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Abstract. A model of a single-machine production system with finite magazine
capacity is investigated. The input flow of jobs is organized according to geometric
distribution of interarrival times, while processing times are assumed to be generally
distributed. The closed-form formula for the generating function of the time to the
first buffer overflow distribution conditioned by the initial buffer state is found. The
analytical approach based on the idea of embedded Markov chain, the formula of
total probability and linear algebra is applied. The corresponding result for next
buffer overflows is also given. Numerical examples are attached as well.
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1 Introduction

The occurrence of a buffer overflow is a typical problem that arises in mass
service systems where the accumulation of unprocessed elements is bounded.
Of course, the increase in the number of requests that are waiting for service
depends on the processing speed, the intensity of the input stream, as well as
the number of service stations that can work (process tasks) in parallel. The
phenomenon of a buffer overflow usually has a negative impact on the quality
of service (QoS), because it involves the loss of a number of potential new
customers (tasks, jobs, packets, etc.) that do not have a place where they
could wait for service and, consequently, resign, or it is connected with the
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necessity to propose an alternative service path (redirection to another service
station or to another service system), which generates additional costs.

In particular, examples of practical operating systems in which a buffer
storage overflow phenomenon can occur are given below:

• a production line, in which there are accumulating buffers of finite capac-
ities between consecutive processing stations; a buffer overflow at one of
the stations usually suspends or significantly slows down the service in
the preceding stations;

• buffers accumulating data packets incoming to the packet network node
(e.g. IP packets in the Internet routers) have finite capacities (counted
in bytes); a buffer overflow results in sending feedback to the source
emitting the packets, which makes the decision on their retransmission
(in accordance with the TCP/IP protocol);

• on communication routes with a sequence of successive traffic lights as the
“buffer” can be treated the section of the route between two successive
traffic lights;

• the phenomenon of a buffer overflow also occurs in the case of the orga-
nization of parking spaces, e.g. near large shopping centers: full parking
(accumulating “buffer”) results in the need for the driver to look for an-
other parking space (there is a redirection of the customer or its loss).

The application of queueing theory in the modeling of practical systems in
which a large number of customers is processed is well known. In recent years,
stochastic characteristics of systems in which the service is limited in some
way, which is connected with the use of, for example, a specific mechanism
of the input traffic control, are particularly intensively studied. An example
of such type of a mechanism affecting the system throughput is the use of a
storage buffer with finite capacity. Moreover, an alternative to the classical
approach of queueing systems analysis with a continuous time parameter is the
use of discrete time, in which the time axis is divided into the so-called slots,
indexed with consecutive natural numbers. This type of approach is sometimes
much more desirable from the practical point of view. In production systems
or logistic networks, the state of a magazine or a specific accumulating buffer
is monitored once a day or at regular time intervals.

In books [3] and [21] one can find the overview of results for stochastic
characteristics of different-type queueing models with discrete time parameter.
The selection of methods and techniques, and some applications of discrete-
time stochastic models can be found in [9]. The exact approach for buffer
overflow calculations based on martingales is proposed in [2]. The representa-
tion for the distribution of the time to buffer overflow in a queueing model with
autocorrelated input stream can be found e.g. in [5] and [6], where the cases
of single and batch arrivals are considered, respectively. One can find some
other analytical results for the problem of buffer overflow and loss of customers
during this time period e.g. in [8] and [18]. In particular, in [8] the formula for
the joint transform of the busy period and numbers of customers successfully
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served and lost during the busy period is obtained in the model described by
phase-type distributions. Similarly, in [18] the representation for the distribu-
tion of the number of buffer overflows during one busy period is found for the
system with Markovian arrival stream. Analytical results for the cumulative
distribution function of the time to the first buffer overflow can be found e.g.
in [13] and [14], where the multiple vacation policy and the control mechanism
based on setup and closedown times are considered, respectively. The model
of a production line with unreliable machine is investigated in [15]. In [12] the
distribution of the time to buffer overflow is analyzed in the case of a model
with server working vacations. In [20] the representation for the mean time to
reach the fixed level in the M/G/1-type queue with infinite buffer is obtained.
Similar characteristic for the corresponding finite-buffer queue is studied in [11],
where the closed-form representation of the distribution of the time to start a
crowded period (to hit the predetermined level) is derived. In [16] (see also [7])
the first overflow time in the GI/G/1/N -type queue is studied via diffusion
approximation. Obviously, the time to the first buffer overflow coincides with
the first passage time from the fixed initial state to state N. In [4] the repre-
sentation for the probability generating function of the time to the first buffer
overflow is obtained for the Geo/Geo/1/N -type model with arrival and service
rates dependent on the number of jobs accumulated in the system. The result
is given in terms of roots of the characteristic equation of a certain functional
matrix. The result form [4] is generalized in [19] for the case of phase-type
distributed interarrival and service times.

