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E-mail: aidas.balciunas@mif.vu.lt

E-mail(corresp.): virginija.garbaliauskiene@su.lt

E-mail: julija.karaliunaite@vgtu.lt

E-mail: renata.macaitiene@su.lt

E-mail: j.petuskinaite@gmail.com

E-mail: a.rimkeviciene@svako.lt

Received June 7, 2019; revised November 1, 2019; accepted November 1, 2019
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1 Introduction

In the paper, we consider the approximation of a pair of analytic functions by
shifts of the periodic and periodic Hurwitz zeta-functions involving imaginary
parts of non-trivial zeros of the Riemann zeta-function. We recall the definitions
of the mentioned zeta-functions. Let s = σ + it be a complex variable, and
a = {am : m ∈ N} and b = {bm : m ∈ N0 = N∪{0}} be two periodic sequences
of complex numbers with minimal periods q1 ∈ N and q2 ∈ N, respectively.
Then the periodic zeta-function ζ(s; a) and the periodic Hurwitz zeta-function
ζ(s, α; b) with parameter α, 0 < α ≤ 1, are defined, for σ > 1, by the Dirichlet
series

ζ(s; a) =

∞∑
m=1

am
ms

and ζ(s, α; b) =

∞∑
m=0

bm
(m+ α)s

.

If am ≡ 1, then ζ(s; a) reduces to the Riemann zeta-function ζ(s) =
∑∞
m=1

1
ms ,

σ > 1, and ζ(s, α; b), for bm ≡ 1, becomes the classical Hurwitz zeta-function
ζ(s;α) =

∑∞
m=0 1/(m+ α)s. The periodicity of the sequences a and b implies

the equalities

ζ(s; a) =
1

qs1

q1∑
m=1

amζ

(
s,
m

q1

)
, (1.1)

ζ(s, α; b) =
1

qs2

q2−1∑
m=0

bmζ

(
s,
m+ α

q2

)
. (1.2)

Thus, the well-known properties of the Hurwitz zeta-function show that the
functions ζ(s; a) and ζ(s, α; b) have analytic continuation to the whole complex
plane, except for the point s = 1 that is a simple pole with residues

1

q1

q1∑
m=1

am and
1

q2

q2−1∑
m=0

bm,

respectively. If the above quantities are zero, then the corresponding zeta-
functions are entire. The approximation of analytic functions by the functions
ζ(s; a) and ζ(s, α; b) was studied in [8, 26, 28, 29] and [2, 7, 18, 22, 24, 25, 27],
respectively.

The first joint results for a pair of functions
(
ζ(s; a), ζ(s, α; b)

)
has been

obtained in [9]. Assuming that the sequence a is multiplicative, i. e., a1 = 1
and amn = aman for all coprimes m and n, and that the parameter is transcen-
dental, a joint universality theorem on the approximation of a pair of analytic
functions has been proved. Let D = {s ∈ C : 1

2 < σ < 1}, K be the class
of compact subsets of the strip D with connected complements, H(K) with
K ∈ K be the class of continuous functions on K that are analytic in the
interior of K, and let H0(K) denote the subclass of H(K) of non-vanishing
functions. Then it was proved in [9] that if K1,K2 ∈ K, f1(s) ∈ H0(K1) and
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f2(s) ∈ H(K2), then for every ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

s∈K1

|ζ(s+ iτ ; a)− f1(s)| < ε,

sup
s∈K2

|ζ(s+ iτ, α; b)− f2(s)| < ε

}
> 0,

where measA denotes the Lebesgue measure of a measurable set A ⊂ R. A
discrete version of the latter theorem has been presented in [15]. Let #A
denote the cardinality of the set A, N run over non-negative integers, and P
be the set of all prime numbers. For h > 0, define

L(P, α, h, π) =

{
(log p : p ∈ P), (log(m+ α) : m ∈ N0),

2π

h

}
.

If the set L(P, α, h, π) is linearly independent over the field of rational num-
bers Q, and the sequence a is multiplicative, then, for the same K1,K2 and
f1(s), f2(s) as above, it was proved in [15] that, for every ε > 0,

lim inf
N→∞

1

N + 1
#

{
0 ≤ k ≤ N : sup

s∈K1

|ζ(s+ ikh; a)− f1(s)| < ε, (1.3)

sup
s∈K2

|ζ(s+ ikh, α; b)− f2(s)| < ε

}
> 0.

