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1 Introduction

In the paper, we consider the approximation of a pair of analytic functions by
shifts of the periodic and periodic Hurwitz zeta-functions involving imaginary
parts of non-trivial zeros of the Riemann zeta-function. We recall the definitions
of the mentioned zeta-functions. Let s = o + it be a complex variable, and
a={any :m €N} and b= {b, : m € Ny=NU{0}} be two periodic sequences
of complex numbers with minimal periods ¢; € N and ¢ € N, respectively.
Then the periodic zeta-function ¢(s; a) and the periodic Hurwitz zeta-function
((s,; b) with parameter o, 0 < a < 1, are defined, for o > 1, by the Dirichlet
series

< 4 > bm
Close) = 32 T and Gl o58) = 3 e
el m=0

If an, = 1, then ((s; a) reduces to the Riemann zeta-function ((s) = >~ ; -,

o > 1, and ((s,a;b), for b,, = 1, becomes the classical Hurwitz zeta-function
((s;a) =3 °_1/(m+ «)®. The periodicity of the sequences a and b implies
the equalities

a) = il i amg (s, Z) , (1.1)

C(s, ; b) qzzl bmg( m+0‘>. (1.2)

Thus, the well-known properties of the Hurwitz zeta-function show that the
functions ((s; a) and (s, «; b) have analytic continuation to the whole complex
plane, except for the point s = 1 that is a simple pole with residues

g2—1

—Zamand—me,
ml

m=0

respectively. If the above quantities are zero, then the corresponding zeta-
functions are entire. The approximation of analytic functions by the functions
C(s;a) and ((s,a;b) was studied in [8,26,28,29] and [2,7, 18, 22, 24, 25, 27],
respectively.

The first joint results for a pair of functions (C(s, a), ¢(s, a; b)) has been
obtained in [9]. Assuming that the sequence a is multiplicative, i. e., a; = 1
and @ = ama, for all coprimes m and n, and that the parameter is transcen-
dental, a joint universality theorem on the approximation of a pair of analytic
functions has been proved. Let D = {s € C : 1 < ¢ < 1}, K be the class
of compact subsets of the strip D with connected complements, H(K) with
K € K be the class of continuous functions on K that are analytic in the
interior of K, and let Hy(K) denote the subclass of H(K) of non-vanishing
functions. Then it was proved in [9] that if K3, Ky € K, fi(s) € Ho(K1) and
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fa(s) € H(K3), then for every € > 0,

1
lim inf meas{T €1[0,T): sup |{(s+it;a) — fi(s)] <¢,
T—o00 T S€K1

sup [C(s + ir,036) ~ alo)] < £ >0
se€Ko

where measA denotes the Lebesgue measure of a measurable set A C R. A
discrete version of the latter theorem has been presented in [15]. Let #A
denote the cardinality of the set A, N run over non-negative integers, and P
be the set of all prime numbers. For h > 0, define

2
L(P,a, h,m) = {(logp :p €P), (log(m+ ) : m € Ny), ;LT} .
If the set L(P,a, h, ) is linearly independent over the field of rational num-

bers Q, and the sequence a is multiplicative, then, for the same K7, K5 and
f1(s), f2(s) as above, it was proved in [15] that, for every € > 0,

lim inf
N—oo

! #{O<k<N: sup |C(s +ikh;a) — fi(s)] <e, (1.3)
1 seK

sup |((s + ikh,a; b) — fa(s)| < s} > 0.
s€Ka
Moreover, under hypothesis that the set
{(h1 logp:p €P), (holog(m+ «):m € N0,27T}
is linearly independent over Q, it was obtained the following modification of

inequality (1.3):

lim inf
N—oo

1
1#{0 <k < N:sup |((s+ikhi;a) — fi(s)] < e,
se Ky

sup |((s + ikha, a; b) — fa(s)] < 6} > 0.
seKo

Similar results also are given in [17] and [19]. Approximation results for
more general collections consisting from periodic zeta functions were obtained
in [3,11,12,13,14,16,20] and [23].

