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K. Donelaičio g. 73, 44249 Kaunas, Lithuania
bDepartment of Computer Sciences, Kaunas University of Technology
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Abstract. Flexible and reliable probability density estimation is fundamental in un-
supervised learning and classification. Finite Gaussian mixture models are commonly
used for this purpose. However, the parametric form of the distribution is not always
known. In this case, non-parametric density estimation methods are used. Usually,
these methods become computationally demanding as the number of components in-
creases. In this paper, a comparative study of accuracy of some nonparametric density
estimators is made by means of simulation. The following approaches have been con-
sidered: an adaptive bandwidth kernel estimator, a projection pursuit estimator, a
logspline estimator, and a k -nearest neighbor estimator. It was concluded that data
clustering as a pre-processing step improves the estimation of mixture densities. How-
ever, in case data does not have clearly defined clusters, the pre-preprocessing step
does not give that much of advantage. The application of density estimators is illus-
trated using municipal solid waste data collected in Kaunas (Lithuania). The data
distribution is similar (i.e., with kurtotic unimodal density) to the benchmark distri-
bution introduced by Marron and Wand. Based on the homogeneity tests it can be
concluded that distributions of the municipal solid waste fractions in Kutaisi (Geor-
gia), Saint-Petersburg (Russia), and Boryspil (Ukraine) are statistically indifferent
compared to the distribution of waste fractions in Kaunas. The distribution of waste
data collected in Kaunas (Lithuania) follows the general observations introduced by
Marron and Wand (i.e., has one mode and certain kurtosis).
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1 Introduction

The problem under consideration is closely related to distribution analysis.
Which is an important branch of data analysis and is being used to solve
various other problems (discriminant analysis, image recognition, etc.). The
methodology for estimating distributions is receiving increasing attention due
to emerging applications: processing of genetic information, analysis of astro-
nomical objects, research of computer equipment and its peripheral data, etc.
Even though there are already many methods for estimating data distributions,
new advancements are being proposed by various authors.

In case data distribution is multimodal and the sample size is small, in
practice, it is not easy to choose a robust density estimation method. Kernel
estimators are the most popular method for density estimation (see, for example
[19, 26, 33]). Other estimators are frequently used by researchers (see in [6, 11,
18,22]). As big data become commonplace in almost every field of data science
lately, various approaches to estimate density are being investigated, including
machine learning algorithms. Academia and industry focus on the development
of innovative density estimation procedures (see in [25,30]). In some cases the
accuracy of the assessment can be significantly increased (according to [32]), if
the observations are clustered at first (i.e., treating the multimodal density as
a mixture of unimodal densities), and the popular nonparametric estimators
are applied to each cluster separately.

The present work extended the pilot research presented in [32]. The fol-
lowing new research areas are investigated: 1) new density estimation methods
based on inverse formula are formulated, 2) in order to compare the robustness
of estimators the wide set of distributions proposed by Marron and Wand [26]
is used to study densities, 3) in order to obtain results with a reasonably high
level of confidence a relatively high (100000) number of independent samples
have been generated.

The primary purpose of this paper is to assess the performance of several
density estimators, by using benchmark densities [26] that represent differ-
ent types of problems that can arise for unimodal and multimodal densities.
The relationship between the estimation accuracy and complex structures in
case of univariate Gaussian mixture models (GMM) are analysed by Monte
Carlo method. Applications of GMM distributions are popular and are used
in various scientific fields for examination of important problems. For exam-
ple, Younghong [14] in medical studies for limb mobility classification, (using
mioelectrical signals) compared GMM with three other frequently used classi-
fication methods of linear discriminant analysis, linear multilayer perceptrons
network and multilayer neural network. GMM demonstrated the exceptional
classification accuracy in [14]. Henthorn [16] examined the ability to hydrox-
ylate (the degree of urinal metabolism) debrisoquin and O-dimethilath dek-
strometorfan with the help of GMM. Zimmerman [37] used the GMM for EKG
analysis using ST segments and T waves for determining the ischemia. Ko-
vacs [23] applied it on simulations of molecular dynamics of membrane pore
formation. Stachniss [35] applied GMM in geological investigations for gas
concentration prediction based on carried mining. Gruszczyński [13] used ap-
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proximation by GMM in ecological research on the soil contamination. Cher-
nova and Veloso [4] used the learning results of interactive policy formation
that learners demonstrate later, the results are described by GMM in the field
of applied sociology.

In this work, after the clustering pre-processing step, the mixture compo-
nents were identified using: 1) a kernel estimator with the adaptively selected
smoothing width, 2) Friedmans proposed algorithm based on the projection
pursuit, 3) Kooperberg and Stone log-spline estimator based on the approxi-
mation of logarithm of distribution density by the sum of cubic B-splines, 4) Fix
and Hodges k -nearest neighbor density estimator, and 5) the proposed inver-
sion formula modification for density estimator, where the structure is given
in (3.6). A pilot comparative study of several non-parametric estimators accu-
racy [32] showed that the Friedman procedure is more robust in the majority of
examined Gaussian multivariate mixtures cases where the components can be
separated. The kernel estimator is more accurate even with a small sample size.
Initial clustering of the sample allows to get less biased estimates of density.

