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at nodes of one and the same grid. The results of computer simulation of several
2D test problems are presented. They demonstrate advantages of the constructed
discretization including the absence of the so-called parasitic currents.
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1 Introduction

Multiphase microflows involving significant interphase and capillary effects are
often appear in nature and technology. Development and improvement of rel-
evant mathematical models and numerical methods for their implementation
is an important and urgent task. One of the common models for describing
isothermal flows of two-component two-phase mixtures with the direct reso-
lution of the interface and taking into account the associated effects is the
Navier-Stokes-Cahn-Hilliard (NSCH) system of equations. It can be attributed
to the group of the phase field models (methods of the diffuse interface type).
In the frame of such models, the interface is actually a layer of small but
finite thickness within which interphase forces (for example, related to the sur-
face tension) operate. In this case, the spatial distribution of the phases is
described by the distribution of an order parameter which is usually concentra-
tion and/or density. Accounting for interphase effects is provided, on the one
hand, by introducing the dependence of the Helmholtz free energy (or another
thermodynamic potential) on the modulus of the order parameter gradient and,
on the other hand, by its non-convex dependence on the order parameter. For
more details, for example, see [2, 19,20].

Notice that in such a model the concept of a phase is not explicitly intro-
duced. However, owing to the mentioned special form of the free energy, in the
flow domain, some subdomains arise that are occupied by a mixture with an
almost homogeneous composition in space, i.e., actually by a separate phase.

In this paper, we consider a special quasi-hydrodynamic (QHD) regular-
ization of the NSCH equations [3] consisting in a thermodynamically justified
introducing of some terms with a small parameter into the original equations.
They are able to play the role of numerical regularizers allowing to apply rel-
atively simple (conditionally) stable and convenient in parallelization of com-
putations explicit central finite-difference schemes [4, 5]. Previously, the QHD
and related quasi-gas-dynamic approaches to regularization were successfully
applied to various gas dynamics systems of equations including the case of bi-
nary mixtures; moreover, the introduced terms allow one to improve matching
of numerical results with experimental data for moderately rarefied gas flows,
see [7,10,11,21]. Note that there exist other recent approaches to the regular-
ization of the gas dynamics equations, in particular, see [13,22].

In the numerical simulation of multiphase flows using the direct resolution
of the interface and taking into account related effects, the so-called spurious, or
parasitic, currents arise frequently. This purely numerical phenomenon means
a vortex distribution of the velocity field in the vicinity of the interface which
does not decay in time. This phenomenon is inherent not only for numerical
methods to solve the NSCH system of equations (or other phase field models)
but also for other kind methods such as the volume of fluid method [14],
the level set method and the lattice Boltzmann method. Often, the parasitic
currents have a significant negative impact on the flow dynamics. Depending
on the mathematical model underlying the specific method, various methods
of dealing with them are applied [1, 8, 14,16].

For the models of phase-field type, the absence of conservativeness in the
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total energy (in the sense of the mutual balance between the free energy of the
system and the kinetic energy associated with surface forces) at the discrete
level was indicated as the cause of the parasitic currents in [15, 16]. In partic-
ular, it seems that the fulfillment of such a property together with adequate
symmetry properties and the positive definiteness of the Navier-Stokes viscous
stress discrete operator imply the energy dissipativity of the finite-difference
scheme (in the sense of non-increasing of its total energy). To ensure such
a balance (thus the dissipativity as well), it was also proposed there to use
a special non-divergent form of the momentum equation while constructing
finite-difference schemes. On the other hand, strictly speaking, then the con-
servativeness in momentum is normally lost although being still satisfied within
the approximation error. However, for a wide range of problems, it seems that
the preservation of the energy dissipativity at the discrete level is much more
important.

This paper is devoted to the construction of a new energy-dissipative finite-
difference spatial discretization for the 3D QHD-regularized viscous compress-
ible isothermal NSCH system of equations taking into account the potential
body force, in the spatially periodic statement. This construction is based,
firstly, on the recent dissipative discretizations of regularized barotropic and
full 3D gas dynamics systems of equations from [26, 27] and, secondly, on the
representation in the potential form of a term associated to the capillary forces
in the momentum equation similarly to [15, 16, 17]. In this discretization, the
sought functions, namely, the density and velocity of the mixture and the con-
centration of one of the components are defined at nodes of one and the same
grid. The corresponding 1D construction has recently been accomplished in [6].
The constructed 3D discretization is additionally well-balanced for equilibrium
solutions and the potential body force.

Strictly speaking, the constructed discretization is not conservative in mo-
mentum as in the indicated papers. But in simulations performed in this paper
we observe the preservation of the total momentum of the system within the
high precision ∼ 10−14–10−20.

The paper is organized as follows. In Section 2, the regularized NSCH
system of equations is presented. For the system, the total energy balance
equation and the potential form of the momentum equation are given. In
Section 3, we construct a new spatial discretization of the equations and prove
that its total energy is non-increasing in the spatially periodic statement of
the problem. In addition, we prove that the constructed discretization is well-
balanced for the potential body force. Also a version of this discretization more
close to [6] is discussed. The last Section 4 is devoted to computer simulation
of three 2D test problems. We apply the explicit Euler approximation in time
and compare the numerical results obtained by the schemes constructed in this
paper and previously in [5] and emphasize advantages of the new schemes, in
particular, the absence of parasitic currents for them: the maximum value of
the velocity modulus is zero within the computer precision when the solution
stabilizes. We also give some negative numerical results in the case where the
regularization is absent.
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2 The regularized Navier-Stokes-Cahn-Hilliard equations

We consider the Navier-Stokes-Cahn-Hilliard (NSCH) system of equations de-
scribing isothermal viscous compressible flows of two-phase two-component
mixture and taking into account interphase (surface) effects [2,19,20]. Its reg-
ularized version [3, 4, 5] consists of the total mass, momentum and component
mass balance equations