Moreover, under hypothesis that the set{
(h1 log p : p ∈ P), (h2 log(m+ α) : m ∈ N0, 2π

}
is linearly independent over Q, it was obtained the following modification of
inequality (1.3):

lim inf
N→∞

1

N + 1
#

{
0 ≤ k ≤ N : sup

s∈K1

|ζ(s+ ikh1; a)− f1(s)| < ε,

sup
s∈K2

|ζ(s+ ikh2, α; b)− f2(s)| < ε

}
> 0.

Similar results also are given in [17] and [19]. Approximation results for
more general collections consisting from periodic zeta functions were obtained
in [3, 11,12,13,14,16,20] and [23].

The aim of this paper is to replace in shifts ζ(s+ ikh; a) and ζ(s+ ikh;α; b)
the sequence {kh} by more complicated one. Let 0 < γ1 < γ2 < ... ≤ γk ≤ ...
be the sequence of imaginary parts of non-trivial zeros of the Riemann zeta-
function. The behaviour of the sequence {γk : k ∈ N} is mysterious, therefore,
we will use a certain hypothesis that is implied by the well-known Montgomery
pair correlation conjecture [33]. Namely, we suppose that the estimate∑

γk≤T

∑
γl≤T

|γk−γl|< c
log T

1� T log T (1.4)

Math. Model. Anal., 25(1):71–87, 2020.
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holds for c > 0 as T → ∞. The Montgomery conjecture gives the asymptotic
formula for the left-hand side of (1.4). The condition (1.4) was applied in [6]
for the approximation of analytic functions by shifts ζ(s + iγkh), in [30] for
shifts ζ(s+ iγnh, α) and by shifts (ζ(s+ iγkh), ζ(s+ iγkh, α))) in [21]. In [4,5],
in place of (1.4), the Riemann hypothesis was used. The paper [26] is devoted
to joint approximation of analytic functions by shifts of Dirichlet L-functions
L(s+ iγkh, χ1), ..., L(s+ iγkh, χr) also by using (1.4).

Now, we state the main theorems of the paper.

Theorem 1. Suppose that the sequence a is multiplicative, the parameter α is
transcendental, and the bound (1.4) is true. Let K1,K2 ∈ K, f1(s) ∈ H0(K1),
f2(s) ∈ H(K2) and h > 0. Then, for every ε > 0,

lim inf
N→∞

1

N
#

{
1 ≤ k ≤ N : sup

s∈K1

|ζ(s+ iγkh; a)− f1(s)| < ε,

sup
s∈K2

|ζ(s+ iγkh, α; b)− f2(s)| < ε

}
> 0.

The positivity of a lower density of the set of shifts approximating a given
pair (f1(s), f2(s)) can be replaced by that of the density with some exception
for ε > 0. More precisely, the following statement is true.

Theorem 2. Under hypotheses of Theorem 1, the limit

lim
N→∞

1

N
#
{

1 ≤ k ≤ N : sup
s∈K1

|ζ(s+ iγkh; a)− f1(s)| < ε,

sup
s∈K2

|ζ(s+ iγkh, α; b)− f2(s)| < ε
}
> 0

exists for all but at most countably many ε > 0.

For the proof of Theorems 1 and 2, the Fourier transform and weak convergence
methods will be applied.

2 Uniform distribution modulo 1

In this section, we present some facts related to the uniform distribution mod-
ulo 1 of sequences of real numbers.

We recall that the sequence {xk : k ∈ N} ⊂ R is uniformly distributed
modulo 1 if, for every interval [a, b) ⊂ [0, 1)

lim
n→∞

1

n

n∑
k=1

χ[a,b)

(
{xk}

)
= b− a,

where χ[a,b) is the indicator function of the interval [a, b), and {xk} denotes the
fractional part of xk.

The next lemma is the well-known Weyl criterion.
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Lemma 1. A sequence {xk : k ∈ N} ⊂ R is uniformly distributed modulo 1 if
and only if, for every m ∈ Z \ {0},

lim
n→∞

1

n

n∑
k=1

e2πimxk = 0.