In the paper the production system with one processing station is modeled
using the Geo/G/1/B-type queue. Using the analytical approach based on the
idea of embedded Markov chain and the formula of the total probability, a
system of equations is constructed for the distribution of the time to the first
buffer overflow, conditioned by the initial state of the accumulating buffer. The
solution of the corresponding system written for generating function is found in
a compact form using the algebraic potential method introduced by Korolyuk
in [17]. So, in consequence, the obtained result generalizes the one derived in [4]
for the case of generally-distributed service times. Moreover, in relation to [11]
and [20], the discrete-time model is investigated, so instead of Poisson arrival
process a binomial process is considered. Analytical results are given in terms
of a certain additional sequence (called in [17] a potential). Successive terms
of this sequence can be obtained recursively (however, such a procedure gives
usually high computational complexity) or by using the Maclaurin expansion.
The latter possibility is used in numerical examples.

The remaining part of the article is organized as follows. The next Section 2
presents the exact mathematical description of the considered model and states
the basic facts about the binomial process (continuous analogue of the Poisson
process) characterizing the input traffic. In Section 3, using the formula of
the total probability and the idea of embedded Markov chain, a system of
equations for the conditional distribution of the time to the first buffer overflow
and a corresponding system written for generating functions are obtained. The
solution of the latter system is found in Section 4, where the appropriate result
for the subsequent buffer overflow periods is also given. Section 5 contains
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numerical examples illustrating theoretical results, while the last Section 6
contains a brief summary and conclusions.

2 Description of the model

We deal with a discrete-time model of a production line with a single pro-
cessing machine, modeled by a Geo/G/1/B-type queue. So, according to the
well-known Kendall notation, it is assumed that the stream of incoming jobs is
governed by a binomial process in that successive interarrival times are indepen-
dent random variables with the common geometric distribution with parameter
a ∈ (0, 1), namely

ak
def
= a(1− a)k−1,

where k ∈ {1, 2, ...}.
In the considered model service (processing) times are assumed to be gen-

erally distributed, where bk denotes the probability that the service duration of
a single customer equals k slots, where

∑∞
k=1 bk = 1. The capacity of accumu-

lating buffer is equal to B− 1 places, so the maximal system state is B, that is
reached in the case of the buffer being saturated and the service machine being
busy with processing. In the case the arriving job finds the system in state B,
it leaves the system without processing. The classical FIFO service discipline
is assumed.

We also accept the situation in that at the same time slot both the ar-
rival and service completion occur. In such a case it does not matter whether
the arrival precedes the departure (Arrival First (AF) scheme) or the oppo-
site (Departure First (DF) scheme), since the characteristic being analyzed is
independent on it.

Introduce the following probability generating functions of the sequences
(ak) and (bk), k ∈ {1, 2, ...}, as follows:

A(z)
def
=

∞∑
k=1

zkak =
az

1− (1− a)z
, B(z)

def
=

∞∑
k=1

zkbk, (2.1)

where |z| < 1.

3 Equations for conditional time-to-buffer overflow
distribution

In this section, by using the paradigm of embedded Markov chain and the
total probability law, we establish the system of equations for the conditional
distribution of the time to the first buffer overflow and, next, we write the
corresponding system for appropriate generating functions.