∂tρ+ div J = 0, (2.1)

∂t(ρu) + div(J⊗ u) +∇p(ρ, C) = div Π + ρ∇Φ, (2.2)

∂t(ρC) + div(JC) = div
[
M(C)∇µ(ρ, C,∇C)

]
, (2.3)

where ρ > 0 is the total density, u = (u1, u2, u3) is the velocity of both mixture
components, 0 < C < 1 is the mass concentration of one of two considered
components all depending on (x, t), with x = (x1, x2, x3) ∈ R3 and t > 0.
Hereafter ∂t = ∂/∂t and ∂i = ∂/∂xi, the divergence of a tensor is taken with
respect to its first index, symbols ⊗ and · correspond respectively to the tensor
and inner products of vectors. In addition, Φ(x) is the potential of a stationary
body force and M(C) > 0.

We impose the condition of X := (X1, X2, X3) – periodicity of the solution
and the function Φ(x) with respect to (x1, x2, x3), where Xi > 0, i = 1, 2, 3.
We set ΩX := (0, X1)× (0, X2)× (0, X3).

The regulirized mass flux J is given by the formulas

J = ρu−m, m = τ
[
ρ(u · ∇)u +∇p− ρ∇Φ+ div Q

]
. (2.4)

It includes the regularizing momentum m with the regularization parameter
τ = τ(ρ,u, C) > 0; following [25], we use m not the regularizing velocity.

The tensor Π = ΠNS −Q + Πτ consists of the Navier-Stokes viscous stress
tensor ΠNS , the capillary stress tensor Q and the regularizing tensor Πτ :

ΠNS = 2ηD(u) +
(
ζ − 2

3η)(div u)I, D(u) = 1
2 (∇u +∇uT ), (2.5)

Q = λ1ρ∇C ⊗∇C, Πτ = u⊗m, (2.6)

where ∇u = {∂iuj}3i,j=1, η = η(ρ, C) > 0 and ζ = ζ(ρ, C) ≥ 0 are the coeffi-
cients of dynamic and bulk viscosity as well as I is the identity tensor.

The regularizing terms in the equations are physically based [3, 7, 10, 21].
In what follows, they provide (conditional) stability of explicit central finite-
difference approximations of the equations.

It remains to define the pressure p and the (generalized) chemical poten-
tial µ. According to [18] we set the Helmholtz free energy of the mixture as
follows

Ψ(ρ, C,∇C) = Ψ0(ρ, C) + 1
2λ1|∇C|2,

Ψ0(ρ, C) = Cc2s1 ln
ρ

ρ̄1
+ (1− C)c2s2 ln

ρ

ρ̄2
+ Ψsep(C),

where the constant λ1 > 0 is a model parameter, csi and ρ̄i > 0 are the sound
speed and reference density of ith component. There exist various ways to set
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the function Ψsep(C). According to [2,18,19], we apply the following polynomial
form

Ψsep(C) = AψC
2(1− C)2, Aψ > 0, (2.7)

which is also used in numerical simulations below in Section 4. The presence of
two local minima at C = 0, 1 corresponding to “pure” components is peculiar
to Ψsep(C) that is of great concern in simulation of interphase (surface) effects.

The functions p and µ are introduced due to Ψ0(ρ, C):

p(ρ, C) = ρ2Ψ ′0ρ(ρ, C) = c2s1ρC + c2s2ρ(1− C),

µ = µ(ρ, C,∇C) = Ψ ′0C(ρ, C)− λ1
ρ

div(ρ∇C).

Hereafter (·)′ρ = ∂/∂ρ and (·)′C = ∂/∂C. It should be noted that the nonlinear
terms with ∇C appearing in Q in combination with the non-convexity in C of
Ψ0 are responsible for the surface effects.

If τ = 0, then m = 0, and system (2.1)–(2.3) becomes the standard NSCH
system for viscous compressible two component isothermal mixture flows.

We supplement the system (2.1)–(2.3) with the initial conditions:

ρ|t=0 = ρ0(x), u|t=0 = u0(x), C|t=0 = C0(x)

with the X-periodic initial functions ρ0,u0 and C0.
The following total mass and component mass conservation laws hold∫
ΩX

ρ(x, t) dx =

∫
ΩX

ρ0(x) dx,

∫
ΩX

(ρC)(x, t) dx =

∫
ΩX

(ρ0C0)(x) dx (2.8)

for t ≥ 0.
For the considered system, the following result is also valid [5].

Proposition 1. Let e = Ψ0(ρ, C) + 1
2λ1|∇C|2 + 1

2 |u|2 − Φ be the specific full
energy. For the total energy E :=

∫
ΩX

ρe dx, the following balance equation
holds

∂tE +

∫
ΩX

[
2η|D(u)|2 +

(
ζ − 2

3 η
)

(div u)2 +M |∇µ|2 +
1

ρτ
|m|2

]
dx = 0

for t ≥ 0. Here 2η|D(u)|2 +
(
ζ − 2

3 η
)

(div u)2 ≥ 0, |D(u)|2 = D(u) : D(u) is
the inner product of the tensor with itself.

Consequently, the total energy is non-increasing in time: ∂tE ≤ 0 for t ≥ 0.

This result is essential and justifies the physical correctness of the above
regularization. Note that the term with m disappears for τ = 0.

