive constants a0, a1

a0 ≤
ta′(t)

a(t)
≤ a1 ∀t > 0. (1.2)

The reader will find a variety of examples of such functions in [13]. As a
consequence of (1.2), we have the following monotonicity inequality [10](a(|ξ|)

|ξ|
ξ − a(|ζ|)

|ζ|
ζ
)
.(ξ − ζ) > 0 ∀ξ, ζ ∈ Rn \ {0}, ξ 6= ζ. (1.3)

The operator ∆A is a generalization of the p−Laplacian (a(t) = tp−1, p > 1),
which is itself a generalization of Laplace operator (a(t) = t). If we further
allow the function a to depend on x (see [14, 26]), our results can be extended
to include more operators like the so-called p(x)−Laplacian when a(t, x) =
tp(x)−1, with p(x) a continuous function such that p+ > p(x) > p− > 1 for
all x in Ω, where p− and p+ are two positive numbers. However, in order to
avoid complicated calculations, we will restrict ourselves to the case where a is
independent of x.

H = (H1, ...,Hn) is a vector function that satisfies for a positive constant h

|H|∞ ≤ h, (1.4)

|div(H)|∞ ≤ h. (1.5)

For the definition of the Orlicz-Sobolev space W 1,A(Ω) and its norm, we

refer for example to [13]. W 1,A
0 (Ω) is the closure of D(Ω) in W 1,A(Ω) with

respect to its norm.

Remark 1. (i) We call a solution of problem (1.1) any pair of functions (u, χ) ∈
W 1,A(Ω)× L∞(Ω) that satisfies (1.1)ii) in the following weak sense∫

Ω

(
a(|∇u|)
|∇u|

∇u+ χH(x)

)
.∇ζdx = 0 ∀ζ ∈W 1,A

0 (Ω).

(ii) For the existence of a solution of problem (1.1), one usually needs to impose
some boundary conditions on ∂Ω, which are typically a mixture of Dirichlet and
Neuman conditions. Then under assumptions (1.2) and (1.4), one can prove
existence of a solution to problem (1.1) by arguing as in [16,17,20,21,23]. The
main idea consists in solving an approximating problem using Schauder fixed
point theorem, and then passing to the limit using adequate estimates.

Among free boundary problems that fit in the problem (1.1) setting, is
the dam problem (see [4, 5, 8, 12, 20, 21, 22, 23], which consists in studying the
filtration of a fluid through a porous medium Ω ⊂ Rn, where we look for the
fluid pressure or hydrostatic head pressure inside Ω and the saturated region
represented by a function that lies between 0 and 1. The classical formulation
of the dam problem assumes that the flow is governed by Darcy’s law i.e.

v = −a(x)(∇(u+ xn)) = −a(x)(∇u+ e),

Math. Model. Anal., 25(3):338–350, 2020.
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where u is the fluid pressure, e = (0, ...0, 1), v is the fluid velocity and a(x) is
the matrix permeability of the porous medium. In this case equation (1.1)ii)
reads (see [17,20])

div (a(x)(∇u + χe)) = 0 in H−1(Ω).

It is well known that Darcy’s law fails to hold for non-Newtonian fluids in
which case it is substituted by a power-law of the form v = −k|∇u|p−2∇u,
where u is the fluid hydrostatic head pressure=fluid pressure+xn, v is the fluid
velocity and k is a positive constant. If we set g = 1−χ, then equation (1.1)ii)
reads (see [4])

∆pu− div(ge) = 0 in W−1,p
′
(Ω).

In order to take into account the heterogeneity of the medium and the
non-Newtonian flow, the following generalization of the above power-law was
proposed in [21] (see also [5, 12, 22, 23]): v = A(x,∇u), where A is a vector
function from Ω×Rn to Rn such thatA(., ξ) is measurable, A(x, .) is continuous
and monotone, A(x, ξ).ξ ≥ λ|ξ|p and |A(x, ξ)| ≤ Λ|ξ|p−1 for a.e. x ∈ Ω
and all ξ ∈ Rn, for some p > 1 and λ,Λ > 0. In this case, (1.1)ii) reads
(see [5, 12,21,22,23])

div (A(x,∇u)− gA(x, e)) = 0 in W−1,p
′
(Ω).