The scientific novelty of this research is the comparative study accuracy of
density estimation methods. The performance of various non-parametric esti-
mators has been compared using different data sets. The representative density
estimators of various techniques, analysed by other researchers, has been se-
lected. In addition, this study reveals the practical value of the homogeneity
tests.

This paper is organized as follows: Section 2 describes the EM algorithm
used for sample clustering before density estimation. Section 3 summarizes the
five selected density estimators. Section 4 contains the simulation results and
states the findings in the context of the municipal solid waste data. The detailed
results of the Monte Carlo study can be found in appendixes. Concluding
remarks are presented in Section 5.

2 Sample clustering with the EM algorithm

Although previous numerical simulations [32] have shown that initial data clus-
tering is beneficial for evaluating multimodal distribution density, the question
on the optimal clustering method is still open. A comparative study in [32]
showed that probabilistic clustering methods are more robust compared to
geometric clustering methods (e.g., k -means, hierarchical, etc.) applied in con-
junction with the transformation of mixture components to spherical [34]. This
work is limited by the study of the sample clustering based on considered den-
sity approximation by Gaussian mixture distribution.

Let X(1), ..., X(n) be the observed independent and identically distributed
random variables with unknown distribution density f(x). If density is multi-
modal, it can be analysed as a mixture of several unimodal densities:

f(x) =

q∑
k=1

pkfk(x). (2.1)

Suppose the observed random variable X depends on the random variable v,
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taking the values 1, ..., q (interpreted as a class number of the observed object).
Weights pk =Pv = k in classification theory are called a priori probabilities of
observed object belonging to class k and weights πk(x) = Pv = kjX = x are
called a posteriori probabilities. The function fk is treated as X conditional
distribution density at the condition v = k. The assessment of the values
πkX(t) for all k = 1, ..., q, t = 1, ..., n, is called sample soft clustering. In this
paper the sample is strictly clustered: it is split into subsets using estimates
v̂(1), ..., v̂(n), where v(t) denotes the class number of observation X(t).

GMM is a well studied model in model-based clustering theory and practice;
therefore it was selected for this research. The application of GMM is based
on the assumption that the functions fk(x) are Gaussian densities with mean
parameters µk and variances σ2

k. In this case the right side of equality (2.1) is
marked as f(θ, x), where θ = ((pk, µk, σ

2
k), k = 1, . . . , q). Since the equalities

are valid

πk(x) =
pkfk(x)

f(θ, x)
, k = 1, q, (2.2)

the a posteriori probability estimates can be simply obtained by a plug-in
method which replaces unknown parameter vector θ on the right-hand side
of (2.2) with its maximum likelihood estimate θ∗ = arg max

θ
L(θ), L(θ) =∏n

t=1 f(θ,X(t)). The EM algorithm is applied in this work to find the esti-
mate of the parameter vectors.

Given the estimates π̂k = π̂
(r)
k after r cycles, the new estimate θ̂ = θ̂(r+1) is

obtained by:

p̂k =
1

n

n∑
t=1

π̂k(X(t)), µ̂k =
1

np̂k

n∑
t=1

π̂k(X(t)) ·X(t),

σ̂2
k =

1

np̂k

n∑
t=1

π̂k(X(t)) [X(t)− µ̂k] · [X(t)− µ̂k]
′

for all k = 1, . . . , q. Inserting θ̂(r+1) into (2.2) the right side π̂
(r+1)
k (X(t)),

k = 1, ..., q, t = 1, ..., n is found. Non-decreasing sequence of likelihood L(θ̂(r))
is obtained as a result of this iterative procedure. However, the convergence
to the global maximum depends on the choice of the initial estimate θ̂(0) (or
π̂(0)). The simplest strategy is to apply the EM algorithm on a number of
randomly generated initial estimates π̂(0). The resulting estimate with the
highest likelihood function L(θ̂) is taken. The sequential mixture components
extraction method described in [7, 27,31] could be used here as well.

A variety of model adequacy tests can be used for selection of the clus-
ters’ number q [28]. Let f∗(x) = f(θ∗, x), where θ∗ is the estimate ob-
tained by a maximum likelihood estimator. Lets us denote the distribution
function as F ∗ =

∫ x
−∞ f∗(t)dt, and the empirical distribution function as

F̃ (x) = n−1
∑n
t=1 1X(t)<x. Let f̂ be a non-parametric density estimate of

f , that we will present in Section 3. Defining (for more details we refer the
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reader to [31])

ψ =

∫
f̂(x)

f∗(x)
dF̃ (x)− 1 = n−1

n∑
t=1

f̂(X(t))
/
f∗(X(t))− 1

we do not reject the adequacy hypothesis of model (2.1), if the following con-
dition ψ < ε is fulfilled. Given significance level α, it is desirable to choose
the level ε as close as possible to the quantile uα : P {ψ > uα} = α. The
bootstrap method (see [3, 15, 24, 36]) can be used for this purpose. Let G(u)
denote the distribution function of the statistic ψ, then, with a fixed n, it
is completely defined by the distribution function F of the random variable
X, i.e., P {ψ > u} = G(u, F ), for all u. The variable ε is defined by equal-
ity G(ε, F ∗) = 1 − α for the given α. Function G(·, F ∗) can be obtained by
bootstrap method.