In [6], to construct an energy dissipative 1D discretization, the following
non-divergent form of terms ∇p + div Q in equation (2.2) and formula (2.4)
has recently been applied

∇p+ div Q = ρ∇G− ρµ∇C, (2.9)

G ≡ G(ρ, C,∇C) := Ψ ′1ρ(ρ, C) + 1
2λ1|∇C|2. (2.10)
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The same equality was given in [19]. Here Ψ1(ρ, C) := ρΨ0(ρ, C) is the homo-
geneous (i.e., independent of ∇C) Helmholtz free energy per unit volume. The
function G(ρ, C,∇C) = Ψ0 + ρΨ ′0ρ + 1

2λ1|∇C|2 = Ψ + ρΨ ′ρ can be regarded as
the mass density of the Gibbs free energy, and Ψ ′1ρ is its homogeneous part
(similarly to Ψ0 in Ψ). In the next section, formulas (2.9)–(2.10) are essentially
used.

In addition, we consider the equilibrium solutions ρ = ρS(x) > 0, u = uS =
0 and 0 < C = CS(x) < 1 of the considered system taking into account (2.9)–
(2.10). We assume that they also are X-periodic, and the system is reduced to
the following form

div JS = 0, ∇
(
G− Φ

)
− µ∇C = 0, div

(
JSC −M(C)∇µ

)
= 0 (2.11)

in R3, where JS = τ0ρ
[
∇(G − Φ) − µ∇C

]
and τ0 = τ(ρ, 0, C). It implies

that JS = 0, and the equations become the same as for the non-regularized
system (for τ = 0). Therefore the above regularized system does not change
equilibrium solutions of the non-regularized one.

The last equation in (2.11) is reduced to div
(
M(C)∇µ

)
= 0 thus µ ≡ µS =

const. Then from the second equation in (2.11) we get G− µSC − Φ ≡ const.
Thus the equilibrium solutions ρS and CS obey the following system in R3

Ψ ′1ρ(ρ, C) + 1
2λ1|∇C|2 − µSC − Φ ≡ const, (2.12)

Ψ ′1C(ρ, C)− λ1 div(ρ∇C) = µSρ. (2.13)

3 An energy dissipative spatial discretization of the
regularized Navier-Stokes-Cahn-Hilliard system

2.1. We first define the notation. We introduce the main uniform grid ωkh
in xk ∈ R with nodes xkm = mhk, m ∈ Z, hk = Xk/Nk and the auxiliary grid
ω∗kh with nodes xk(m+1/2) = (m + 0.5)hk, m ∈ Z, k = 1, 2, 3. Let HXk

(ωkh)
and HXk

(ω∗kh) be the spaces of Xk-periodic functions defined on these grids,
endowed respectively with the inner products

(v, ṽ)ωkh
=

Nk−1∑
m=0

vmṽmh, (y, ỹ)ω∗
kh

=

Nk∑
m=1

ym−1/2ỹm−1/2h.

For v ∈ HXk
(ωkh) and y ∈ HXk

(ω∗kh), we introduce the grid averages and
difference quotients

(skv)m−1/2 = 1
2 (vm−1 + vm), δkvm−1/2 = vm−vm−1

h ,

(s∗ky)m = 1
2 (ym−1/2 + ym+1/2), δ∗kym =

ym+1/2−ym−1/2

h .

Clearly sk, δk: HXk
(ωkh)→ HXk

(ω∗kh) and s∗k, δ
∗
k: HXk

(ω∗kh)→ HXk
(ωkh).

For v ∈ HXk
(ωkh) and y ∈ HXk

(ω∗kh), it is easy to check the following
formulas

(δ∗ky, v)ωkh
= −(y, δkv)ω∗

kh
, (s∗ky, v)ωkh

= (y, skv)ω∗
kh
, (3.1)
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which are extensively used below.

We introduce the 3D grids ωh = ω1h×ω2h×ω3h, ω∗h = ω∗1h×ω∗2h×ω∗3h and
the grid ωi∗,h that is obtained from ωh by replacing the multiplier ωih with ω∗ih,
i = 1, 2, 3. Let HX(ωh) and HX(ω∗h) be the spaces of X-periodic in x functions
defined on ωh and ω∗h, endowed respectively with the inner products

(v, ṽ) = (((vṽ, 1)ω1h
, 1)ω2h

, 1)ω3h
, (y, ỹ)∗ = (((yỹ, 1)ω∗

1h
, 1)ω∗

2h
, 1)ω∗

3h
.

Let (v, ṽ)i∗ be the inner product obtained from (v, ṽ) by substituting (·, 1)ωih

with (·, 1)ω∗
ih

.

2.2. Now we discretize the regularized NSCH equations on the grid ωh as
follows

∂tρ+ δ∗i Ji = 0, (3.2)

∂t(ρul) + δ∗i (Jisiul) + s∗l
[
(slρ)δlGh

]
= δ∗i (ΠNS

il +Πτ
il)

+ s∗l
{

(slρ)
[
(slµ)δlC + δlΦ

]}
, (3.3)

∂t(ρC) + δ∗i (JisiC) = δ∗i
(
M(siC)δiµ

)
, (3.4)

where l = 1, 2, 3 and

Gh = Ψ ′1ρ(ρ, C) + Eλ, Eλ = 1
2λ1s

∗
i

[
(δiC)2

]
, (3.5)

µ =
1

ρ

[
Ψ ′1C(ρ, C)− δ∗i

(
λ1(siρ)δiC

)]
.

The basic unknown functions are ρ(·, t),u(·, t), C(·, t) ∈ HX(ωh), with ρ > 0
and 0 < C < 1, for t ≥ 0. The parameter τ = τ(ρ,u, C) > 0 and function
Φ ∈ HX(ωh) are given. Hereafter the summation from 1 to 3 is assumed over
the repeated indices i and j (and only over them).

We discretize the components of regularized mass flux Jk(x, t) on ωk∗,h,
namely, the terms with ρ,u and Φ according to [27, Section 3.4] and the terms
with C according to [6]:

Jk =(skρ)skuk −mk, (3.6)

mk =
(
sk(τρ)

)[
(skuk)δkuk + δk(Gh − Φ)− (skµ)δkC

]
+ sk

[
τρs∗l

(
(slul)δluk

)
+ τρs∗m

(
(smum)δmuk

)]
, (3.7)

see (2.4), (2.9) and (2.10). Hereafter (k, l,m) is any permutation of (1, 2, 3).