Another application of problem (1.1) arises from the lubrication problem
(see [1,2]) which describes lubrication with cavitation in bearings. The classical
formulation of this problem assumes that the flow in a rectangular domain Ω is
governed by Reynolds law i.e. div

(
h3(x1)∇u

)
= h′(x1) in {u > 0}, where u is

the fluid pressure, and h(x1) is the gap between the bearing and the shaft. In
this problem there are two unknowns, the fluid pressure u and the fluid relative
thickness 0 ≤ χ ≤ 1. If e1 = (1, 0) then Reynolds law and the incompressibility
of the fluid lead to the following version of (1.1)ii) (see [1, 2])

div
(
h3(x1)∇u− h(x1)χe1

)
= 0 in H−1(Ω).

One more application of problem (1.1) is the thermoelectrical modeling
of aluminium electrolysis (see [3]). This model is based on the Fourier law
q = −k(x)∇T , where T is the aluminium temperature in an electrolytic cell
section materialized by a bounded domain Ω of R2, q is the heat flux and k(x)
is the thermal conductivity. Assuming that Ts is the solidification temperature
of aluminium, then the problem consists in finding the function u = T −Ts ≥ 0
and a function 0 ≤ χ ≤ 1 that describes the region occupied by the liquid
phase {u > 0}. If h(x) represents the heat flux through the free boundary
∂{u > 0} ∩ Ω, then the Fourier law and the conservation of energy equation
lead to the following version of (1.1)ii) (see [3])

div (k(x)∇u + h(x)χe1) = 0 in H−1(Ω).

For a more general framework, we refer to [6, 7, 9, 11, 15, 24]. In this paper
we generalize results from [9,11] for the p-Laplacian and results in [6,7] in the
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linear case. Regarding the problem with a Newman boundary condition, we
refer to [17] for the dam problem, and to [25,27] for a more general framework.

In the first part of the paper, we show interior and boundary Lipschitz conti-
nuity. In the second part, under more assumptions on H including div(H) ≥ 0,
we establish that the free boundary is represented by a family of lower semi-
continuous functions.

Throughout this paper, we shall denote by Br(x) an open ball with center
x and radius r. If the center is not given, it will be assumed to be the origin.

2 Interior and boundary Lipschitz continuity

The first result of this section is the following interior regularity.

Theorem 1. Let (u, χ) be a solution of (1.1). Then u ∈ C0,1
loc (Ω).

We observe that since H ∈ L∞loc(Ω), we have u ∈ C0,α
loc (Ω) for some α ∈ (0, 1)

[10]. Consequently the set {u > 0} is open. Moreover, we have ∆Au = −div(H)

in D′({u > 0}) and div(H) ∈ L∞loc(Ω). So we have u ∈ C1,β
loc ({u > 0}) for some

β ∈ (0, 1) [19]. Therefore to prove Theorem 1, it is enough to investigate the
behavior of u near the free boundary. This is the object of the following lemma.

Lemma 1. Let x0 = (x01, ..., x0n) and r > 0 such that Br(x0) ⊂ {u > 0},
Br(x0) ⊂ Ω and ∂Br(x0)∩∂{u > 0} 6= ∅. Then there exists a positive constant
C depending only on n, h, a0, a−1(h), and δ(Ω) (the diameter of Ω) such that
supBr/2(x0) u ≤ C r.

Proof. We start by applying Harnack’s inequality (see [19], Corollary 1.4):

sup
Br/2(x0)

u ≤ C
(

inf
Br/2(x0)

u + r.a−1(hδ(Ω))
)
,

where C is a positive constant depending only on n, a0 and a1. Therefore, to
prove the lemma, it will be enough to establish the inequality

min
Br/2(x0)

u ≤ C r.

Since Br(x0) ⊂ Ω, then for ε ∈ (0, r) small enough, we have Br+ε(x0) ⊂ Ω,
and we can define the following function in the circular ring D = Br+ε(x0) \
Br/2(x0): v(x) = k

(
e−αρ

2 − e−α(r+ε)2
)
, where

ρ = |x− x0|, k =
m

e−αr2/4 − e−α(r+ε)2
, m = min

Br/2(x0)
u,

α = κ/r2, κ = 2
(
1 + n/a0

)
.