3 The density estimation algorithms analysed

The comparative study of accuracy of density estimation algorithms has been
performed based on four different types of statistics, which are used by other re-
searchers, as well. In this paper the following density estimators for probability
distribution density function using Monte Carlo method were examined:

1. Density estimator (PPDE), proposed by Friedman (see [11,12]), which is
based on the target design and projection consistent gausianization;

2. The kernel density estimator (AKDE) adapted for sing different kernel
width for various observations by Silverman [33];

3. The logspline distribution density estimator (LSDE), approximating den-
sity logarithm of the specimen by the cubic B-spline sum by proposed
Kooperberg and Stone [22];

4. The k -nearest neighbor distribution density estimator (NNDE), which is
based on the distance to the nearest k observation position evaluation
to the tested random dimension and has been examined by Devroye and
Krzyżak [9];

5. Modified distribution density estimator (MIDE) with the original version
proposed in [20] and analysed in [32] based on application of the inversion
formula.

The methods are used on a standardized sample. The examined algorithms
will be described in detail.

PPDE algorithm. J.H. Friedman proposed an iterative algorithm of multi-
dimensional density estimation. It is based on consistent search of one dimen-
sional projections [17], where distributions are mostly different from normal.
These projections are transformed into Gaussian values. LetX be the standard-
ized random variable (i.e., with zero mean and the unit variance) with the un-
known distribution density f(x). The size of X is transformed Z(k) = Qk(X),
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k = 1, 2, . . . after each iteration. The transformation is performed so that Z(k)

is projected to the direction τ , where the density gk differs from the standard
normal density ϕ at most, a distribution would be Φ and the projection τ to
orthogonal d − 1 measurement Rd subspace remains unchanged. Friedman
proved [12] that Z(k) over k →∞ converges to the standard multi-dimensional
Gaussian random variable according to the distribution. Therefore, for a suffi-
ciently large M

f(z) ∼= ϕ(z(M))

M∏
k=1

gk(τ ′(k)z(k−1))

ϕ(τ ′(k)z(k))
, (3.1)

where z(k) = Qk(x). The Friedman statistic is obtained by substituting sta-
tistical estimates for the unknown distribution densities gk on the right-hand
side of the expression (3.1).

The direction is τ = 1 and M = 1, using one dimentional random variables.
Friedman’s proposed projection estimator on the base of Legendre orthogonal
polynomials was applied to statistical estimation of density gk. Let ξ1, . . . , ξn
be random variables with distribution density g(u). After transformation ηt =
2Φ(ξt) − 1, y = 2Φ(u) − 1 the random variables η1, . . . , ηn having distribution

with density g∗(y) = g(u)
2ϕ(u) (concentrated in the interval [-1,1]) are obtained.

Using the expansions in Legendre polynomial {ψj}∞j=0 base

g∗(y) =

∞∑
j=0

bjψj(y)

and replacing the coefficients bj = (j+ 1
2 )Eψj(ηt) to their empirical analogues,

the following estimator is obtained

ĝ(y) = ϕ(y)

s∑
j=1

2j + 1

n

n∑
t=1

ψj(ηt)ψj(y). (3.2)

According to the recommendation [18], the expansion (3.2) order should be
s ≤ 6.

AKDE algorithm. Kernel density distribution statistical estimator with the
local bandwidth has the following form

f̂(x) =
1

n

n∑
t=1

1

ht
K

(
x−X(t)

ht

)
. (3.3)

The same procedure (as in the article [18]) is used in this paper, while the
standard Gaussian distribution density ϕ is used as a kernel function, and the
bandwidth [19] is defined by

hj = h
(
f̃(X(j))/q

)−v
,

where h = (4/(3n))
1/5

, f̃(·) is kernel estimator (3.3) [19], obtained after the
change hj to h, q = exp{ 1n log

∑n
j=1 f̃(X(j))}, v is the sensitivity parameter.
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The authors in [18] proposed choosing latter value from a set of 0.2, 0.4, 0.6, 0.8,
the specific v value is determined by the means of cross-validation.

LSDE algorithm. Logspline distribution density estimators approximate
density logarithm by the sum of splines

f̂(x) = exp

{ s∑
j=1

βjBj(x)− C(β)

}
for a given set of basis functions B1, . . ., Bs with a certain coefficient vector
β = (β1, . . . , βs) and the normalization constant C(β).

The procedure applies cubic B-splines proposed by Kooperberg and Stone.
Spline knots are chosen by [1], the coefficients are obtained by maximum likeli-
hood method. Computer program which computes the sample density estimate
is given in [21] an has been used in our study.