Proof of the lemma can be found, for example, in [10].

Lemma 2. The sequence {γka : k ∈ N} with every a ∈ R \ {0} is uniformly
distributed modulo 1.

Proof. The lemma was obtained in [34] and used in [6]. ut

Lemmas 1 and 2 will be applied for weak convergence of probability mea-
sures on certain topological groups. Let γ = {s ∈ C : |s| = 1}, and

Ω1 =
∏
p∈P

γp and Ω2 =
∏
m∈N0

γm,

where γp = γ for all p ∈ P and γm = γ for all m ∈ N0. In view of the Tikhonov
theorem, Ω1 and Ω2, with the product topology and pointwise multiplication,
are compact topological Abelian groups. Define Ω = Ω1 × Ω2. Then again,
Ω is a compact topological group, therefore, on (Ω,B(Ω)) (B(X) is the Borel
σ-field of the space X) the probability Haar measure mH exists, and we have
the probability space (Ω,B(Ω),mH). Denote by ω1(p) the pth component of
an element ω1 ∈ Ω1, p ∈ P, and by ω2(m) the mth component of an element
ω2 ∈ Ω2. Elements of Ω are denoted by ω = (ω1, ω2), ω1 ∈ Ω1, ω2 ∈ Ω2.

For A ∈ B(Ω), define

QN,α(A)=
1

N
#
{

1 ≤ k ≤ N :
( (
p−iγkh : p ∈ P

)
, (m+α)−iγkh : m ∈ N0

)
∈A
}
.

The next lemma deals with weak convergence of QN,α as N →∞.

Lemma 3. Suppose that α is a transcendental number. Then QN,α converges
weakly to the Haar measure mH as N →∞.

Proof. We apply the Fourier transform method. Let gN,α(k, l), k = (kp : kp ∈
Z, p ∈ P), l = (lm : lm ∈ Z,m ∈ N0), be the Fourier transform of QN,α. Then
it is well known that

gN,α(k, l) =

∫
Ω

(∏′

p∈P
ω
kp
1 (p)

∏′

m∈N0

ωlm2 (m)
)
dQN,α,

where ”′” means that only a finite number of integers kp and lm are distinct
from zero. Thus, by the definition of QN,α,

gN,α(k, l) =
1

N

N∑
k=1

∏′

p∈P
p−ihkpγk

∏′

m∈N0

(m+ α)−ihlmγk (2.1)

=
1

N

N∑
k=1

exp
{
− ihγk

(∑′

p∈P
kp log p+

∑′

m∈N0

lm log(m+ α)
)}
.

Math. Model. Anal., 25(1):71–87, 2020.
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Clearly,

gN,α(0, 0) = 1. (2.2)

Since α is transcendental, the set{
(log p : p ∈ P), (log(m+ α) : m ∈ N0)

}
is linearly independent over Q [9]. Therefore,∑′

p∈P
kp log p+

∑′

m∈N0

lm log(m+ α) 6= 0

for (k, l) 6= (0, 0). Hence, in view of Lemmas 2 and 1, we obtain by (2.1)

lim
N→∞

gN,α(k, l) = 0

for (k, l) 6= (0, 0). This together with (2.2) shows that

lim
N→∞

gN,α(k, l) =

{
1, if (k, l) = (0, 0),

0, if (k, l) 6= (0, 0).

Since the right-hand side of the latter equality is the Fourier transform of the
Haar measure mH , a continuity theorem for probability measures on compact
groups proves the lemma. ut

Lemma 3 implies the weak convergence for probability measures defined
by means of absolutely convergent Dirichlet series. We recall that D =

{
s ∈

C : 1
2 < σ < 1

}
. Denote by H(D) the space of analytic functions on D

endowed with the topology of uniform convergence on compacta, and H2(D) =
H(D)×H(D).

Let θ > 1
2 be a fixed number, and, for m,n ∈ N,

vn(m) = exp
{
−
(m
n

)θ }
,

and, for m ∈ N0, n ∈ N,

vn(m,α) = exp
{
−
(
m+ α

n+ α

)θ }
.