The aim of this paper is to replace in shifts ((s+ikh;a) and ((s+ikh; a;b)
the sequence {kh} by more complicated one. Let 0 < 71 < v2 < ... <y, < ...
be the sequence of imaginary parts of non-trivial zeros of the Riemann zeta-
function. The behaviour of the sequence {7 : k € N} is mysterious, therefore,
we will use a certain hypothesis that is implied by the well-known Montgomery
pair correlation conjecture [33]. Namely, we suppose that the estimate

Z Z 1<« TlogT (1.4)

YW <T n<T
[ve—7l< g7

Math. Model. Anal., 25(1):71-87, 2020.
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holds for ¢ > 0 as T' — oo. The Montgomery conjecture gives the asymptotic
formula for the left-hand side of (1.4). The condition (1.4) was applied in [6]
for the approximation of analytic functions by shifts ((s + iy;h), in [30] for
shifts (s +1iynh, a) and by shifts ({(s + iykh), ((s + ivkh, ))) in [21]. In [4,5],
in place of (1.4), the Riemann hypothesis was used. The paper [26] is devoted
to joint approximation of analytic functions by shifts of Dirichlet L-functions
L(s +ivgh, x1), ..., L(s + iyih, ) also by using (1.4).
Now, we state the main theorems of the paper.

Theorem 1. Suppose that the sequence a is multiplicative, the parameter o is
transcendental, and the bound (1.4) is true. Let K1, Ko € K, fi(s) € Ho(K1),
fa(s) € H(K3) and h > 0. Then, for everye >0,

1
liminf#{l <k < N:sup |((s+iveh;a) — f1(s)] <,
N—oo N S€K1

sup (s + imch, a3 6) — fa(s)] < e} - 0.
seKo

The positivity of a lower density of the set of shifts approximating a given
pair (f1(s), f2(s)) can be replaced by that of the density with some exception
for € > 0. More precisely, the following statement is true.

Theorem 2. Under hypotheses of Theorem 1, the limit

1
lim —#{1 <k <N:sup [((s+imh;a) = fi(s)] <e,
N—>OON S€K1

sup [((s + iykh, a;b) — fa(s)| <e} >0
sEKo

exists for all but at most countably many € > 0.

For the proof of Theorems 1 and 2, the Fourier transform and weak convergence
methods will be applied.

2 Uniform distribution modulo 1

In this section, we present some facts related to the uniform distribution mod-
ulo 1 of sequences of real numbers.

We recall that the sequence {zj; : kK € N} C R is uniformly distributed
modulo 1 if, for every interval [a,b) C [0,1)

1
Jim =D Nan ({on}) =b—a,
k=1

where X[4,5) is the indicator function of the interval [a, b), and {z}} denotes the
fractional part of .
The next lemma is the well-known Weyl criterion.
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Lemma 1. A sequence {zj : k € N} C R is uniformly distributed modulo 1 if
and only if, for every m € Z \ {0},

: 1 . 2mimxy __
nh—>H;o -~ Z e P =0.
k=1
Proof of the lemma can be found, for example, in [10].

Lemma 2. The sequence {vga : k € N} with every a € R\ {0} is uniformly
distributed modulo 1.

Proof. The lemma was obtained in [34] and used in [6]. O

Lemmas 1 and 2 will be applied for weak convergence of probability mea-
sures on certain topological groups. Let v = {s € C: |s| = 1}, and

Ql = H'yp and 02: H Yms

p€EP meENy

where vy, = 7 for all p € P and ~,,, = 7y for all m € Ny. In view of the Tikhonov
theorem, (2, and (25, with the product topology and pointwise multiplication,
are compact topological Abelian groups. Define 2 = (21 x 2. Then again,
2 is a compact topological group, therefore, on (£2, B(£2)) (B(X) is the Borel
o-field of the space X) the probability Haar measure mpy exists, and we have
the probability space (§2,B(£2),mpy). Denote by w;(p) the pth component of
an element wy € 21, p € P, and by wy(m) the mth component of an element
wa € 29. Elements of {2 are denoted by w = (w1, ws), w1 € 21, wa € §2s.
For A € B({2), define

QN,Q(A):%#{I <kE<N: ( (p_”kh ip € IP’) ,(mAa) " o e NO)EA}.

The next lemma deals with weak convergence of Qu,, as N — oo.

Lemma 3. Suppose that o is a transcendental number. Then Qn o converges
weakly to the Haar measure myg as N — 0.