The tensor ΠNS entries, see (2.5), are also discretized on ωk∗,h according
to [26, Section 2.2]

ΠNS
kk ≡ ΠNS

kk (u) =
[
s∗l s
∗
m

(
4
3η + ζ

)]
δkuk

+ s∗l
[(
s∗m
(
ζ − 2

3η
))
skδlul

]
+ s∗m

[(
s∗l
(
ζ − 2

3η
))
skδmum

]
,

ΠNS
kl ≡ ΠNS

kl (u) =(s∗l s
∗
mµ)δkul + s∗l

[
(s∗mµ)skδluk

]
, k 6= l.
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The tensor Πτ entries, see (2.6), are discretized on ωk∗,h as in [27, Section
3.4]

Πτ
kk = (skuk)mk, Πτ

kl = (skuk)m
(k)
l , k 6= l,

m
(k)
l = sk

{
τρs∗l

[
(slul)δlul + δl(Gh − Φ)− (slµ)δlC

]
+ τρs∗m

[
(smum)δmul

]}
+
(
sk(τρ)

)
(skuk)δkul, (3.8)

where η = η(sρ, sC) and ζ = ζ(sρ, sC) (or η = sη(ρ, C) and ζ = sζ(ρ, C)) are
defined on ω∗h, with s = s1s2s3.

For the spatial discretization (3.2)–(3.8), the following total mass and com-
ponent mass conservation laws hold

∂t(ρ, 1) = 0, ∂t(ρC, 1) = 0 for t ≥ 0,

cf. (2.8). They are easily obtained by taking the inner product in HX(ωh) of
the balance equations (3.2) and (3.4) and 1 and applying the first formula (3.1).

Lemma 1. Let u, v ∈ HX(ωh), where v = (v1, v2, v3). For the Navier-Stokes
terms, the following self-adjointness and positive definiteness properties(

ΠNS
ij (u), δivj

)
i∗ =

(
δiuj , Π

NS
ij (v)

)
i∗,

ANS(u) :=
(
ΠNS
ij (u), δiuj

)
i∗

≥
(
2η, |D(u)|2h

))
∗ +

(
ζ − 2

3 η, (divh u)2
)
∗ ≥ 0, (3.9)

are valid, where

|D(u)|2h = s2s3
[
(δ1u1)2

]
+ s1s3

[
(δ2u2)2

]
+ s1s2

[
(δ3u3)2

]
+ 2s3

(
D2
h12

)
+ 2s2

(
D2
h13

)
+ 2s1

(
D2
h23

)
with Dhkl = 1

2 (δlskuk + δkslul) for k 6= l and divh u = s2s3δ1u1 + s1s3δ2u2 +
s1s2δ3u3 on ω∗h.

This lemma is similar to [26, Lemma 3] (where boundary conditions were
taken into account), and its proof is simpler.

The next main result of the section is a counterpart of Proposition 1.

Theorem 1. For the above spatial discretization (3.2)–(3.8), the following total
energy inequality is satisfied

∂t
(
ρ(Ψ0 + Eλ + 0.5|u|2 − Φ), 1

)
+ANS(u)

+
(
M(sjC)δjµ, δjµ

)
j∗ +

(
τρw̃

(0)
j , w̃

(0)
j

)
≤ 0 for t ≥ 0, (3.10)

where ANS(u) is the Navier-Stokes contribution, see (3.9), and

w̃
(0)
k := s∗k

[
(skuk)δkuk + δk(Gh − Φ)− (skµ)δkC

]
+ s∗l

[
(slul)δluk

]
+ s∗m

[
(smum)δmuk

]
.
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Consequently, the discrete total energy is non-increasing:

∂t
(
ρ(Ψ0 + Eλ + 0.5|u|2 − Φ), 1

)
≤ 0 for t ≥ 0.

Remark 1. The term (τρw̃
(0)
1 , τρw̃

(0)
2 , τρw̃

(0)
3 ) is an approximation for m on ωh,

see (2.4), (2.9) and (2.10).

Proof. We first take the inner product in HX(ωh) of the mass balance equa-
tion (3.2) and Ψ ′1ρ − Φ− 0.5|u|2. Using the first formula (3.1) and 0.5δk(v2) =
(skv)δkv, we get(

Ψ ′1ρ, ∂tρ
)
− ∂t

(
ρΦ, 1

)
− 0.5

(
∂tρ, |u|2

)
−
(
Ji, δi(Ψ

′
1ρ − Φ)

)
i∗ +

(
Ji, (siuj)δiuj

)
i∗ = 0. (3.11)

Now we take the inner product in HX(ωh) of the momentum balance equa-
tion (3.3) and ul and use the formula[

∂t(ρul)
]
ul = 0.5∂t(ρu

2
l ) + 0.5(∂tρ)u2l .

Next we replace l with j, sum up over j = 1, 2, 3 and then apply formulas (3.1).
Then we sum the obtained result and (3.11) (by doing so, the third and fifth
terms on the left-hand side in (3.11) are canceled out) and obtain(

Ψ ′1ρ, ∂tρ
)

+ ∂t
(
− ρΦ+ 0.5ρ|u|2, 1

)
−
(
Jj , δj(Ψ

′
1ρ − Φ)

)
j∗ +ANS(u)

+
(
(sjρ)δj(Gh − Φ), sjuj

)
j∗+

(
Πτ
ij , δiuj

)
i∗=
(
(sjµ)(sjρ)δjC, sjuj

)
j∗. (3.12)

Owing to definitions of Jj and Gh, see (3.6) and (3.5), we can rewrite the sum
of the third and fourth terms on the left-hand side as

−
(
Jj , δj(Ψ

′
1ρ − Φ)

)
j∗ +

(
(sjρ)δj(Gh − Φ), sjuj

)
j∗

=
(
Jj , δjEλ)j∗ +

(
mj , δj(Gh − Φ)

)
j∗. (3.13)

Applying the formulas

∂t(ρC) = ρ∂tC + (∂tρ)C, δ∗k(JkskC) = (δ∗kJk)C + s∗k(JkδkC)

and the mass balance equation (3.2), we rewrite the component mass balance
equation (3.4) in the following partially non-divergence form

ρ∂tC + s∗i (JiδiC)− δ∗i
(
M(siC)δiµ

)
= 0.