NNDE algorithm. The main idea behind this algorithm is revealed in mul-
tivariate case by formula [10]:

f̂(x) = k/
(
nVd

∥∥x−X(k,x)

∥∥d),
where Vd = πd/2/Γ (d2 + 1), Γ (z) =

∫ −∞
0

xz−1e−xdx, X(k,x) is the k-th nearest
x neighbor in the whole sample of observations {X(t), t = 1, ..., n}. k is the
nearest neighbor density estimator depending on the coordinate system, as the
distances vary after their changes ‖x−X(t)‖ , 1 ≤ t ≤ n. In order to avoid this
dependence, the following changes are introduced [9]:

f̂(x) =
k (d− 1)!

n logd−1 (n/k (d− 1)!) 2d
∏d
j=1

∣∣xj −X(k)j

∣∣ ,
where x = (x1, ..., xd), and X(1), . . . , X(n) is a permutation X1, . . . , Xd ac-

cording to increasing values of product
∏d
j=1 |xj −Xj(t)|. This permutation is

invariant under linear transformations of the coordinate axes (excluding rota-
tions). The standard k -nearest neighbor estimator is obtained when d = 1. It
is recommended to choose k = log(n) [9].

MIDE algorithm. The density function f(x) can be obtained from the
characteristic function using the inversion formula

f(x) =
1

(2π)d

∫
Rd
e−it

′xψ(t)dt, (3.4)

where ψ(t) = Eeit
′X denotes the characteristic function of a random vector X.

Let us denote the characteristic functions projected data by ψτ . Since there
is a one-to-one correspondence between densities and characteristic functions,
and

ψ(t) = Eeit
′X = Eei|t|τ

′X = ψτ (|t|),

where τ = t/ |t|, we obtain an equation for

f(x) =
1

(2π)d

∫
τ :|τ |=1

ds

∫ ∞
0

e−iuτ
′
ψτ (u)ud−1du (3.5)
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using the inversion formula (3.4) and performing the transformation to a spher-
ical coordinate system. The first integral in expression (3.5) denotes the surface
integral over unit sphere. By using the estimates of ψτ and replacing the sur-
face integral by a sum, we obtain the formula for calculation of an estimate
f̂(x)

f̂(x) =
c(d)

M

∑
τ∈T0

∫ ∞
0

e−iuτ ‘xψ̂τ (u)ud−1e−λu
2

, (3.6)

where c(d) = d2−dπ−d/2/Γ (d2 + 1),T0 consists of M random points uniformly

distributed on a sphere T, multiplier e−λu
2

performs the additional smoothing
function, and the estimator ψ̂τ (•) is one dimensional τ ′X distribution density

estimator f̂τ Fourier transformation. Estimate f̂τ is obtained in [32] by the help
of AKDE procedure, a normal distribution density ϕ using as kernel function
enabling to calculate analytically the integral on the right-hand side (3.6).

The disadvantage of the inversion formula method (3.6) is that the Gaus-
sian distribution mixture model described by this estimator only gives good
estimation of the density of observations similar to it. Inversion formula den-
sity estimator often becomes complicated due to large components with a small
number of a priori probabilities approximating the analysed density by Gaus-
sian distribution mixture. Their value can be reduced by introducing the noise
cluster. Let the characteristic function estimator be constructed as Gaussian
mixture distributions and uniform distribution of characteristic functions with
a priori probabilities in modified density estimator equation (3.6):

ψ̂τ (u) =

q̂τ∑
k=1

p̂k(τ)eium̂k(τ)−u
2σ̂2
k(τ)/2 + p̂0(τ)

2

(b− a)u
sin

(b− a)u

2
· e

iu(a+b)
2 ,

where the second term describes the cluster of an uniform noise distribution,
p̂0 is the noise cluster weight, a = a(τ), b = b(τ). We can write

a = (τ ′x)min −
(τ ′x)max − (τ ′x)min

2(n− 1)
, b = (τ ′x)max +

(τ ′x)max − (τ ′x)min

2(n− 1)

based on the given equivalent distribution parameter estimates and the de-
signed data. The direction is τ = 1, and M = 1, and the calculations become
simpler using one dimensional (d = 1) random variables. The proposed noise
cluster weight is 0.1.

We will consider the application of these methods in estimating the con-
ditional density in case the sample has been clustered. As noted at the be-
ginning of Section 2, we assume that the observed random value X depends
on a latent random variable v that takes on the values 1, . . ., q, and that the
conditional density fi(x) under the condition {v = i} is unimodal for i = 1, q.

Since the formula (2.1) holds, we use f̂(x) =
∑q
i=1 p̂if̂i(x) for the estimation

of density f(x) when the sample is clustered. With the posterior probabil-
ity πi(x) = P{v = i|X = x} estimates π̂i(x) and on the basis of equality
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pi = Eπi(x) are obtained:

p̂i =
1

n

n∑
t=1

π̂i(X(t)), i = 1, . . ., q.

Strict sample clustering would be the evaluation of random variables v(1), . . . ,
v(n) i.e., the sample is split into subsets according to v̂(t) = arg max

i=1,...,q
π̂i(X(t)).