Proof. 'We apply the Fourier transform method. Let gn o (k, 1), k = (kp : kp €
Z,p €P), I = (L : ly, € Z,m € Ny), be the Fourier transform of Qn . Then
it is well known that
gNakl / le HW dQNom
0 peP meENy
where 7’7 means that only a finite number of integers k, and I, are distinct
from zero. Thus, by the definition of Qn q,

gvalkl) = Z [T 7™ I (mt a)=ime (21)

k=1 peP m&ENg
N

1

=N Z exp { — ihvk(zl kylogp + Z/ L log(m + av)) }.
k=1 peP meNy
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Clearly,
9N.a(0,0) = 1. (2.2)
Since « is transcendental, the set
{(logp : p € P), (log(m + ) : m € Ny) }

is linearly independent over Q [9]. Therefore,

/ li
Z kylogp + Z Imlog(m+a)#0

peP mENg

for (k,1) # (0,0). Hence, in view of Lemmas 2 and 1, we obtain by (2.1)
i gya(kl) =0
for (k,1) # (0,0). This together with (2.2) shows that

1, if (k,1) = (0,0
0, if (k1) # (0,0).
Since the right-hand side of the latter equality is the Fourier transform of the

Haar measure mpy, a continuity theorem for probability measures on compact
groups proves the lemma. 0O

~—

ngnoo Nk, 1) = {

Lemma 3 implies the weak convergence for probability measures defined
by means of absolutely convergent Dirichlet series. We recall that D = {s €
C: 1 < o < 1}. Denote by H(D) the space of analytic functions on D
endowed with the topology of uniform convergence on compacta, and H?(D) =

H(D) x H(D).
Let 6 > % be a fixed number, and, for m,n € N,

i) = - (2)'),

and, for m € Ny, n € N,

wtme e { - (3£7)')

Define the series

o~ Amn(m) o bmvy(m, a)
s = 35 o = 3 Ll

The latter series are absolutely convergent for o > 3 [9]. Moreover, we set

Gl i) = 3 Cmen(m)un(m)

m=1

(2.3)

mS
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and

o0

Cn(s, a,we b) = Z

m=0

bmwa (m)v, (m, a)
(m + a)®

, (2.4)

the series again being absolutely convergent for o > % For brevity, we put
gn(sa a;a, b) = (Cn(sv Cl), Cn(s7 ;g b))a
¢, (s,,wia,b) = (Culs, w13 a), Cals, a, w23 b)).

Define the function u, o : 2 — H?(D) by the formula

un,a(w) = Q (87 o, w;a, b)

n

Since the series (2.3) and (2.4) are absolutely convergent for o > %, the func-
tion 1wy, is continuous, hence (B(£2), B(H?(D))) — measurable. Therefore, the
measure my induces on (H%(D),B(H?(D))) the unique probability measure
muu, &, defined, for A € B(H*(D)) by

My, o (A) =mg(u, L A).
Let, for A € B(H?(D)),
1 .
Prna(A) = #{ 1 SE <N ¢ (5 +imh,aza,b) € A},

Then we have the following statement.

Lemma 4. Suppose that o is a transcendental number. Then Py , o converges
weakly to P, o e muu,y, as N — co.
Proof. By the definition of u,, q,

Una (07" i p €P), ((m+ )™ :m € No)) = C (s +ieh, a;a,b).

Therefore, for every A € B(H?*(D)),
1
PrnalA) :—#{1 <k<N:
N
((p_”"'h :peP),((m+ a)_i'“‘h :m € No)) € uT_L}aA}
i. e, PN = QMau;}], where Qn o is from Lemma 3. Thus, the assertion of

the lemma is a consequence of Lemma 3, continuity of u, , and Theorem 5.1
of [1]. O

3 Mean square estimates

To pass from gn(s, a;a,b) to((s,a,a,b) = (((s;a),((s,a; b)), we need a certain
approximation result for ((s,a;a,b) by (,(s,a;a,b). For this aim, some mean

Math. Model. Anal., 25(1):71-87, 2020.
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square estimates are needed. In this step, the estimate (1.4) plays an important
role. Equalities (1.1) and (1.2) imply for fixed o, 3 < o < 1, the estimates

T T
/ IC(o +it;a)?dt <50 T and / I¢(0 4 it, a; 0)|2dt <o 06 T
0 0
Hence, for 7 € R,
T
/ |C(o + it +iT;a)|2dt <g.0 T(1+ |7]), (3.1)
0
T
/ IC(o + it + i1, a;0)|dt g0 T(1+|7)). (3.2)
0

The above mean square estimates are of continuous type. The following Gal-
lagher lemma connects discrete and continuous mean square estimates for cer-
tain functions.