We claim that
∆Av ≥ a(|∇v|)/ρ in D. (2.1)

Indeed, we first observe that

∆Av =
a(|∇v|)
|∇v|3

{
|∇v|2∆v +

(a′(|∇v|)
a(|∇v|)

|∇v| − 1
)∑
i,j

∂v

∂xi

∂v

∂xj

∂2v

∂xi∂xj

}
. (2.2)

Math. Model. Anal., 25(3):338–350, 2020.
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Moreover, we have

∇v = −2αke−αρ
2

(x− x0), |∇v| = 2αkρe−αρ
2

,

∆v = −2αke−αρ
2

(n− 2αρ2),

∂2v

∂xi∂xj
= −2αke−αρ

2
(
δij − 2α(xi − x0i)(xj − x0j)

)
,

∑
i,j

∂v

∂xi

∂v

∂xj

∂2v

∂xi∂xj
= −(2αk)3ρ2e−3αρ

2

(1− 2αρ2).

Taking into account the fact that

1− 2αρ2 = 1− 2
κ

r2
ρ2 ≤ 1− 2

κ

r2

(r
2

)2
= 1− κ

2
< 0,

we get by substituting the above formulas in (2.2)

∆Av = −(2αk)3ρ2e−3αρ
2 a(|∇v|)
|∇v|3

{
n− 1 +

a′(|∇v|)
a(|∇v|)

|∇v|(1− 2αρ2)
}

≥ −(2αk)3ρ2e−3αρ
2 a(|∇v|)
|∇v|3

{
n− 1 + a0(1− κ

2
)
}

by (1.2)

= −a(|∇v|)
ρ

(
n− 1 + a0(1− κ

2
)
)

=
a(|∇v|)

ρ
.

Hence (2.1) holds, which leads by using (1.5) to

∆Av + div(H) ≥ a(|∇v|)/ρ− h

≥ 1

(r + ε)
a
(

2
κ

r2
.

me−
κ
r2

(r+ε)2

e−
κ
4 − e−

κ
r2

(r+ε)2
.
r

2

)
− h = θ(r). (2.3)

• If θ(r) ≤ 0, then a
(κ
r
.

me−
κ
r2

(r+ε)2

e−
κ
4 − e−

κ
r2

(r+ε)2

)
≤ h(r + ε), and by letting

ε→ 0, we get a
(κ
r
.

me−κ

e−
κ
4 − e−κ

)
≤ hr ≤ hδ(Ω), which leads to

m ≤ a−1
(
hδ(Ω)

) (e
3
4κ − 1)

κ
r = C(n, a, h, δ(Ω))r

and the lemma follows.

• If θ(r) > 0, we deduce from (2.3), since (v − u)+ ∈ W 1,A
0 (D) and

(v − u)+ ≥ 0, that∫
D

(a(|∇v|)
|∇v|

∇v +H(x)
)
.∇(v − u)+ ≤ 0. (2.4)

From (1.1)(ii), we also have∫
D

(a(|∇u|)
|∇u|

∇u+ χH(x)
)
.∇(v − u)+ = 0. (2.5)
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Subtracting (2.5) from (2.4), we get∫
D

(a(|∇v|)
|∇v|

∇v−a(|∇u|)
|∇u|

∇u
)
.∇(v−u)+dx ≤

∫
D

(χ−1)H(x).∇(v−u)+dx,

which can be written by using (1.4) and the fact that χ = 1 a.e. in {u > 0}∫
D∩{u>0}

(a(|∇v|)
|∇v|

∇v − a(|∇u|)
|∇u|

∇u
)
.∇(v − u)+dx

≤
∫
D∩{u=0}

(χ− 1)H(x).∇vdx−
∫
D∩{u=0}

a(|∇v|)
|∇v|

|∇v|2dx

≤
∫
D∩{u=0}

|∇v|
(
h− a(|∇v|)

)
dx.