4 The analysis of estimation accuracy

This study was performed by comparing previously described density estima-
tion methods. As benchmark distributions the following Gaussian mixture
models (introduced by Marron and Wand [26]) were used (also see Figure 1):

a) b) c)

d) e) f)

g) h) i)

Figure 1. Benchmark densities for nonparametric density estimation.

a) Gaussian N(0, 1);

b) skewed unimodal 1
5N(0, 1) + 1

5N( 1
2 , ( 2

3 )2) + 3
5N( 13

12 , ( 5
9 )2);

c) strongly skewed
∑7
l=0

1
8N(3{( 2

3 )l − 1}, ( 2
3 )2l);

d) kurtotic unimodal 2
3N(0, 1) + 1

3N(0, ( 1
10 )2);

e) outlier 1
10N(0, 1) + 9

10N(0, ( 1
10 )2);

f) bimodal 1
2N(−1, ( 2

3 )2) + 1
2N(1, ( 2

3 )2);

g) separated bimodal 1
2N(− 3

2 , ( 1
2 )2) + 1

2N( 3
2 , ( 1

2 )2);

h) skewed bimodal 3
4N(0, 1) + 1

4N( 3
2 , ( 1

3 )2);
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i) trimodal 9
20N(− 6

5 , ( 3
5 )2) + 9

20N( 6
5 , ( 3

5 )2) + 1
10N(0, ( 1

4 )2).

These distributions have been carefully chosen because they thoroughly
represent many different types of challenges to non-parametric estimators. The
first five ones represent different types of problems that can arise for unimodal
densities. The densities of the rest distributions are multimodal. Densities of
distributions from f) to i) are mildly multimodal and one might hope to be
able to estimate them fairly well with a data set of a moderate size. Small
and medium-size samples (50, 100, 200, 400, 800, 1 600, 3 200) were used for
modeling. 100 000 replications were generated in each case.

The following error measures have been computed to compare accuracy of
estimators:

MAE =
1

n

n∑
t=1

∣∣∣f(X(t))− f̂(X(t))
∣∣∣ ∼= ∫ ∣∣∣f(x)− f̂(x)

∣∣∣ f(x)dx

and

MAPE =
1

n

n∑
t=1

∣∣∣∣∣f(X(t))− f̂(X(t))

f(X(t))

∣∣∣∣∣ ∼=
∫ ∣∣∣f(x)− f̂(x)

∣∣∣ dx.
The results of analysis. The obtained error measures results of the estima-

tors with the best parameters are given in appendices A and B. This is the
example of typical models, in other cases the tendency of errors are similar to
the provided cases. Arithmetic mean obtained from 100 000 generated sam-
ples are given for each estimator. Appendix A graphically shows the results of
density estimation without original data clustering and after clustering process.
The symbols A, P, L, N, and M mark AKDE, PPDE, LSDE, NNDE, and MIDE
algorithms respectively (the last two ones, because of significantly larger error
values are not given in all graphs); the distribution density estimation errors
without original data clustering are indicated by a solid line, while the errors
after the initial data clustering with a dashed line. The tables in Appendix B
provide the accuracy results of density estimators.

The conducted computer experiment results qualitatively confirmed the
conclusions of [32] on the appropriateness of clustering when the mixture com-
ponents are separated easily, and as ’separated bimodal’ in the case of densi-
ties. Clustering is useful for larger samples (from 800 observations), in case
of asymmetric skewed unimodal densities. When clustering fails to isolate the
components of a mixture, when density has strongly expressed single apex or
distinguished observations, such as kurtotic and outlier densities, then primary
clustering does not benefit.

In this section, we discuss the results of applying density estimators in more
detail:

1. PPDE algorithm gave the best estimators when components of mixtures
were separated well enough during clustering, i.e., are the most close to
Gaussian densities, without the Gaussian density they are separated bi-
modal densities. Contrary to the paper [32] where multidimensional den-
sities were used. The design-based estimates used in this study had the

Math. Model. Anal., 25(4):622–641, 2020.
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disadvantage that only one projection could be used for a one-dimensional
case.

2. MAE and MAPE are up to 1.5 and 1.7 times lower values compared
to other best estimator results. The smallest errors are obtained using
the AKDE algorithm in other cases, when peak densities of the mixture
are highly expressed. Additionally this method has also been good for a
kurtotic unimodal densities in small sample cases (up to 200 observations).

3. The advantages of LSDE algorithm were revealed while evaluating com-
plex multimodal density structures. MAE and MAPE for strongly skewed
density were respectively up to 2.95 and 2.7 times lower values compared
to the best results of other estimates. This estimate is also superior to the
distribution density which has heavy tails, such as kurtotic and outlier
densities.

4. Although NNDE algorithm is very fast and requires significantly less of
CPU time for computations compared to other algorithms (for the largest
samples at least 2 times as compared to LSDE; up to 30 times compared to
MIDE), it gives an approximate estimation for the small samples. It was
competitive with other investigated methods only for individual samples
starting from 1600 observations.

5. The MIDE algorithm is competitive with other examined algorithms
when the samples have a Gaussian distribution or are in multimodal
form (e.g., trimodal density) initial clustering isolates components of such
a distribution.

We analysed a wide range of different types of univariate distribution den-
sities. Based on results, we can state that there is no universal estimator suit-
able for most cases. The selection of a particular density estimator depends on
shape of the density function, which can be characterized by descriptive statis-
tics: skewness, kurtosis, percent of outliers’ in the sample, number of modes,
etc.

Empirical examples. We compared density estimates of 519 observations
of weekly municipal solid waste data (kg/capita) change in a medium-scaled
Eastern European city (Kaunas, Lithuania) from 2000 to 2009, which are anal-
ysed in [29]. We chose the three density estimators of the highest accuracy as
suggested by our comparative study results.