Lemma 5. Suppose that Ty, T > § > 0 are real numbers, and T # @ is a finite
set in the interval [Ty + 3,To + T — 3]. Define

Ng(l‘) = Z 1.

te®, [t—x|<d

Let S(x) be a complex-valued continuous function on [Ty, Ty + T| having a
continuous derivative on (To, To +T). Then

1 To+T To+T TotT 2
SN IS < £ / 15(2) P+ / 1S(2)Pde / 18" (@) Pde
tex y To
T() TD

Proof of the lemma is given in [32], Lemma 1.4.
The asymptotics of 7y, is given in

Lemma 6. For k — oo, vy, ~ 27k /logk.

Proof of the lemma can be found in [35].

Now, we are in position to obtain discrete mean square estimates for the
functions (s, a) and (s, a; b).
Lemma 7. Suppose that (1.4) is true. Then, for fixed o, % <o <1, and
TeR,

WE

C(0 + iyh +iT; 0] <gan N(1+ 7)),

el
I
—_

] =

IC(o + iveh + i1, ;8] <5060 N(1+|7]).

=
Il
—
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Proof. 1In view of Lemma 6, v, < clk/logk with some ¢; > 0 for all k& > 2.
We apply Lemma 5 with § = ch (1og IOgN) , Ty = 71h— ST =ynh—To+2 5
and T = {v1h,...,yvh}. Then we have by (1.4)

f: Ns(mh) = Z o= Y3 1«n (3.3)

c1 N
’ch<10gN 7177k<10gN

lvi—vrl<g [vi—vrl<g

By the Cauchy integral formula,

C(z+it+iT;a)

5 dz,

((o+it+ir;a) = 27m/

(z —0)

where L is the circle with a center ¢ lying in D. Hence,

t 2 d
‘C(O’-f—lt-f—ﬂ'ﬂ <<’ Mdz‘ <</l

o - of
x/ |C(z + it +iT;a)|?|dz| <<U/|C(z+it+i7;a)\2\dz|.
L L
Therefore, in view of (3.2),
T 2 r 2
/ |§/(J+it+i7;a)| dt<</ ‘dz}/ |C(§Rz+i%z+it+i7;a)| dt
0 L 0

o0 T(L+ 7))
Now, this (3.1), (3.3) and Lemma 5 yield, for sufficiently large N,

2

Z|C(a+wkh+zr a)| = \/N5 (veh) Nyt (veh)|C (0 + iyih + iT; a))|
k=1

2

(Z s(vih) ZN (vh)|C(o + iyh +iT; a)] )

k

1 2’YNh 2ynh
<4 \/N(g/ |C(o + it +iT;a)|?dt + (/ |C(o + it +iT;a)|?dt
0 0
2ynh 1 3
x / |C’(U+it+i7’;a)|2dt) ) Lg0,n N(14|7|).
0
The bound for the function ((s, a; b) is obtained similarly. O

4 Approximation results

In this section, we will approximate {(s+ivxh, a; a,b) by <, (s+ivph, a;a,b) in
the mean. For this, we recall the metric in the space H?(D). For g1, g2 € H(D),
define

o sup l91(s) — g2(s)
: _ 2_[ sekK ,
o) = 2 T T o)
=1 seK;

Math. Model. Anal., 25(1):71-87, 2020.
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where {K) : | € N} is a sequence of compact subsets of the strip D such that

oo
D= \J K, K; C Kj41 forl € N, and if K C D is a compact set, then K C K|
1=1
for some [ € N. Then p is a metric in H(D) inducing its topology of uniform
convergence on compacta. For 9, = (gn,glg),gQ = (921, g22) € H?(D), we set

B(gu’ ggl) = 112342{2 p(915, 925)-

Then p is a metric in H 2(D) inducing the product topology.