If

∫
D∩{u=0}

|∇v|
(
h− |a(|∇v|)|

)
dx ≤ 0, then we would get by taking into account

(1.3) that ∇(v− u)+ = 0 in Br(x0). Since (v− u)+ = 0 on ∂Br(x0), this leads
to v ≤ u in D ∩Br(x0).

Given that v > 0 on ∂Br(x0) and ∂Br(x0) ∩ ∂{u > 0} 6= ∅, we would get a
contradiction. Hence ∫

D∩{u=0}
|∇v|

(
h− a(|∇v|)

)
dx > 0. (2.6)

Since |∇v| = 2kαρe−αρ
2

and κ > 2, we have

d

dρ
|∇v| = 2kαe−αρ

2

(1− 2κ
ρ2

r2
) ≤ 2kαe−αρ

2

(1− κ/2) < 0.

Therefore |∇v| is non-increasing with respect to ρ. It follows then from (2.6)

that a(|∇v|)|∂Br+ε(x0)
= a(2kα(r + ε)e−α(r+ε)

2

) < h i.e.

2mκ(r + ε)e−α(r+ε)
2

r2
(
e−αr2/4 − e−α(r+ε)2

) < a−1(h).

Letting ε→ 0, we obtain
2mκe−κ

r
(
e−κ/4 − e−κ

) ≤ a−1(h), which leads to

m ≤ a−1(h)

2κ
(e3κ/4 − 1)r = C(h, κ, a) r.

ut

Proof. (of Theorem 1) The proof is based on Lemma 1 and arguments similar
to those in the p-Laplacian case [11]. In particular, we use the scaling function

v(y) = u(x0 +Ry)/R for y ∈ B1,

Math. Model. Anal., 25(3):338–350, 2020.



344 S. Challal, A. Lyaghfouri

which satisfies the equation

∆Av = −R(divH)(x0 +Ry) in B1 if BR(x0) ⊂ {u > 0}.

Then by applying the estimate from [19], Theorem 1.7, we get for some positive
constant C(n, a,M,R) that supB1/2

|∇v| ≤ C(n, a,M,R). ut

Now we assume that u = 0 on a nonempty subset T of ∂Ω, and we study the
Lipschitz continuity of u up to T . To this end we assume the uniform exterior
sphere condition satisfied locally on T i.e. for each open and connected subset
S ⊂⊂ T

∃R > 0 such that ∀y ∈ S ∃z ∈ Rn \Ω BR(z) ∩ S = {y}.

Without loss of generality, we can assume that R < 1
3dist(S, ∂Ω \ T ) > 0,

where dist is the distance between two sets. Then we state our second result.

Theorem 2. For any solution (u, χ) of (1.1), we have u ∈ C0,1
loc (Ω ∪ T ).

The proof of Theorem 2 is based on Lemma 2. The rest of the proof will
be omitted, since it can be easily obtained using arguments similar to those in
the proof of Theorem 1 [11] and taking into account the above remark at the
end of the proof of Theorem 1.

Lemma 2. Let S be an open connected subset of T such that S ⊂⊂ T . Then
there exists a positive constant C depending only on n, a, M , h, δ(Ω) and R
such that

u(x) ≤ C |x− y| ∀x ∈ Ω ∀y ∈ S.

Proof. Let y ∈ S, z = y + Rν, where ν is the outward unit normal vector
to ∂Ω at y such that BR(z) ∩ ∂Ω = {y}. Then we consider the function
v(x) = ϑ(d(x)), where d and ϑ are given by d(x) = |x− z| −R,

ϑ(t) =

∫ t

0

a−1
((
a
(M
R

)
+

hR

n− 1

)
e
n−1
R (D−s) − hR

n− 1

)
ds and D = δ(Ω).

Then it is easy to verify that the following properties of ϑ hold:

ϑ(0) = 0, ϑ(R) ≥M and for all t ∈ [0, D],

ϑ′(t) = a−1
((
a
(M
R

)
+

hR

n− 1

)
e
n−1
R (D−t) − hR

n− 1

)
> 0,

ϑ′(D) =
M

R
≤ ϑ′(t) ≤ ϑ′(0) = a−1

((
a
(M
R

)
+

hR

n− 1

)
e
n−1
R D − hR

n− 1

)
,

a(ϑ′(t))ϑ′′(t) +
n− 1

R
a(ϑ′(t)) + h = 0.