The binomial arrival process is a discrete-time analogue of the Poisson one.
From the point of view of the further analysis, it is important to express the
probability pi(j) that up to fixed time moment i ∈ {1, 2, ...} exactly j ∈ {0, ..., i}
customers will arrive to the system.
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Let us observe that, denoting by θk the kth interarrival time, we get

pi(j) = P
{ j∑
k=1

θk ≤ i,
j+1∑
r=1

θr ≥ i+ 1
}

=

i∑
l=1

P
{j+1∑
r=1

θr ≥ i+ 1 |
j∑

k=1

θk = l
}
P
{ j∑
k=1

θk = l
}

=

i∑
l=1

P{θj+1 ≥ i+ 1− l}P
{ j∑
k=1

θk = l
}

=

i∑
l=1

(1− a)i−lP
{ j∑
k=1

θk = l
}
. (3.1)

The sum of independent and identically distributed geometric random variables
has negative binomial distribution, so we obtain

P
{ j∑
k=1

θk = l
}

=

(
l − 1

j − 1

)
aj(1− a)l−j , (3.2)

where l ≥ j. Using (3.2) in (3.1) we obtain

pi(j) = aj(1− a)i−j
i∑
l=j

(
l − 1

j − 1

)
,

where i ∈ {1, 2, ...} and j ∈ {0, ..., i}.
Let us denote by β1 = β the time (counting from the initial epoch 0) to the

start of the first buffer overflow period, so

β
def
= min{n ∈ N : Xn = B},

where Xn stands for the number of customers (jobs, packets, etc.) present in
the system at time n including the one in service (if any).

Introduce the following notation:

βn(k)
def
= P{β ≥ k |X0 = n},

where n ∈ {0, ..., N − 1} and k ∈ N.
Assume, firstly, that the accumulating buffer is empty at the starting mo-

ment, so X0 = 0. Note that then the following equation is true:

β0(k) =

k−1∑
i=1

aiβ1(k − i) +

∞∑
i=k

ai. (3.3)

Indeed, if the first arrival occurs at time i ≤ k − 1, then at this time the
operation of the system “renews” with one job present and the time for the
buffer overflow initial moment, to exceed or to be equal to, shortens to k − i
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(the first summand on the right side of (3.3)). If the first job enters the system
at time k or later, then {β ≥ k} with probability one (the second summand).

Let us consider now the case at which X0 ≥ 1 and assume that, despite to
the presence of a number of jobs in the accumulating buffer before the opening
of the system, the processing (with the distribution described by the sequence
(bk)) begins at time 0. The memoryless property of geometric distribution
of interarrival times implies that consecutive departure moments are Markov
epochs in the evolution of the system. Namely, the subsequence (Xkn), k ∈ N,
where kj is the jth departure epoch in the evolution of the system, is a Markov
chain, called an embedded one (see e.g. [3], [21]). In consequence, applying the
formula of total probability with respect to the first departure moment after 0,
we can write the following system of equations:

βn(k) =

k−1∑
i=1

bi

B−n−1∑
j=0

pi−1(j)
[
(1− a)βn+j−1(k − i) + aβn+j(k − i)

]
+ bk

B−n−1∑
j=0

pk−1(j) +

∞∑
i=k+1

bi

B−n−1∑
j=0

pk(j), (3.4)

where 1 ≤ n ≤ B − 1.
Indeed, the first summand on the right side of (3.4) presents the situation

in that the first service completes at the moment i ≤ k − 1, so at the Markov
moment i the system state is n+ j− 1, where j denotes the number of arrivals
up to time i − 1 if the epoch k is not the next arrival moment, and is n + j
otherwise. If the first processing completes exactly at time i = k, then, if only
up to the time k − 1 the number of arrivals does not exceed B − n − 1, the
random event {β ≥ k} occurs with probability one. Otherwise, the probability
of {β ≥ k} equals zero (compare the second summand on the right side of
(3.4)). The last summand on the right side of (3.4) relates to the case in that
the first customer leaves the system after time k.