Lemma 8. Suppose that (1.4) is true. Then

N
N 1 . .
lim limsup i g P (g(s + ivph, a; a, b),gn(s + ivph, a; a, b)) =0.

n—00 N_yo0 1

Proof. By the definition of the metric p, it suffices to prove that

N
lim hmsup—z,o C(s+ ivkh;a),Cu(s + ivih;a)) =0, (4.1)
n—=% N_soco =1

N
lim lim sup — Z p (C(s +iykh, a;b), Gu(s + iyph, a; b)) = 0. (4.2)
n—=X N_soco k 1

Let s s

ts) = 57 (5) "
where 6 comes from the definition of v, (m), and I'(s) denotes the Euler gamma-
function. Then it is known that

0+ioco
1 d
Cn(s;a) = 5 / C(s+ z;a)ln(z)f. (4.3)
0—ioc0

Denote by a the residue of the function ¢(s;a) at the point s = 1. Let > 0.
Then, by (4.3),

—0+zoo
S
—0 300

Suppose that K is a fixed compact set of the strip D, and take € > 0 such that
%+25§0§ 1 — ¢ for any point s = o +iv € K. Now, let

R 1 1
G:U—a—iand9:§+e.

Then (4.4), implies, for s € K, the inequality

1 > 0 t
[C(s + ivih;a) — Gu(s + iyih; a)l g—/ IC(s + iyih — 9+zt)|7( R )dt
27 J_oo | — 0 + it]

|alln(1 — s — iykh)|
[1—s—iwh|
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In the latter integral, take ¢ in place t 4+ v. This gives

IC(s +ivkh; @) — Culs +dvehs a)| < i/:w ’C(% +€+i(t+’7kh);a)’

- 27
Lo (% +¢— 5+it)\dt la)l, (1 — s — iyh)|
|3 +e—s+it [1—s—iwh| =

This leads to

N
1 . .
NZsuEK(s—kmk;a)—Cn(s-i-wkh; a)] <51+ Sq, (4.5)

kzlse

where

N 1 .
1 oo 1 _ [1.(5 +¢& — s+ it)]
Sy = —— ( ’ = +e+i(t+ veh); 2 )dt,
! 27TN/,OO ;C(2 e ilt+mh);a) ek [Tte—s+it]

N .

|a| |ln (1 = s — iyh)|

Sy = — su . .
2 NI;SGIF; 11— s —iveh|

For the function I'(c + it), the estimate
I'(o +it) < exp{—c|t|} , ¢ >0,

uniform in o1 < o < 09, is known. Therefore, the definition of the function
l,(s) implies the bound, for s € K,

L(34+¢e—s+it)
%+5—s+ﬁ

t —
<n Cexp{ - %} <k n” % exp{—c|t|}. (4.6)

By similar arguments, we find that

1—0
—cyipht. 4.
p—— Lgnn °exp{—cyLh} (4.7)

From (4.6) and Lemma 7, it follows that

oo

Sy Crcann / (14 [t]) exp{—clt|}dt <rcan n~%,

while (4.7) shows that
Sy Lkam nt-2e 08N
Therefore, in view of (4.5), we obtain that
N
lim limsup 1 Z sup [C(s + ivh; a) — Cu(s + iyph; a)] =0,
N €K

n—o0 N0 1

and this and the definition of the metric p imply (4.1).

Math. Model. Anal., 25(1):71-87, 2020.
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The equality (4.2) is proved similarly by using the representation

04100
a1 o dn(z,0)
Cn(s,a,b)—% / ((s—l—z,a,b)idz,
—0+1i00

where
s

ln(s,a) = gf (9) (n+a)®,

as well as the second bound of Lemma 7. O

5 A limit theorem

In this section, we will prove a limit theorem for (s, &; a, b) in the space H?(D).

For the statement of that theorem, a certain H?(D) - valued random element
is used. On the probability space (£2,B({2),my), define the H?(D) - valued
random element

Comarnn- (£ 0§ deot))

m=1 m=0

We observe that the latter series both are almost surely uniformly convergent
on compact subsets of the strip D. Denote by P, the distribution of the
random element ((s,w, a;a,b), i. e.,

Pro(A) =mpf{w e 2:((s,w,a;0a,b) € A} , A € B(H*(D)).

Moreover, for A € B(H?(D)),
1
Py o(A) = N#{l <k < N:({(s+iyh,a;a,b) € A}.

Theorem 3. Suppose that the sequence a is multiplicative, the parameter « is
transcendental, and the bound (1.4) is true. Then Py converges weakly to
Pr o as N — oo.