The top row of panels of Figure 2 illustrate the density estimates without
data clustering (solid line) and after initial data clustering (dashed line). The
peak height is significantly lower for the PPDE estimates, which is inferred as
underestimate, considering the tendency of the PPDE algorithm to fit trans-
formations which reveal that distribution structures are too low in univariate
case. The same density estimates are illustrated in the bottom row of panels
in the Figure 2, with a log-scaled vertical axis to emphasize tail fitting perfor-
mance. The bumps generated by the outliers are not visible in the tails. Similar
pattern is seen in the shape of kurtotic unimodal density that was exhibited
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PPDE AKDE LSDE

Figure 2. Density of the municipal solid waste data (kg capita−1 week−1) changes.

in Figure 1. LSDE is the best estimator for this density type when the sample
size is more than 400 observations.

Statistical data analysis [29] showed that the amount of mixed municipal
waste was changing significantly and that statistically important periodic varia-
tions (dependability on seasons) exist. By studying the time series data and the
distribution density form of the waste amount changes generated in households,
we can see that the highest changes are observed before the main holidays of
the year and after them. It can be explained by the increased and decreased
consumption by the capita. The increase of waste is also observed in the middle
of spring and the beginning of autumn, and a sharp drop in the early summer
and winter. The relation between the amount of accumulated municipal waste
and GDP can be influenced not only by specificity of production of municipal
waste but also by the fact that fluctuation of national income does not neces-
sarily change the main household expenses [5]. For example, decrease of GDP
can have no influence on consumption producing waste yet it can reduce saving.
Thus, accumulation of municipal waste can be explained by the part of GDP
spent on consumption by private economies. The amount of waste generated
by the population stabilizes quickly after a change in their household habits; it
causes the form of density peak.

We expand short-term forecasting of the generation of municipal solid waste
(kg capita−1 month−1) fractions study [8]. In the above study bootstrapping
technique was applied with assumption that distribution densities of Kutaisi
(Georgia), Saint-Petersburg (Russia), Boryspil (Ukraine) municipal solid waste
fractions have very similar shapes like those of Kaunas (Lithuania). We used
the data of municipal solid waste composition research obtained in the frame-
work of the research project “Seasonality of Municipal Waste Generation and
Composition and Corresponding Fluctuations of Various Environmental Indi-
cators for Waste Management and Treatment Facilities” conducted during the
period of 2010-2013 and including field investigations of the years 2009-2011.
Within this section the set of values of the municipal solid waste fractions has
been analysed retrospectively in an empirical context in order to estimate the

Math. Model. Anal., 25(4):622–641, 2020.
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homogeneity tests.
For the homogeneity we are using some tests based on density estimators

described in previous section. For given two samples of independent observa-
tions with unknown probability density functions f(x) and g(x) it is required
to test homogeneity hypothesis mentioned in paper [2] by Bakshaev (original
version proposed by Rudzkis):

H0 : f(x) = g(x).

The test statistic for the hypothesis of homogeneity of two samples X and
Y have the form:

Tn,m =
2

mn

∑
i,j

K(Xi, Yj)−
1

n2

∑
i,j

K(Xi, X
′

j)−
1

m2

∑
i,j

K(Yi, Y
′

j ),

where X ′ and Y ′ are the randomly splited parts of sample X and Y , respec-
tively, K(u, v) is kernel function of the difference between u and v. K is a
non-negative function that integrates to 1. Usually, but not always, K will
be a symmetric probability density function. The critical region of the test
statistic Tn,m established by the next statement.

Under the null hypothesis statistics Tn,m will asymptotically (n,m → ∞
and n/m→ ρ 6= 0) have the Gaussian distribution with mean zero and variance
σ2 (see the proof of the theorem in [2]).

In this study we used two tests of homogeneity: Kolmogorov-Smirnov test
(denote as K-S) and Rudzkis-Bakshaev’s test (denote as R-B), for three dif-
ferent density estimators. One of the steps, leading to the main result, was to
check the homogeneity between the densities of Kaunas municipal solid waste
fractions and densities of other cities municipal solid waste fractions. All re-
sults (p-values) of the homogeneity between the density of municipal solid waste
fractions are shown in Tables 1–3.

This study has shown that the densities of Kutaisi, Saint-Petersburg, and
Boryspil municipal solid waste fractions are similar (are not statistically signif-
icant) to the densities of Kaunas municipal solid waste fractions.

5 Conclusions and future work

This paper examines several statistical estimation procedures of a mixture of
Gaussian densities. In practice, it is not easy to select an robust estimation
procedure if the data density is multimodal and the sample volume is small.
The authors have introduced an inversion formula method with an uniform
noise component for density estimation. The proposed method, together with
other popular estimators, was validated by means of computer simulation.

The quality of multimodal distribution density statistical estimation in-
creases significantly if the sample is pre-clustered (i.e., the multimodal density
function is approximated by a mixture of unimodal densities), and the density
estimation methods are applied to each cluster afterwards.

The application of statistical methods revealed the relationships and de-
pendencies of municipal solid waste data, and the results could be used in
supporting decision making.
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As a future work it might be worthwhile to overview the current recom-
mendation systems and propose one for the selection of the most appropriate
density estimators for the given sample.