Let us transform the system (3.3)–(3.4) to the corresponding one written
for generating functions. So, define

β̃n(z)
def
=

∞∑
k=1

zkβn(k),

where |z| < 1. Observe that, since

∞∑
k=2

zk
k−1∑
i=1

aiβ1(k − i) +

∞∑
k=1

zk
∞∑
i=k

ai

=

∞∑
i=1

aiz
i
∞∑

k=i+1

zk−iβ1(k − i) +
z

1− z

∞∑
i=1

(1− zi)ai,

then (3.3) gives

β̃0(z) = A(z)β̃1(z) +
z

1− z
[1−A(z)], (3.5)
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where A(z) is defined in (2.1).
Similarly, since

∞∑
k=2

zk
k−1∑
i=1

bi

B−n−1∑
j=0

pi−1(j)βn+j−1(k − i)

=

B−n−1∑
j=0

∞∑
i=1

zibipi−1(j)

∞∑
k−i=1

zk−iβn+j−1(k − i),

then, introducing the following functional sequences:

αj(z)
def
= (1− a)

∞∑
i=1

pi−1(j)biz
i, αj(z)

def
= a

∞∑
i=1

pi−1(j)biz
i,

Tn(z)
def
=

∞∑
k=1

zk
∞∑
i=k

bi

B−n−1∑
j=0

[
pk(j)(1− δi,k) + δi,kpk−1(j)

]
,

where |z| < 1 and δi,j stands for the Kronecker delta function, we obtain from
(3.4)

β̃n(z) =

B−n−1∑
j=0

[
αj(z)β̃n+j−1(z) + αj(z)β̃n+j(z)

]
+ Tn(z), (3.6)

where 1 ≤ n ≤ B − 1. Observe that, defining,

uj(z)
def
= αj(z) + (1− δj,0)αj−1(z),

we can rewrite (3.6) in the following way:

β̃n(z) =

B−n−1∑
j=0

uj(z)β̃n+j−1(z) + αB−n−1(z)β̃B−1(z) + Tn(z), (3.7)

where 1 ≤ n ≤ B − 1.

4 Compact-form solution

In this section, we obtain the solution of the system (3.5), (3.7) in terms of a
certain functional sequence connected with the given sequence (uk(z)).

Let us take into consideration the following infinite-size system of linear
equations with known coefficients τn and σn and with unknowns x2, x3, ... :

n−2∑
j=−1

τj+1xn−j − xn = σn, n ≥ 2. (4.1)

In [17] one can find the in-depth analysis of such type systems according to
the study of the so-called random walks continuous from the right. It is given
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in [10] that each solution of (4.1) can be stated as

xn = c · κn−1 +

n∑
k=2

κn−kσk, n ≥ 2, (4.2)

where c ∈ R and successive terms of the sequence (κk)∞k=0 (called the potential
in [17]) can be obtained by using two various approaches. The first one is a
recursive way in that we have κ0 = 0, κ1 = (τ0)−1 and for k ≥ 2

κk = κ1

(
κk−1 −

k−1∑
j=0

τj+1κk−1−i
)
.

The alternative approach is based on the formula (see [17])

∞∑
k=0

zkτk =
(
τ̃(z)− 1

)−1
,

where for |z| < 1 we define

τ̃(z)
def
=

∞∑
i=−1

ziτi+1.

Using next the Maclaurin power expansion we find

κk =
1

k!

dk

dzk
(
τ̃(z)− 1

)−1|z=0,

where k ≥ 0. Introducing the following substitution:

ṽn(z)
def
= β̃B−n(z), 1 ≤ n ≤ B, (4.3)

we can rewrite the system of equations (3.5), (3.7) in the following form:

n−2∑
j=−1

uj+1(z)ṽn−j(z)− ṽn(z) = φn(z), (4.4)

where 1 ≤ n ≤ B − 1,

φn(z)
def
= −αn−1(z)ṽ1(z)− TB−n(z), (4.5)

ṽB(z) = A(z)ṽB−1(z) +
z

1− z
[1−A(z)]. (4.6)

Let us note that (4.4) has the same shape as (4.1) with the difference that
unknowns ṽn(z) and coefficients un(z) and φn(z) are now dependent on the
variable z. However, referring to (4.2), we can represent ṽn(z) in the following
way, having in mind that now c and κn will also be functions of z :

ṽn(z) = c(z) · κn−1(z) +

n∑
k=2

κn−k(z)φk(z), n ≥ 2. (4.7)
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Another observation is the fact that the number of equations in (4.4) is finite
in comparing to (4.1). In such a case the equation (4.6) can be used to evaluate
c(z) in the explicit form.