Taking the inner product in HX(ωh) of it and µ = (1/ρ)
[
Ψ ′1C−δ∗i

(
λ1(siρ)δiC

)]
,

we derive(
Ψ ′1C , ∂tC

)
−
(
∂tC, δ

∗
i (λ1(siρ)δiC)

)
+
(
s∗i (JiδiC), µ

)
+
(
M(siC)δiµ, δiµ

)
i∗ = 0. (3.14)
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Using (3.1) and then the mass balance equation (3.2), we accomplish the fol-
lowing chain of transformations

−
(
∂tC, δ

∗
i (λ1(siρ)δiC)

)
=
(
∂tδiC, λ1(siρ)δiC

)
i∗

=
(
λ1(siρ), 12∂t

[
(δiC)2

])
i∗ =

(
ρ, λ1

1
2∂ts

∗
i [(δiC)2

])
=
(
ρ, ∂tEλ) = ∂t

(
ρ, Eλ

)
−
(
Eλ, ∂tρ

)
= ∂t

(
ρ, Eλ

)
−
(
δjEλ, Jj)j∗.

Applying again the second formula (3.1) and the formula Jl = (slρ)slul −ml,
from (3.14) we find(

Ψ ′1C , ∂tC
)

+ ∂t
(
ρ, Eλ

)
−
(
δjEλ, Jj)j∗ +

(
(siρ)siui, (siµ)δiC

)
i∗

−
(
mi, (siµ)δiC

)
i∗ +

(
M(siC)δiµ, δiµ

)
i∗ = 0. (3.15)

Summing up equalities (3.12) and (3.15) and invoking (3.13), we obtain

∂t
(
ρ(Ψ0 + Eλ + 0.5|u|2 − Φ), 1

)
+ANS(u)

+
(
M(sjC)δjµ, δjµ

)
j∗ +Bτ = 0, (3.16)

where the term
(
δjEλ, Jj)j∗ and the term on the right-hand side of (3.12) have

been canceled out and

Bτ :=
(
mj , δj(Gh − Φ)

)
j∗ −

(
mi, (siµ)δiC

)
i∗ +

(
Πτ
ij , δiuj

)
i∗.

It remains to transform and bound from below the term Bτ . Similarly
to [27, Section 3.4], using the definition of Πτ

ij we write down

Bτ =
(
mi, (siui)δiui + δi(Gh − Φ)− (siµ)δiC

)
i∗

+ (1− δ(ij))
(
m

(j)
i , (siui)δiuj

)
i∗ = δ(ii)Bτi ,

where δ(ij) is the Kronecker delta and

Bτl : =
(
ml, α̂ll

)
l∗ +

(
m

(k)
l , αkl

)
k∗,+

(
m

(m)
l , αml

)
m∗,

α̂ll : = (slul)δlul + δl(Gh − Φ)− (slµ)δlC, αkl := (skuk)δkul.

By virtue of definitions of ml and m
(k)
l , see (3.7) and (3.8), after transferring

the operators sl, sk and sm (see the second formula (3.1)) on the cofactors we
get

Bτl =
(
sl(τρ)α̂ll + sl

[
τρ(s∗kαkl + s∗mαml)

]
, α̂ll

)
l∗

+
(
sk
[
τρ(s∗l α̂ll + s∗mαml)

]
+
(
sk(τρ)

)
αkl, αkl

)
k∗

+
(
sm
[
τρ(s∗l α̂ll + s∗kαkl)

]
+
(
sm(τρ)

)
αml, αml

)
m∗

=
(
τρ, s∗l

(
α̂2
ll) + s∗k

(
α2
kl

)
+ s∗m

(
α2
ml

))
+
(
τρ(s∗kαkl + s∗mαml), s

∗
l α̂ll

)
+
(
τρ, (s∗l α̂ll + s∗mαml)s

∗
kαkl + (s∗l α̂ll + s∗kαkl)s

∗
mαml

)
=
(
τρ, (s∗l α̂ll + s∗kαkl + s∗mαml)

2 + r
)

=
(
τρ,
(
w̃

(0)
l

)2
+ r
)
,
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where (owing to the formula s∗l (y
2) = (s∗l y)2 + 1

4h
2
l (δ
∗
l y)2)

r = 1
4

[
h2l (δ

∗
l α̂ll)

2 + h2k(δ∗kαkl)
2 + h2m(δ∗mαml)

2
]
≥ 0.

Now the result of the theorem follows from (3.16). ut

Remark 2. Inequality (3.10) is valid for τ ≥ 0. If τ = 0, then it holds for the
non-regularized NSCH equations (in this case, the term with τ disappears).

Remark 3. Similarly to [6], the term s∗l
{

(slρ)(slµ)δlC
}

can be replaced with

µs∗l
[
(slρ)δlC

]
in equation (3.3) together with replacing the term δ∗i (JisiC) with

δ∗i
[
JisiC − (1/4)h2i (siρ)(δiC)δiui

]
in equation (3.4). In this case, Theorem 1

remains valid. Actually, using the simple formula

sk(µuk) = (skµ)skuk + 1
4h

2
k(δkµ)δkuk,

we can complement the above proof with the following chain of equalities for
yl := (slρ)δlC:(

µs∗jyj , uj
)

=
(
yj , sj(µuj)

)
j∗ =

(
yj , (sjµ)sjuj

)
j∗ +

(
yj ,

1
4h

2
j (δjµ)δjuj

)
j∗

=
(
(sjµ)yj , sjuj

)
−
(
δj
[
1
4h

2
jyj(δjuj)], µ

)
.