Define the series

ζn(s; a) =

∞∑
m=1

amvn(m)

ms
, ζn(s, α; b) =

∞∑
m=0

bmvn(m,α)

(m+ α)s
.

The latter series are absolutely convergent for σ > 1
2 [9]. Moreover, we set

ζn(s, ω1; a) =

∞∑
m=1

amω1(m)vn(m)

ms
(2.3)
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and

ζn(s, α, ω2; b) =

∞∑
m=0

bmω2(m)vn(m,α)

(m+ α)s
, (2.4)

the series again being absolutely convergent for σ > 1
2 . For brevity, we put

ζ
n
(s, α; a, b) = (ζn(s; a), ζn(s, α; b)),

ζ
n
(s, α, ω; a, b) = (ζn(s, ω1; a), ζn(s, α, ω2; b)).

Define the function un,α : Ω → H2(D) by the formula

un,α(ω) = ζ
n
(s, α, ω; a, b).

Since the series (2.3) and (2.4) are absolutely convergent for σ > 1
2 , the func-

tion un,α is continuous, hence (B(Ω),B(H2(D))) – measurable. Therefore, the
measure mH induces on (H2(D),B(H2(D))) the unique probability measure
mHu

−1
n,α defined, for A ∈ B(H2(D)) by

mHu
−1
n,α(A) = mH(u−1n,αA).

Let, for A ∈ B(H2(D)),

PN,n,α(A) =
1

N
#
{

1 ≤ k ≤ N : ζ
n
(s+ iγkh, α; a, b) ∈ A

}
.

Then we have the following statement.

Lemma 4. Suppose that α is a transcendental number. Then PN,n,α converges

weakly to P̂n,α
def
= mHu

−1
n,α as N →∞.

Proof. By the definition of un,α,

un,α
(
(p−iγkh : p ∈ P), ((m+ α)−iγkh : m ∈ N0)

)
= ζ

n
(s+ iγkh, α; a, b).

Therefore, for every A ∈ B(H2(D)),

PN,n,α(A) =
1

N
#
{

1 ≤ k ≤ N :(
(p−iγkh : p ∈ P), ((m+ α)−iγkh : m ∈ N0)

)
∈ u−1n,αA

}
,

i. e., PN,n,α = QN,αu
−1
n,α, where QN,α is from Lemma 3. Thus, the assertion of

the lemma is a consequence of Lemma 3, continuity of un,α and Theorem 5.1
of [1]. ut

3 Mean square estimates

To pass from ζ
n
(s, α; a, b) to ζ(s, α, a, b) = (ζ(s; a), ζ(s, α; b)), we need a certain

approximation result for ζ(s, α; a, b) by ζn(s, α; a, b). For this aim, some mean

Math. Model. Anal., 25(1):71–87, 2020.
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square estimates are needed. In this step, the estimate (1.4) plays an important
role. Equalities (1.1) and (1.2) imply for fixed σ, 1

2 < σ < 1, the estimates∫ T

0

|ζ(σ + it; a)|2dt�σ,a T and

∫ T

0

|ζ(σ + it, α; b)|2dt�σ,α,b T.

Hence, for τ ∈ R,∫ T

0

|ζ(σ + it+ iτ ; a)|2dt�σ,a T (1 + |τ |), (3.1)∫ T

0

|ζ(σ + it+ iτ, α; b)|2dt�σ,α,b T (1 + |τ |). (3.2)

The above mean square estimates are of continuous type. The following Gal-
lagher lemma connects discrete and continuous mean square estimates for cer-
tain functions.

Lemma 5. Suppose that T0, T ≥ δ > 0 are real numbers, and T 6= ∅ is a finite
set in the interval [T0 + δ

2 , T0 + T − δ
2 ]. Define

Nδ(x) =
∑

t∈T, |t−x|<δ

1.

Let S(x) be a complex-valued continuous function on [T0, T0 + T ] having a
continuous derivative on (T0, T0 + T ). Then

∑
t∈T

N−1δ (t)|S(t)|2 ≤ 1

δ

T0+T∫
T0

|S(x)|2dx+

 T0+T∫
T0

|S(x)|2dx
∫ T0+T

T0

|S′(x)|2dx


1
2

.