We also have

∂v

∂xi
= ϑ′(d(x))

∂d

∂xi
= ϑ′(d(x))

xi − zi
|x− z|

,
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a(|∇v|)
|∇v|

∇v = a(ϑ′(d(x)))∇d(x),
∂2d

∂x2i
=

1

|x− z|
− (xi − zi)2

|x− z|3
,

∂

∂xi

(a(|∇v|)
|∇v|

∂v

∂xi

)
= a′(ϑ′(d(x)))ϑ′′(d(x))

( ∂d
∂xi

)2
+ a(ϑ′(d(x)))

∂2d

∂x2i
,

∆Av = a′(ϑ′(d(x)))ϑ′′(d(x)) +
n− 1

|x− z|
a(ϑ′(d(x))).

Therefore, since |x− z| > R for all x in Ω, we obtain

∆Av + div(H) ≤ 0 in Ω. (2.7)

Next, we claim that

u(x) ≤ v(x) for all x ∈ ∂Ω. (2.8)

Indeed, for x ∈ T , we have u(x) = 0 ≤ v(x). For x ∈ ∂Ω \ T , we have
|x− y| ≤ |x− z|+ |z − y| = |x− z|+R, which leads to |x− z| ≥ |x− y| −R ≥
dist(S, ∂Ω \ T ) − R > 3R − R = 2R. Hence we get v(x) ≥ ϑ(R) ≥ M ≥ u(x)
on ∂Ω \ T .

Now thanks to (2.8), we have (u− v)+ ∈ W 1,A
0 (Ω). Using this function in

(1.1)ii) and in (2.7), we obtain∫
Ω

a(|∇u|)
|∇u|

∇u.∇(u− v)+ = −
∫
Ω

χH(x).∇(u− v)+dx, (2.9)

−
∫
Ω

a(|∇v|)
|∇v|

∇v.∇(u− v)+dx ≤
∫
Ω

H(x).∇(u− v)+dx. (2.10)

Taking into account that χ = 1 a.e. in {u > 0} and adding (2.9) and (2.10),
we obtain ∫

Ω

(a(|∇u|)
|∇u|

∇u− a(|∇v|)
|∇v|

∇v
)
.∇(u− v)+dx ≤ 0,

which leads by (1.3) to ∇(u − v)+ = 0 a.e. in Ω, and therefore (u − v)+ is
constant in Ω. Since u ≤ v on ∂Ω, we get u ≤ v in Ω. We conclude that for
all x ∈ Ω and y ∈ S, we have

u(x) ≤ v(x) = |v(x)− v(y)| ≤ sup
x∈Ω
|∇v(x)||x− y| ≤

(
sup

t∈[0,D]

ϑ′(t)
)
|x− y|

= ϑ′(0)|x− y| = C(n, a,M, h,D,R)|x− y|.

ut

3 The free boundary

In this section, we assume that the vector function H satisfies the following
assumptions for some positive constants h and h:

0 < h ≤ Hn ≤ h a.e. in Ω, H ∈ C0,1(Ω), (3.1)

div(H) ≥ 0 a.e. in Ω. (3.2)

Math. Model. Anal., 25(3):338–350, 2020.
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By using min
(
u/ε, 1

)
ζ with ζ ∈ D(Ω), ζ ≥ 0 as a test function for (1.1)ii) and

arguing as in [7], one can establish the following important inequality:

div(χH)− χ({u > 0})div(H) ≤ 0 in D′(Ω). (3.3)

As a consequence of (3.3), we will derive a weak monotonicity of the function
χ, that will be used to express the free boundary as a union of graphs of a family
of functions. More precisely, we consider the following differential equation

(E(ω, h))

{
X ′(t, ω, h) = H(X(t, ω, h)),
X(0, ω, h) = (ω, h),

where h ∈ πxn(Ω) and ω ∈ πx′(Ω ∩ {xn = h}), x′ = (x1, ..., xn−1), πx′ and πxn
are respectively the orthogonal projections on the hyperplane {xn = 0} and the
xn-axis. Then we denote by X(., ω, h) the maximal solution of E(ω, h) defined
on the interval (α−(ω, h), α+(ω, h)). We deduce from (1.4) that we have

|X(t1, ω, h)−X(t2, ω, h)| ≤ h|t1 − t2| ∀t1, t2 ∈ (α−(ω, h), α+(ω, h)).