2.3. Let us introduce the equilibrium solutions ρS , CS ∈ HX(ωh) and uS = 0
with ρS > 0 and 0 < C = CS(x) < 1 to the above discretization (3.2)–(3.8).

Theorem 2. For τ0 = const > 0, these equilibrium solutions satisfy the follow-
ing equations

Ψ ′1ρ(ρ, C) + 1
2λ1s

∗
i

[
(δiC)2

]
− µSC − Φ ≡Gh − µSC − Φ ≡ const, (3.17)

Ψ ′1C(ρ, C)− δ∗i
(
λ1(siρ)δiC

)
=µSρ, µS ≡ const (3.18)

on ωh, with the same functions Ψ1 and Φ as in the differential case, see (2.12)–
(2.13).

Proof. For the equilibrium solutions, the following equations on ωh hold

δ∗i JiS = 0, s∗l
{

(slρ)
[
δl(Gh − Φ)− (slµ)δlC

]}
=0, (3.19)

δ∗i
[
JiSsiC −M(siC)δiµ

]
=0, (3.20)

with JlS =
(
sl(τ0ρ)

)[
δl(Gh − Φ) − (slµ)δlC

]
, l = 1, 2, 3, corresponding to the

differential equations (2.11). For τ0 = const > 0, by virtue of equations (3.19)
(the second one becomes s∗l JlS = 0, l = 1, 2, 3) we get

δ∗i (JiSsiC) = (δ∗i JiS)s∗i siC + (s∗i JiS)δ∗i siC = 0.

Therefore this term in equation (3.20) disappears, and its inner product in
HX(ωh) with µ leads to the equality(

M(siC), (δiµ)2
)
i∗ = 0.
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Thus δiµ = 0, i = 1, 2, 3, i.e., µ ≡ µS = const.
Now, JlS = τ0(slρ)δl(Gh − Φ − µSC), l = 1, 2, 3, so that (similarly to [26,

Section 2.2]) the inner product in HX(ωh) of the first equation (3.19) and
Gh − Φ− µSC results in(

τ0siρ, [δi(Gh − Φ− µSC)]2
)
∗i = 0.

Consequently δi(Gh − Φ− µSC) = 0, i = 1, 2, 3, i.e., Gh − Φ− µSC ≡ const.
Eventually equations (3.19)–(3.20) are reduced to system (3.17)–(3.18) for

ρS and CS on ωh. ut

As in [26], the property established in Theorem 2 allows one to call the
above discretization well-balanced similarly to the case of the shallow water
equations, where the same property has long been discussed in the literature
and an equation like (3.17) means that simply gρS −Φ ≡ const on ωh, where g
is the gravitational constant. The presence of such a property is not guaranteed
a priori and is provided only by the special construction of a discretization.

4 Numerical experiments

We apply the explicit Euler method for the approximation in time of both the
above spatial discretization (3.2)–(3.8) and its modification from Remark 3. We
call A and B the respective full discretizations (finite-difference schemes). This
section is devoted to their numerical investigation. We confine ourselves by
the 2D case and consider 2D versions of these schemes for which a counterpart
(simplification) of Theorem 1 remains valid.

In all problems below, we study the mixture of two components with the
same state equations and thus with cs1 = cs2 = cs. The following constants
are in use η = 5 · 10−4 Pa · s, ζ = 0, M = 5 · 10−8 kg · s/m3, cs = 1000 m/s,
Aψ = 104 J/kg. The function Φ, the parameter λ1 and the initial functions ρ0,
u0 and C0 are taken depending on the specific problem.

Also we choose the domain Ω̄X = [0, X1] × [0, X2] with Xi = X = 0.01 m
and the grid over it with Ni = 100; then hi = h = 10−4 m (i = 1, 2). The
regularization parameter is associated with h and is calculated as τ = 0.5h/cs.
The stability issue in the linearized statement for the considered type of the
regularization and approximation in time has recently been studied in detail in
1D and multiD cases in the one-component statement in [28, 29]. Notice that
we do not apply any regularization of the viscosity coefficient contrary to the
usual QHD-approach.

Problem 3.1. We begin with a typical problem on merging of two droplets.
Let Φ = 0 and λ1 = 6 · 10−5 J · m2/kg, and the initial data are as follows
ρ0(x) ≡ 1, u0(x) ≡ 0,

C0(x) = (1− 2εc)
1
2

{
2 + tanh[0.5β(R− r1(x))] + tanh[0.5β(R− r2(x))]

}
+ εc

with x = (x1, x2), R = 0.2X, β =
√

2Aψ/λ1 and

r1(x) = |x− (0.3X − h, 0.5X)|, r2(x) = |x− (0.7X + h, 0.5X)|
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Figure 1. Problem 3.1: distribution of C0. The white color indicates the isoline with
C = 0.5.

as well as εc = 0.01 defining the “offset” of values C0 from 0 and 1, see Figure 1.
The model parameters are connected with the surface tension coefficient σ

and the thickness of interface lε (that is defined as the domain with 0.05 ≤
C ≤ 0.95) by the formulas

σ = ρ
√
Aψλ1/18, lε = 4.164

√
λ1/Aψ. (4.1)

Actually they are approximate being obtained on the basis of solving the plane
interface problem [18]. According to these formulas, we get σ ≈ 0.183 J/m2 and
lε ≈ 3.225 · 10−4m ≈ 3.2h. We set the time step ∆t = 3.2 · 10−8 s. Note that
its value was first calculated theoretically in the linearized statement and then
adjusted experimentally in order to increase it but not destroy the solution.