Proof of the lemma is given in [32], Lemma 1.4.

The asymptotics of γk is given in

Lemma 6. For k →∞, γk ∼ 2πk/log k.

Proof of the lemma can be found in [35].

Now, we are in position to obtain discrete mean square estimates for the
functions ζ(s, a) and ζ(s, α; b).

Lemma 7. Suppose that (1.4) is true. Then, for fixed σ, 1
2 < σ < 1, and

τ ∈ R,

N∑
k=1

|ζ(σ + iγkh+ iτ ; a| �σ,a,h N(1 + |τ |),

N∑
k=1

|ζ(σ + iγkh+ iτ, α; b| �σ,α,b,h N(1 + |τ |).
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Proof. In view of Lemma 6, γk ≤ c1k/log k with some c1 > 0 for all k ≥ 2.

We apply Lemma 5 with δ = ch
(

log logN
c1N

)−1
, T0 = γ1h− δ

2 , T = γNh−T0 + δ
2

and T = {γ1h, ..., γNh}. Then we have by (1.4)

N∑
l=1

Nδ(γlh) =

N∑
l=1

∑
γk≤

c1N
logN

|γl−γk|< δ
h

1 =
∑∑

γl,γk≤
c1N
logN

|γl−γk|< δ
h

1� N. (3.3)

By the Cauchy integral formula,

ζ ′(σ + it+ iτ ; a) =
1

2πi

∫
L

ζ(z + it+ iτ ; a)

(z − σ)2
dz,

where L is the circle with a center σ lying in D. Hence,∣∣ζ ′(σ + it+ iτ ; a)
∣∣2 � ∣∣∣ ∫

L

ζ ′(z + it+ iτ ; a)

(z − σ)2
dz
∣∣∣2 � ∫

L

|dz|
|z − σ|4

×
∫
L

|ζ(z + it+ iτ ; a)|2|dz| �σ

∫
L

|ζ(z + it+ iτ ; a)|2|dz|.

Therefore, in view of (3.2),∫ T

0

∣∣ζ ′(σ + it+ iτ ; a)
∣∣2dt�

∫
L

∣∣dz∣∣ ∫ T

0

∣∣ζ(<z + i=z + it+ iτ ; a)
∣∣2dt

�σ,a T (1 + |τ |).
Now, this (3.1), (3.3) and Lemma 5 yield, for sufficiently large N ,

N∑
k=1

|ζ(σ + iγkh+ iτ ; a)| =
N∑
k=1

√
Nδ(γkh)N−1δ (γkh)|ζ(σ + iγkh+ iτ ; a)|

�

(
N∑
k=1

Nδ(γkh)

N∑
k=1

N−1δ (γkh)|ζ(σ + iγkh+ iτ ; a)|2
) 1

2

�σ

√
N
(1

δ

∫ 2γNh

0

|ζ(σ + it+ iτ ; a)|2dt+
(∫ 2γNh

0

|ζ(σ + it+ iτ ; a)|2dt

×
∫ 2γNh

0

|ζ ′(σ + it+ iτ ; a)|2dt
) 1

2

) 1
2

�σ,b,h N(1 + |τ |).

The bound for the function ζ(s, α; b) is obtained similarly. ut

4 Approximation results

In this section, we will approximate ζ(s+iγkh, α; a, b) by ζ
n
(s+iγkh, α; a, b) in

the mean. For this, we recall the metric in the space H2(D). For g1, g2 ∈ H(D),
define

ρ(g1, g2) =

∞∑
l=1

2−l
sup
s∈Kl

|g1(s)− g2(s)|

1 + sup
s∈Kl

|g1(s)− g2(s)|
,

Math. Model. Anal., 25(1):71–87, 2020.
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where {Kl : l ∈ N} is a sequence of compact subsets of the strip D such that

D =
∞⋃
l=1

Kl, Kl ⊂ Kl+1 for l ∈ N, and if K ⊂ D is a compact set, then K ⊂ Kl

for some l ∈ N. Then ρ is a metric in H(D) inducing its topology of uniform
convergence on compacta. For g

1
= (g11, g12), g

2
= (g21, g22) ∈ H2(D), we set

ρ(g
11
, g

21
) = max

1≤j≤2
ρ(g1j , g2j).