It follows that the limits lim
t→α−(ω,h)+

X(t, ω, h) and lim
t→α+(ω,h)−

X(t, ω, h) both exit,

which we shall denote respectively by X(α−(ω, h), ω, h) and X(α+(ω, h), ω, h),
and observe that we have necessarily X(α−(ω, h), ω, h) ∈ ∂Ω ∩ {xn < h} and
X(α+(ω, h), ω, h) ∈ ∂Ω ∩ {xn > h}.

For simplicity, we will drop the dependence on h in the sequel. Now, we
recall for the reader’s convenience the following technical properties and defi-
nitions established in [7]:

• α+ and α− are uniformly bounded.

• For each h ∈ πxn(Ω), we define the set

Dh = {(t, ω) /ω ∈ πx′(Ω ∩ {xn = h}), t ∈ (α−(ω), α+(ω))}

and consider the mapping

Th : Dh −→ Th(Dh),

(t, ω) 7−→ Th(t, ω) = (T 1
h , ..., T

n
h )(t, ω) = X(t, ω).

• Ω =
⊔

h∈πxn (Ω)

Th(Dh), Th is one to one, Th and T−1h are C0,1.

• The determinant Yh(t, ω) of the Jacobian matrix of the mapping Th,
satisfies:

i) Yh(t, ω) = −Hn(ω, h) exp
(∫ t

0

(divH)(X(s, ω))ds
)

a.e. in Dh.

ii) h ≤ −Yh(t, ω) ≤ Ch, C > 0, a.e. in Dh.
Using (3.3) and arguing as in the proof of Theorem 1 of [7], we can establish

the following monotonicity of χ

∂

∂t

(
χoTh

)
≤ 0 in D′(Dh). (3.4)
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Property (3.4) means that χ decreases along the orbits of the differential
equation (E(w, h)). The consequence on u is materialized in the next key
theorem which is the main idea in the parametrization of the free boundary.

Theorem 3. Let (u, χ) be a solution of (1.1) and x0 = Th(t0, ω0) ∈ Th(Dh).
i) If uoTh(t0, ω0) > 0, then there exists ε > 0 such that

uoTh(t, ω) > 0 ∀(t, ω) ∈ Cε = {(t, ω) ∈ Dh / |ω − ω0| < ε, t < t0 + ε}.

ii) If uoTh(t0, ω0) = 0, then uoTh(t, ω0) = 0 ∀t ≥ t0.

To prove Theorem 3, we need the following strong maximum principle.

Lemma 3. Let u ∈ W 1,A(U) ∩ C1(U) ∩ C0(U) such that u ≥ 0 in U and
∆Au ≤ 0 in U . Then u ≡ 0 in U or u > 0 in U .

The proof of Lemma 3 follows from the next Lemma 4 as in [18] p. 333.

Lemma 4. Let u ∈ W 1,A(U) ∩ C1(U) such that ∆Au ≤ 0 in U and u(x0) <
u(x) for all x ∈ U , where x0 ∈ ∂BR(x1) and BR(x1) ⊂ U . Then the outer
normal derivative of u at x0, satisfies ∂u

∂ν (x0) < 0.

Proof. We consider the standard function v defined by

v(x) = e−αr
2

− e−αR
2

for x ∈ D = BR(x1) \BR/2(x1),

where r = |x − x1| ∈ (R/2, R), α = κ/(R/2)2 = 4κ/R2, and κ is a positive

parameter such that 1
2 < κ < 2

(
1 + n−2

a0

)
.