We define the discrete total energy and total kinetic energy

Etot := (ρ(Ψ0 + Eλ + 0.5|u|2 − Φ), 1
)
, Ekin := (0.5ρ|u|2, 1)

and compare results for schemes A, B and scheme from [5] that we call scheme
C. Scheme C is conservative with respect to the momentum, and it was con-
structed to diminish imbalances in the total energy compared to schemes used
previously. In its semi-discrete version, the general form of the discrete balance
equations (3.2) and (3.4) remains the same but the discrete momentum balance
equation differs from (3.3):

∂t(ρul) + δ∗i (Jisiul) +
◦
δlp = δ∗i (ΠNS

il −Q(i)
il +Πτ

il) + s∗l
{

(slρ)δlΦ
}
,

which corresponds to the original momentum equation (2.2). Here
◦
δl = δ∗l sl =

s∗l δl is the central difference quotient and, in the 2D case,

Q
(k)
kk =λ1sk

{[
s∗k
(
(skρ)δkC

)]◦
δkC

}
, Q

(k)
kl =λ1s

∗
l

{[
sl
(
(skρ)δxC

)]
skδlC

}
, k 6= l,

see (2.6). The formulas for Ji, Π
NS
il and µ are the same as above but the

expression for mk is different, in the 2D case, as follows:

mk =(skτ)(skρ)
[
(skuk)δkuk + (skul)

◦
δlskuk − δkΦ

]
+ (skτ)

(
δkp+ δkQkk + δ∗l Q

(k,l)
lk

)
, k 6= l,
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Figure 2. Problem 3.1: plots of Etot(t)
for the schemes for λ1 = 6 · 10−5 J ·m2/kg.
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Figure 3. Problem 3.1: plots of Ekin(t)
for the schemes for λ1 = 2 · 10−4 J ·m2/kg.

see (2.4). Here formulas for Πτ
il, Qkk and Q

(k,l)
lk are omitted for brevity.

In Figure 2, the plots of Etot(t) for schemes A, B and C are presented. For
scheme C, the total energy oscillates with a moderate amplitude (so that it is
not non-increasing) and decays significantly slower then for schemes A and B.

We also take the larger value λ1 = 2 ·10−4 J ·m2/kg (the rest parameters are
the same). Then according to (4.1) we have σ ≈ 0.33 J/m2 and lε ≈ 5.9h. For
such λ1, the function Etot(t) becomes monotone for all three schemes. But the
behavior of Ekin(t) differs qualitatively: for schemes A and B, it decreases down
to computer zero whereas, for scheme C and t large enough, it stays almost
constant (5.87 · 10−3 J), see Figure 3. The last fact indicates the presence of
the spurious (parasitic) currents mentioned in Introduction.

For illustrative purposes, the distribution of |u| for scheme C and large t
is presented in Figure 4a. It is clear that in the vicinity of interface |u| is
significantly greater than zero. In Figure 4b, the quarter of numerical domain
is presented, where arrows correspond to u (their length is proportional to |u|)
and the black thin and thick lines represent respectively the stream lines and
the isoline C = 0.5. Notice that schemes A and B are free of spurious currents
in the sense that the maximum value of |u| over domain is zero within the
computer precision when the solution stabilizes.

Distributions of C and ρ do not differ significantly for all the schemes.
Moreover, for schemes A and B they almost coincide. In Figures 5a and 5b,
they are presented for x1 ∈ [0.5X,X] and x2 = 0.5X in the vicinity of interface.
In Figure 5b, clearly the density values inside and outside the droplet are
respectively ρin = 1.0001473 kg/m3 and ρout = 1.0000290 kg/m3. This small
difference is due to the interphase (surface) tension which is connected to the
droplet radius by the known Laplace law

∆p ≡ pin − pout = σL/R, (4.2)

where ∆p = c2s(ρin − ρout) by virtue of the state equation and R is the droplet
radius which equals ≈ 28h = 2.8 · 10−3 m. In accordance with (4.2), we have
σL = 0.331145 J/m2 that is quite close to σ obtained from the first formula
(4.1). It is important here that we deal with compressible fluids in this paper.
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(a) Distribution of |u|. Lightgrey and
black colors correspond to 10−5 m/s and
1.3 m/s respectively.

(b) Distribution of u and stream lines in
the quarter of numerical domain.

Figure 4. Problem 3.1: distributions of |u| and u for t = 4 · 106∆t = 0.19 s for scheme C.
An impact of spurious currents is observed.
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Figure 5. Problem 3.1: distributions of C and ρ for x1 ∈ [0.5X,X] and x2 = 0.5X in the
vicinity of interface for t = 4 · 106∆t = 0.19 s. The symbols �, × and ◦ correspond to

schemes A, B and C respectively.

Also notice that there are values of C slightly greater than 1 in Figure 5a.
Sometimes this phenomenon is called “the bulk shift” in literature, for exam-
ple, see [12]. As mentioned in [9, 12, 23, 24], this is due to using formula (2.7)
for Ψsep(C). The formula is simple and convenient, but it does not have singu-
larities as C → +0 and C → 1− 0 (that would be more relevant physically).

It is significant that during the numerical simulation by schemes A and
B the total momentum of the system (ρu, 1) remains close to ≈ 10−17–10−20

(the algorithms were implemented using C++ programming language, compiler
g++ 7.4.0 and double-precision variables). Therefore, despite of the formal
lack of conservativeness with respect to the momentum for schemes A and B,
clearly the total momentum is conserved up to the computer precision.