Then ρ is a metric in H2(D) inducing the product topology.

Lemma 8. Suppose that (1.4) is true. Then

lim
n→∞

lim sup
N→∞

1

N

N∑
k=1

ρ
(
ζ(s+ iγkh, α; a, b), ζ

n
(s+ iγkh, α; a, b)

)
= 0.

Proof. By the definition of the metric ρ, it suffices to prove that

lim
n→∞

lim sup
N→∞

1

N

N∑
k=1

ρ (ζ(s+ iγkh; a), ζn(s+ iγkh; a)) = 0, (4.1)

lim
n→∞

lim sup
N→∞

1

N

N∑
k=1

ρ (ζ(s+ iγkh, α; b), ζn(s+ iγkh, α; b)) = 0. (4.2)

Let
ln(s) =

s

θ
Γ
(s
θ

)
ns,

where θ comes from the definition of vn(m), and Γ (s) denotes the Euler gamma-
function. Then it is known that

ζn(s; a) =
1

2πi

θ+i∞∫
θ−i∞

ζ(s+ z; a)ln(z)
dz

z
. (4.3)

Denote by a the residue of the function ζ(s; a) at the point s = 1. Let θ̂ > 0.
Then, by (4.3),

ζn(s; a)− ζ(s; a) =
1

2πi

−θ̂+i∞∫
−θ̂−i∞

ζ(s+ z; a)ln(z)
dz

z
+
aln(1− s)

1− s
. (4.4)

Suppose that K is a fixed compact set of the strip D, and take ε > 0 such that
1
2 + 2ε ≤ σ ≤ 1− ε for any point s = σ + iv ∈ K. Now, let

θ̂ = σ − ε− 1

2
and θ =

1

2
+ ε.

Then (4.4), implies, for s ∈ K, the inequality

|ζ(s+ iγkh; a)− ζn(s+ iγkh; a)| ≤ 1

2π

∫ ∞
−∞
|ζ(s+ iγkh− θ̂ + it)| ln(−θ̂ + it)

| − θ̂ + it|
dt

+
|a|ln(1− s− iγkh)|
|1− s− iγkh|

.
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In the latter integral, take t in place t+ v. This gives

|ζ(s+ iγkh; a)− ζn(s+ iγkh; a)| ≤ 1

2π

∫ ∞
−∞

∣∣∣ζ(1

2
+ ε+ i(t+ γkh); a

)∣∣∣
×
|ln( 1

2 + ε− s+ it)|
| 12 + ε− s+ it|

dt+
|a|ln(1− s− iγkh)|
|1− s− iγkh|

.

This leads to

1

N

N∑
k=1

sup
s∈K
|ζ(s+ iγk; a)− ζn(s+ iγkh; a)| ≤ S1 + S2, (4.5)

where

S1 =
1

2πN

∫ ∞
−∞

( N∑
k=1

∣∣∣ζ(1

2
+ ε+ i(t+ γkh); a

)∣∣∣ sup
s∈K

|ln( 1
2 + ε− s+ it)|
| 12 + ε− s+ it|

)
dt,

S2 =
|a|
N

N∑
k=1

sup
s∈K

|ln(1− s− iγkh)|
|1− s− iγkh|

.

For the function Γ (σ + it), the estimate

Γ (σ + it)� exp{−c|t|} , c > 0,

uniform in σ1 ≤ σ ≤ σ2, is known. Therefore, the definition of the function
ln(s) implies the bound, for s ∈ K,

ln( 1
2 + ε− s+ it)

1
2 + ε− s+ it

� n−ε exp
{
− c|t− v|

θ

}
�K n−ε exp{−c|t|}. (4.6)

By similar arguments, we find that

ln(1− s− iγkh)

1− s− iγkh
�K,h n

1−σ exp{−cγkh}. (4.7)

From (4.6) and Lemma 7, it follows that

S1 �K,a,h n
−ε
∫ ∞
−∞

(1 + |t|) exp{−c|t|}dt�K,a,h n
−ε,

while (4.7) shows that

S2 �K,a,n n
1
2−2ε

logN

N
.