Let ε = min
∂BR/2(x1)

(u− u(x0))/ max
∂BR/2(x1)

v > 0, and observe that

εv ≤ u− u(x0) on ∂D. (3.5)

To establish the Lemma, we will compare u− u(x0) with respect to εv. We
claim that

∆A(εv) ≥ a(ε|∇v|)/r ≥ 0 in D. (3.6)

Indeed, we first observe from (2.2) that

∆A(εv)=
a(ε|∇v|)
|∇v|3

{
|∇v|2∆v+

(a′(ε|∇v|)
a(ε|∇v|)

|ε∇v|−1
)∑
i,j

∂v

∂xi

∂v

∂xj

∂2v

∂xi∂xj

}
.

(3.7)
Moreover, we have

∇v=− 2αke−αr
2

(x−x1), |∇v|=2αre−αr
2

, ∆v=− 2αe−αr
2

(n− 2αr2),

∂2v

∂xi∂xj
= −2αe−αr

2
(
δij − 2α(xi − x1i)(xj − x1j)

)
,

∑
i,j

∂v

∂xi

∂v

∂xj

∂2v

∂xi∂xj
= −(2α)3r2e−3αr

2

(1− 2αr2).
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Taking into account the fact that

1− 2αr2 = 1− 2
κ

r2
r2 ≤ 1− 2

κ

(R/2)2

(R
2

)2
= 1− 2κ < 0,

we get by substituting the above formulas in (3.7)

∆A(εv) = (2α)3r2e−3αr
2 a(ε|∇v|)
|∇v|3

{
n− 1 +

a′(ε|∇v|)
a(ε|∇v|)

|ε∇v|(1− 2αr2)
}

≥ (2α)3r2e−3αr
2 a(ε|∇v|)
|∇v|3

{
n− 1 + a0(1− κ

2
)
}

by (1.2)

=
a(|∇v|)

r

(
n− 1 + a0(1− κ

2
)
)
≥ a(ε|∇v|)

r
.

Hence (3.6) holds. Using (3.6) and the fact that ∆Au ≤ 0, we obtain

∆A(εv) ≥ 0 ≥ ∆A(u− u(x0)) in D. (3.8)

Now taking into account (3.5) and (3.8), and using the weak maximum principle
for the A-Laplacian, we get

εv ≤ u− u(x0) in D. (3.9)

To conclude, let ν be the exterior unit normal vector to ∂BR(x1) at x0. We
infer from (3.9) for t positive and small enough so that x0 − tν ∈ D

u(x0 − tν)− u(x0)

t
≥ εv(x0 − tν)− v(x0)

t
.

Letting t −→ 0, we obtain

−∂u
∂ν

(x0) ≥ ε.
(
− ∂v

∂ν
(x0)

)
,

∂u

∂ν
(x0) ≤ ε

∂v

∂ν
(x0) = ε.(−2αRe−αR

2

) < 0.

ut

Proof. (of Theorem 3) It is enough to verify i). By continuity, there exists
ε > 0 such that uoTh(t, ω) > 0 ∀(t, ω) ∈ (t0 − ε, t0 + ε)×Bε(ω0) = Qε.

By (1.1)i), we have χoTh(t, ω) = 1 for a.e. (t, ω) ∈ Qε. Using (3.4) and the
fact that χoTh ≤ 1, we get χoTh = 1 a.e. in Cε, i.e. χ = 1 a.e. in Th(Cε).

From (1.1)ii) and (3.2), we get 4Au = −div(H) ≤ 0 in D′(Th(Cε)). Given
that u ≥ 0 in Ω and u > 0 in Th(Qε) ⊂ Th(Cε), we conclude by Lemma 3, that
u > 0 in Th(Cε). ut

Remark 2. Thanks to Theorem 3, we can define for each h ∈ πxn(Ω), the
following function on πx′(Ω ∩ {xn = h}):

φh(ω) =


sup {t : (t, ω) ∈ Dh, uoTh(t, ω) > 0} ,

if this set is not empty,

α−(ω), otherwise.
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Then one can easily check as in [5] that φh is lower semi-continuous at each
ω ∈ πx′(Ω∩{xn = h}) such that Th(φh(ω), ω) ∈ Ω and that {uoTh(t, ω) > 0}∩
Dh = {t < φh(ω)}.
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