Proof. We return to Lemma 4 and its limit measure Pn,a. Let O be a random
variable defined on a certain probability space with the measure p and having
the distribution

1
plOn = yh} = N’k =1,..,N.
Define the H?(D) - valued random element

XNna = XNmals) = (s+i0n,a;a,b).

Then, denoting by )A(n,a the H?(D)-valued random element with the distribu-
tion P, ., we rewrite the assertion of Lemma 4 in the form
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XN.n,a £> Xn,ow (51)
’ N—oo

In [9], it is proved that the sequence of probability measures {P, , : n € N}
is tight, i.e., for every ¢ > 0, there exists a compact set K = K(¢) C H?(D)
such that
Pro(K)>1—¢

for all n € N. By the Prokhorov theorem [1], Theorem 6.1, every tight family of
probability measures is relatively compact. Thus, every subsequence of {P,, o}

contains a subsequence {Pna} such that Pna converges weakly to a certain
probability measure P, on (H?(D), B(H?(D))) as r — oo. This also can be
writen in the form

Xoya 2 P (5.2)
7—00
Using the random variable 6, define one more H?(D)-valued random element

Xnao=Xna(s)=((s+1i0n,;a,b).

Then Lemma 8 implies, for every ¢ > 0,

lim limsup u{p(Xn,a, XNn,a) > €}

Nn—00 N_y00

1
= lim li —H#I1<E<N:
Jm msup {1 <k <
p(C(s +ivkh, s a, b),gn(s +ivih, a;a,b)) > 5}
|
< T 1i ) ) ) ) _o.
< lim limsup Ne E B(C(s—kzvkh,a, a,6),¢ (s+ivh, a;a, b)) 0

Now, this equality, the relations (5.1) and (5.2), and Theorem 4.2 of [1] show
that

D
XN,a — Pon
N—o0

or Py o converges weakly to P, as N — co. Moreover, the latter relation shows
that the measure P, is independent of the subsequence { P, ,a}. This remark
gives the relation

5 D

Xn,a — Pom
n— oo

or P, . converges weakly to P, as n — oo. Thus, we obtained that Py,

converges weakly to the limit measure P, of If’na In [15], it was shown that
P, coincides with P . O

Math. Model. Anal., 25(1):71-87, 2020.
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6 Proof of universality theorems

Let
S={g9ge H(D):g(s) #0or g(s) =0} x H(D).
Then it was proved in [9] that the support of the measure P , is the set S.
Proof of Theorem 1. By the Mergelyan theorem on the approximation

analytic functions by polynomials [31], there exist polynomials p1(s) and pa(s)
such that

€

sup |fi(s) — e ™| < =, (6.1)
seKq 2

€
sup |f2(s) — pa(s)] < 7 (6.2)
seKo

Define

€ €
G. = {(gl,gg) e H2(D) : sup |g1(s) — ep1(5)| < =, sup |g2(s) — p2(s)] < }
seKy 2 seKsy 2

Then G, is an open neighbourhood of the element (epl(s),pg (s)) € S. There-
fore, by properties of the support,

Pro(G2) > 0. (6.3)

Moreover, by Theorem 3 and the equivalent of weak convergence of probability
measure in terms of open sets [1], Theorem 2.1, we have that

liminf Py (G,) > Pga(GE) > 0.

N —oc0

This, the definitions of Py, and G. together with (6.1) and (6.2) prove the
theorem.
Proof of Theorem 2. Define

G: = {(91,92) € H*(D): sup_sup |g;(s) — fi(s)] < 6}-

1<j<2 seK;

Then the boundary OG. of G, lies in the set
{(91792) € H*(D): sup sup |g;(s) — f;(s)] =6}~
1<j<2 s€K;

Therefore, the boundaries 8@'51 and 8C¥52 with different positive €7 and &9
do not intersect. Hence, the set G. is a continuity set (nga([“)ég) = 0) of the
measure P . for all but at most countably many € > 0. Therefore, by Theorem
3 and the equivalent of weak convergence of probability measures in terms of
continuity sets [1], Theorem 2.1, we have that

lim Py o(Ge) = P;a(Ge) (6.4)

n—oo
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for all but at most countably many € > 0. The definitions of G. and G., and
(6.1) and (6.2) show that G C G.. Thus, in view of (6.3),

P£7a(é5) > 0.

This, the definitions of Py, and G. together with (6.4) give the assertion of
the theorem.
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