Therefore, in view of (4.5), we obtain that

lim
n→∞

lim sup
N→∞

1

N

N∑
k=1

sup
s∈K
|ζ(s+ iγkh; a)− ζn(s+ iγkh; a)| = 0,

and this and the definition of the metric ρ imply (4.1).

Math. Model. Anal., 25(1):71–87, 2020.
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The equality (4.2) is proved similarly by using the representation

ζn(s, α; b) =
1

2πi

θ+i∞∫
−θ+i∞

ζ(s+ z, α; b)
ln(z, α)

z
dz,

where
ln(s, α) =

s

θ
Γ
(s
θ

)
(n+ α)s,

as well as the second bound of Lemma 7. ut

5 A limit theorem

In this section, we will prove a limit theorem for ζ(s, α; a, b) in the space H2(D).

For the statement of that theorem, a certain H2(D) - valued random element
is used. On the probability space (Ω,B(Ω),mH), define the H2(D) - valued
random element

ζ(s, ω, α; a, b) =

( ∞∑
m=1

amω1(m)

ms
,

∞∑
m=0

bmω2(m)

(m+ α)s

)
.

We observe that the latter series both are almost surely uniformly convergent
on compact subsets of the strip D. Denote by Pζ,α the distribution of the

random element ζ(s, ω, α; a, b), i. e.,

Pζ,α(A) = mH{ω ∈ Ω : ζ(s, ω, α; a, b) ∈ A} , A ∈ B(H2(D)).

Moreover, for A ∈ B(H2(D)),

PN,α(A) =
1

N
#{1 ≤ k ≤ N : ζ(s+ iγkh, α; a, b) ∈ A}.

Theorem 3. Suppose that the sequence a is multiplicative, the parameter α is
transcendental, and the bound (1.4) is true. Then PN,α converges weakly to
Pζ,α as N →∞.

Proof. We return to Lemma 4 and its limit measure P̂n,α. Let θN be a random
variable defined on a certain probability space with the measure µ and having
the distribution

µ{θN = γkh} =
1

N
, k = 1, ..., N.

Define the H2(D) - valued random element

XN,n,α = XN,n,α(s) = ζ
n
(s+ iθN , α; a, b).

Then, denoting by X̂n,α the H2(D)-valued random element with the distribu-

tion P̂n,α, we rewrite the assertion of Lemma 4 in the form
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XN,n,α
D−→

N→∞
X̂n,α. (5.1)

In [9], it is proved that the sequence of probability measures {P̂n,α : n ∈ N}
is tight, i.e., for every ε > 0, there exists a compact set K = K(ε) ⊂ H2(D)
such that

P̂n,α(K) > 1− ε

for all n ∈ N. By the Prokhorov theorem [1], Theorem 6.1, every tight family of
probability measures is relatively compact. Thus, every subsequence of {P̂n,α}
contains a subsequence {P̂nr,α} such that P̂nr,α converges weakly to a certain
probability measure Pα on (H2(D), B(H2(D))) as r → ∞. This also can be
writen in the form

X̂nr,α
D−→

r→∞
Pα. (5.2)

Using the random variable θN , define one more H2(D)-valued random element

XN,α = XN,α(s) = ζ(s+ iθN , α; a, b).

Then Lemma 8 implies, for every ε > 0,

lim
n→∞

lim sup
N→∞

µ{ρ(XN,α, XN,n,α) ≥ ε}

= lim
n→∞

lim sup
N→∞

1

N
#
{

1 ≤ k ≤ N :

ρ(ζ(s+ iγkh, α; a, b), ζ
n
(s+ iγkh, α; a, b)) ≥ ε

}
≤ lim
n→∞

lim sup
N→∞

1

Nε

N∑
k=1

ρ
(
ζ(s+ iγkh, α; a, b), ζ

n
(s+ iγkh, α; a, b)

)
= 0.

Now, this equality, the relations (5.1) and (5.2), and Theorem 4.2 of [1] show
that

XN,α
D−→

N→∞
Pα,

or PN,α converges weakly to Pα as N →∞. Moreover, the latter relation shows

that the measure Pα is independent of the subsequence {P̂nr , α}. This remark
gives the relation

X̂n,α
D−→

n→∞
Pα,

or P̂n,α converges weakly to Pα as n → ∞. Thus, we obtained that PN,α
converges weakly to the limit measure Pα of P̂n,α. In [15], it was shown that
Pα coincides with Pζ,α. ut
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6 Proof of universality theorems

Let
S = {g ∈ H(D) : g(s) 6= 0 or g(s) ≡ 0} ×H(D).