Notice that the less the surface tension effect and better resolution of the



Energy Dissipative Spatial Discretization 125

10−7 10−5 10−3 10−1

t, s

10−2

10−6

10−10

10−14

10−18

10−22

10−26

E
k
in
,J

Scheme A
Scheme C

(a)

0.1 0.2 0.3
t, s

4.2

4.205

4.195

E
to
t,
10

−
5
J

Scheme A
Scheme C

(b)

Figure 6. Problem 3.1: plots of Ekin(t) (a) and Etot(t) (b) for schemes A and C in the
case λ1 = 4 · 10−6 J ·m2/kg and Aψ = 0.5 · 102 J/kg.

interface take place, the less the results obtained by schemes A and C differ.
Figure 6a shows the dependencies Ekin(t) obtained by them when setting the
parameters λ1 = 4 ·10−6 J ·m2/kg and Aψ = 0.5 ·102 J/kg corresponding to the
values σ ≈ 0.0033 J/m2 and lε ≈ 11.8h. Quantitatively, their behavior differs
much less than previously for much larger σ ≈ 0.33 J/m2, see Figure 3. But
qualitatively the behavior is similar, and, for scheme C, the parasitic currents
still present though now the corresponding dependencies Etot(t) are very close,
moreover, both of them are decreasing, for t ∈ [0.06, 0.3] s, see Figure 6b. Also
the distributions of C and ρ (which we omit here) coincide visually for both
schemes A and C.

Note that schemes A and B lead to practically the same results for the
sufficiently smooth initial data.

Finally, we analyze the case where the regularization is absent, i.e., τ = 0.
In Figure 7, we present plots of Etot(t)−Ẽ, with Ẽ = 4.224599·10−5 J, obtained
by scheme A for the main τ = 0.5h/cs versus τ = 0, for the above time step
∆t and much less time step ∆t/10. We observe that their behavior is similar
only for very small times but then, for τ = 0, Etot(t) grows rapidly rather than
decreases. This process is faster for the time step ∆t and slightly slower for
the time step ∆t/10 but ultimately there is no significant difference, and the
both solutions are even destroyed.

Problem 3.2. The next problem deals with the initially stationary droplet of
radius R influenced by x2-periodic body force defined by the non-zero potential

Φ(x2) = g̃ cos
(
2π
X x2

)
, g̃ = 7 · 105 m ·N/kg. (4.3)

We set the initial data as follows

ρ0(x) = exp
{
Φ(x2)/c2s

}
, u0(x) = 0,

C0(x) = (1− 2εc)0.5
{

1 + tanh
[
0.5β(R− r(x))

]}
+ εc,
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Ẽ
,
J

τ = 0.5h/cs

τ = 0

τ = 0, ∆t/10

Figure 7. Problem 3.1: plots of
Etot(t) obtained by scheme A for the
main τ and τ = 0 and two time steps.

Figure 8. Problem 3.2: distribution of C
for t = 3.5 · 106∆t obtained by scheme A.

where εc = 0.01, R = 0.2X and r(x) = |x−0.5(X,X)|. The form of ρ0(x) corre-
sponds to its distribution in the homogeneous single-component fluid (without
considering C) influenced by the body force with the given potential. We set
λ1 = 2 · 10−4 J ·m2/kg and the time step ∆t = 2 · 10−8 s.

The distribution of C for t = 3.5 ·106∆t computed by scheme A is presented
in Figure 8 where the white color indicates the contour C = 0.5. The initially
circular-shaped droplet is squeezed along x2 direction by the body force. A
similar shape is obtained by scheme C but it produces the slightly thinner
interface. More significantly, for scheme A and B the total energy Etot(t) is
non-increasing and kinetic energy goes to zero (once again the results are almost
identical for both schemes). On the contrary, for scheme C, the total energy is
not monotone and the kinetic energy stays almost constant (3.98 ·10−5 J) from
t ≈ 10−4 s, see Figures 9a and 9b.

In this problem, for schemes A and B, the total momentum is conserved
up to the values ∼ 10−14 that is worse than in the previous problem but still
quite acceptable.

Problem 3.3. Finally, we present results of numerical simulation by scheme
A of a droplet at the equilibrium state. These results are in accordance with
the Laplace law for the 2D case (4.2). Here we assume that ρin and ρout are
the average density values inside and outside the droplet. The value of ρin is
computed by averaging over grid cells with C ≥ 0.5 + ε̃c (i.e., the cells inside
the droplet and at some distance from the interface). Similarly, to compute
ρout, the cells with C ≤ 0.5− ε̃c are taken. Here ε̃c is a small parameter.

We set Φ = 0 and λ1 = 2 · 10−4 J · m2/kg. According to the first (ap-
proximate) formula (4.1), the surface tension coefficient equals σ = 0.33 J/m2.
Also we take ρ0(x) ≡ 1 kg/m3, u0 = 0 and C0 as in the previous problem. In
simulations, the different values of droplet radius R are used.

The dependence of ∆p on the computed (observable) radius Ra is presented
in Figure 10. Here Ra = h

√
NC>0.5/π, where NC>0.5 is the number of cells

with C > 0.5. In simulation results, we get that Ra is very close to its initial
value R. Note that, for ε̃c = 0.01, the pressure outside the droplet cannot be
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Figure 9. Problem 3.2: plots of Ekin(t) and Etot(t) for schemes A, B and C obtained for
the body force potential Φ of form (4.3).
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Figure 10. Problem 3.3: dependence of the computed pressure drop ∆p on the computed
droplet radius Ra for different ε̃c.

computed for R = 15h, 10h since the minimal (over the whole computational
domain) value of C is greater than 0.01. As mentioned above, the reason of
that is “the bulk shift” effect, see Figure 5a, since C increasing (over the whole
domain) is proportional to the Cahn number Cn = lε/R according to [12, 24].
In Figure 10, clearly the results closest to the theoretical ones (for all studied
radii) are those obtained for ε̃c = 0.05.
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