Table 1. The p-values results of homogeneity test for Kaunas and Kutaisi municipal solid
waste fractions

Fraction Homogeneity test
Density estimator

PPDE AKDE LSDE

Paper and cardboard
K-S 0.888 0.897 0.897
R-B 0.917 0.94 0.939

Plastics
K-S 0.954 0.965 0.965
R-B 0.987 0.993 0.993

Ferrous metals
K-S 0.901 0.937 0.937
R-B 0.941 0.972 0.971

Other metals
K-S 0.795 0.811 0.809
R-B 0.828 0.857 0.856

Glass
K-S 0.922 0.941 0.941
R-B 0.983 0.987 0.987

Tetrapacks
K-S 0.818 0.821 0.819
R-B 0.831 0.849 0.848

Food waste
K-S 0.816 0.820 0.818
R-B 0.830 0.848 0.848

Yard waste
K-S 0.925 0.937 0.937
R-B 0.950 0.971 0.971

Other unburnable
K-S 0.934 0.952 0.952
R-B 0.961 0.978 0.978

Total MSW
K-S 0.964 0.966 0.966
R-B 0.992 0.993 0.993

Table 2. The p-values results of homogeneity test for Kaunas and S. Peterburg municipal
solid waste fractions

Fraction Homogeneity test
Density estimator

PPDE AKDE LSDE

Paper and cardboard
K-S 0.885 0.895 0.895
R-B 0.916 0.939 0.938

Plastics
K-S 0.910 0.923 0.923
R-B 0.936 0.951 0.951

Ferrous metals
K-S 0.936 0.951 0.95
R-B 0.970 0.978 0.977

Other metals
K-S 0.838 0.859 0.858
R-B 0.869 0.882 0.881

Glass
K-S 0.908 0.926 0.926
R-B 0.933 0.956 0.956

Tetrapacks
K-S 0.724 0.762 0.761
R-B 0.743 0.783 0.782

Food waste
K-S 0.897 0.901 0.902
R-B 0.919 0.942 0.941

Yard waste
K-S 0.922 0.934 0.935
R-B 0.947 0.962 0.962

Other unburnable
K-S 0.803 0.810 0.808
R-B 0.856 0.857 0.857

Total MSW
K-S 0.922 0.937 0.936
R-B 0.984 0.971 0.970

Math. Model. Anal., 25(4):622–641, 2020.



636 J. Arnastauskaitė and T. Ruzgas

Table 3. The p-values results of homogeneity test for Kaunas and Boryspil municipal solid
waste fractions

Fraction Homogeneity test
Density estimator

PPDE AKDE LSDE

Paper and cardboard
K-S 0.836 0.857 0.854
R-B 0.865 0.879 0.878

Plastics
K-S 0.89 0.897 0.897
R-B 0.918 0.931 0.93

Ferrous metals
K-S 0.815 0.819 0.817
R-B 0.83 0.848 0.847

Other metals
K-S 0.827 0.834 0.833
R-B 0.846 0.851 0.85

Glass
K-S 0.998 0.999 0.999
R-B 0.999 0.999 0.999

Tetrapacks
K-S 0.955 0.967 0.967
R-B 0.979 0.998 0.998

Food waste
K-S 0.953 0.964 0.964
R-B 0.976 0.988 0.988

Yard waste
K-S 0.955 0.966 0.966
R-B 0.978 0.993 0.994

Other unburnable
K-S 0.998 0.999 0.999
R-B 0.999 0.999 0.999

Total MSW
K-S 0.971 0.976 0.976
R-B 0.982 0.986 0.985
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V. Mykhaylenko, S. Ogorodnik, M. Romanov, E. Neguliaeva, A. Chusov et al.
Seasonal variation of municipal solid waste generation and composition in four
East European cities. Resources, Conservation and Recycling, 89:22–30, 2014.
https://doi.org/10.1016/j.resconrec.2014.06.001.

[9] L. Devroye and A. Krzyżak. New multivariate product density es-
timators. Journal of Multivariate Analysis, 82(1):88–110, 2002.
https://doi.org/10.1006/jmva.2001.2021.

[10] E. Fix and J.L. Hodges. Discriminatory analysis: nonparametric discrimination,
consistency properties. Interscience Publishers, New York, 1951.

[11] J.H Friedman. Exploratory projection pursuit. Journal of
the American statistical association, 82(397):249–266, 1987.
https://doi.org/10.1080/01621459.1987.10478427.

[12] J.H. Friedman, W. Stuetzle and A. Schroeder. Projection pursuit density esti-
mation. Journal of the American Statistical Association, 79(387):599–608, 1984.
https://doi.org/10.1080/01621459.1984.10478086.
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[31] R. Rudzkis and M. Radavičius. Statistical estimation of a mixture of
Gaussian distributions. Acta Applicandae Mathematica, 38(1):37–54, 1995.
https://doi.org/10.1007/BF00992613.

[32] T. Ruzgas, R. Rudzkis and M. Kavaliauskas. Application of clustering in the non-
parametric estimation of distribution density. Nonlinear Analysis: Modeling and
Control, 11(4):393–411, 2006. https://doi.org/10.15388/NA.2006.11.4.14741.