Then it was proved in [9] that the support of the measure Pζ,α is the set S.
Proof of Theorem 1. By the Mergelyan theorem on the approximation

analytic functions by polynomials [31], there exist polynomials p1(s) and p2(s)
such that

sup
s∈K1

∣∣∣f1(s)− ep1(s)
∣∣∣ < ε

2
, (6.1)

sup
s∈K2

|f2(s)− p2(s)| < ε

2
. (6.2)

Define

Gε =

{
(g1, g2) ∈ H2(D) : sup

s∈K1

|g1(s)− ep1(s)| < ε

2
, sup
s∈K2

|g2(s)− p2(s)| < ε

2

}
.

Then Gε is an open neighbourhood of the element
(
ep1(s), p2(s)

)
∈ S. There-

fore, by properties of the support,

Pζ,α(Gε) > 0. (6.3)

Moreover, by Theorem 3 and the equivalent of weak convergence of probability
measure in terms of open sets [1], Theorem 2.1, we have that

lim inf
N→∞

PN,α(Gn) ≥ Pζ,α(Gε) > 0.

This, the definitions of PN,α and Gε together with (6.1) and (6.2) prove the
theorem.

Proof of Theorem 2. Define

Ĝε =

{
(g1, g2) ∈ H2(D) : sup

1≤j≤2
sup
s∈Kj

|gj(s)− fj(s)| < ε

}
.

Then the boundary ∂Ĝε of Ĝε lies in the set{
(g1, g2) ∈ H2(D) : sup

1≤j≤2
sup
s∈Kj

|gj(s)− fj(s)| = ε

}
.

Therefore, the boundaries ∂Ĝε1 and ∂Ĝε2 with different positive ε1 and ε2

do not intersect. Hence, the set Ĝε is a continuity set
(
Pζ,α(∂Ĝε) = 0

)
of the

measure Pζ,α for all but at most countably many ε > 0. Therefore, by Theorem
3 and the equivalent of weak convergence of probability measures in terms of
continuity sets [1], Theorem 2.1, we have that

lim
n→∞

PN,α(Ĝε) = Pζ,α(Ĝε) (6.4)
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for all but at most countably many ε > 0. The definitions of Gε and Ĝε, and
(6.1) and (6.2) show that Gε ⊂ Ĝε. Thus, in view of (6.3),

Pζ,α(Ĝε) > 0.

This, the definitions of PN,α and Ĝε together with (6.4) give the assertion of
the theorem.

References

[1] P. Billingsley. Convergence of Probability Measures. John Wiley and Sons, New
York, 1968.
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tribution of certain compositions. Math. Modell. Analysis, 24(1):34–42, 2019.
https://doi.org/10.3846/mma.2019.003.
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[13] A. Laurinčikas. Joint universality of zeta-functions with
periodic coefficients. Izv. Math., 74(3):515–539, 2010.
https://doi.org/10.1070/IM2010v074n03ABEH002497.

Math. Model. Anal., 25(1):71–87, 2020.

https://doi.org/10.3846/mma.2019.002
https://doi.org/10.3846/mma.2019.003
https://doi.org/10.1007/s10998-017-0228-6
https://doi.org/10.1515/ms-2017-0141
https://doi.org/10.4064/aa8583-5-2017
https://doi.org/10.1080/10652460600856484
https://doi.org/10.1556/SScMath.48.2011.2.1162
https://doi.org/10.1070/SM2007v198n02ABEH003835
https://doi.org/10.1070/IM2008v072n04ABEH002421
https://doi.org/10.1070/IM2010v074n03ABEH002497
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[27] A. Laurinčikas and D. Šiaučiūnas. Remarks on the universality of pe-
riodic zeta-functions (in Russian). Math. Notes., 80(3-4):532–538, 2006.
https://doi.org/10.1007/s11006-006-0171-y.
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