[33] B.W. Silverman. Density Estimation for Statistics and Data Analysis. Chapman
and Hall, London, 1986.

[34] R. Smidtaite. Application of nonlinear statistics for distribution density estima-
tion of random vectors. Kaunas University of Technology, 2008. (MS thesis).

[35] C. Stachniss, C. Plagemann and A.J. Lilienthal. Learning gas distribution models
using sparse Gaussian process mixtures. Autonomous Robots, 26(2):187–202,
2009. https://doi.org/10.1007/s10514-009-9111-5.

[36] M.A. Wong. A bootstrap testing procedure for investigating the number of
subpopulations. Journal of Statistical Computation and Simulation, 22(2):99–
112, 1985. https://doi.org/10.1080/00949658508810837.

[37] M.W. Zimmerman, R.J. Povinelli, M.T. Johnson and K.M. Ropella. A recon-
structed phase space approach for distinguishing ischemic from non-ischemic ST
changes using Holter ECG data. In Computers in Cardiology, 2003, pp. 243–246,
2003. https://doi.org/10.1109/CIC.2003.1291136.

https://doi.org/10.1016/0167-9473(91)90115-I
https://doi.org/10.3389/fmolb.2017.00025
https://doi.org/10.1080/00401706.1992.10484950
http://papers.nips.cc/paper/6217-density-estimation-via-discrepancy-based-adaptive-sequential-partition.pdf
http://papers.nips.cc/paper/6217-density-estimation-via-discrepancy-based-adaptive-sequential-partition.pdf
https://doi.org/10.1214/aos/1176348653
https://doi.org/10.1002/9780470191613
https://doi.org/10.1002/0471721182
https://doi.org/10.1177/0734242X10396754
https://doi.org/10.1007/BF00992613
https://doi.org/10.15388/NA.2006.11.4.14741
https://doi.org/10.1007/s10514-009-9111-5
https://doi.org/10.1080/00949658508810837
https://doi.org/10.1109/CIC.2003.1291136


Accuracy of Nonparametric Density estimation 639

Appendix A

The preliminary data clustering performance analysis is provided there. Each
figure corresponds a different density error dependence on the sample size.
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Appendix B

The density error estimators are given in the tables. The error without the
initial clustering is given in the first row of each method, and the second row
shows the error after the initial data clustering.

Table 4. Performance of density estimators for strongly skewed density

MAE MAPE

n=200 n=800 n=3200 n=200 n=800 n=3200

AKDE 0. .1822 0. .1458 0. .1035 0. .2721 0. .2430 0. .1824
0. .1697 0. .0997 0. .0584 0. .2287 0. .1846 0. .1354

PPDE 0. .2788 0. .3297 0. .3319 0. .3700 0. .4775 0. .4877
0. .1983 0. .1483 0. .1135 0. .3611 0. .2645 0. .2432

LSDE 0.1185 0.0338 0.0419 0.2287 0.0689 0.0783
0.2430 0.1077 0.0433 0.4667 0.1981 0.1185

NNDE 0.4115 0.3535 0.2398 0.9014 0.6515 0.4109
0.5020 0.4078 0.3214 1.0365 0.7319 0.5622

MIDE 0.2635 0.2701 0.2818 0.3231 0.3428 0.3561
0.2831 0.2892 0.3013 0.3623 0.3887 0.4029

Table 5. Performance of density estimators for bimodal density

MAE MAPE

n=200 n=800 n=3200 n=200 n=800 n=3200

AKDE 0.0195 0.0090 0.0063 0.1116 0.0633 0.0352
0.0181 0.0084 0.0029 0.1018 0.0594 0.0313

PPDE 0.0469 0.0428 0.0401 0.2093 0.1808 0.1662
0.0456 0.0273 0.0237 0.2009 0.1279 0.1160

LSDE 0.0571 0.0203 0.0085 0.2674 0.0922 0.0405
0.0751 0.0209 0.0065 0.3178 0.0978 0.0332

NNDE 0.1484 0.1069 0.0950 0.6445 0.4607 0.3974
0.1719 0.1355 0.1068 0.7385 0.5763 0.4454

MIDE 0.0372 0.0340 0.0308 0.1483 0.1024 0.0713
0.0389 0.0234 0.0127 0.1661 0.1001 0.0631
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Table 6. Performance of density estimators for trimodal density

MAE MAPE

n=200 n=800 n=3200 n=200 n=800 n=3200

AKDE 0.0256 0.0175 0.0116 0.1388 0.1021 0.0626
0.0247 0.0165 0.0102 0.1351 0.0926 0.0551

PPDE 0.0563 0.0560 0.0530 0.2455 0.2311 0.2192
0.0391 0.0260 0.0363 0.1922 0.1317 0.1774

LSDE 0.0263 0.0126 0.0144 0.1199 0.0952 0.0717
0.0486 0.0365 0.0138 0.2124 0.0985 0.0775

NNDE 0.1469 0.1106 0.0954 0.6306 0.4800 0.4112
0.1797 0.1309 0.1232 0.7507 0.5743 0.5361

MIDE 0.0371 0.0368 0.0306 0.1672 0.1461 0.1188
0.0284 0.0225 0.0159 0.1557 0.1302 0.1094
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