Substituting n = 1 into (4.4) and using (4.5), we obtain

u0(z)ṽ2(z)− ṽ1(z) = −α0(z)ṽ1(z)− TB−1(z).

Hence, due to the fact that (4.7) written for n = 2 has the form

ṽ2(z) = c(z)(u0(z))−1,

we obtain

ṽ1(z) = [1− α0(z)]−1[c(z) + TB−1(z)]. (4.8)

Now, applying (4.7) in (4.6) and referring to (4.5) and (4.8), we get

c(z)κB−1(z) +

B∑
k=2

κB−k(z)
{
−αk−1(z)[1− α0(z)]−1[c(z) + TB−1(z)]

− TB−k(z)
}

= A(z)
{
c(z)κB−2(z) +

B−1∑
k=2

κB−1−k(z)

×
[
−αk−1(z)[1− α0(z)]−1[c(z) + TB−1(z)]− TB−k(z)

]}
+

z

1− z
[1−A(z)].

As a consequence we can eliminate c(z) as follows:

c(z) = D1(z)D2(z), (4.9)

where

D1(z)
def
= [1− α0(z)]−1TB−1(z)

B−1∑
k=2

[κB−k(z)−A(z)κB−1−k(z)]αk−1(z)

+
B−1∑
k=2

[κB−k(z)−A(z)κB−1−k(z)]TB−k(z) +
z

1− z
[1−A(z)]

and

D2(z)
def
=
{
κB−1(z)−A(z)κB−2(z)

− [1− α0(z)]−1
B−1∑
k=2

[κB−k(z)−A(z)κB−1−k(z)]αk−1(z)
}−1

.

Referring now to (4.7) and having in mind (4.5) and (4.9), we obtain

ṽn(z) =D1(z)D2(z)
[
κn−1(z)−

(
1− α0(z)

)−1 n∑
k=2

κn−k(z)αk−1(z)
]

−
n∑
k=2

κn−k(z)
[(

1− α0(z)
)−1

TB−1(z)αk−1(z) + TB−k(z)
]
.

Taking into consideration (4.3) we can formulate the following main theorem:

Math. Model. Anal., 25(2):289–302, 2020.
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Theorem 1. The probability generating function β̃n(z) of the (tail) conditional
distribution of the time β to the first buffer overflow in the Geo/G/1/B-type
queueing model can be represented in the following way:

β̃n(z) =D1(z)D2(z)
[
κB−n−1(z)−

(
1− α0(z)

)−1 B−n∑
k=2

κB−n−k(z)αk−1(z)
]

−
B−n∑
k=2

κB−n−k(z)
[(

1− α0(z)
)−1

TB−1(z)αk−1(z) + TB−k(z)
]
, (4.10)

where |z| < 1, n ∈ {0, ..., B − 2}, and (compare (4.8))

β̃B−1(z) = [1− α0(z)]−1[D1(z)D2(z) + TB−1(z)]. (4.11)

The following corollary is obvious:

Corollary 1. The mean time Enβ to the first buffer overflow conditioned by the
initial buffer state n ∈ {0, ..., B − 1} can be computed as

Enβ =

∞∑
k=1

P{β ≥ k |X0 = n} = β̃n(1).

Let us consider now next buffer overflows. Denote by β(r), r ≥ 2, the
time to the initialization of the rth buffer overflow period, counting from the
completion epoch of the (r − 1)th buffer overflow. Since the number of jobs
present in the system at the completion epoch of each buffer overflow period
equals B − 1, then the following corollary is obvious:

Corollary 1. For r ≥ 2 and |z| < 1 the following representation is true:

∞∑
k=1

zkP{β(r) ≥ k} =

∞∑
k=1

zkP{β ≥ k |X0 = B − 1} = β̃B−1(z).

In consequence, the mean time to the rth buffer overflow (r ≥ 2) equals Eβ(r) =

β̃B−1(1).

5 Numerical examples

In this section, we present numerical results illustrating theoretical formulae
obtained above. The main goal of this section is to investigate and visualize the
impact of key “input” system parameters (like the changing of the arrival rate,
service speed and initial state of the accumulating buffer) on the probabilistic
behaviour of the time to buffer overflow.

To find the values of probabilities βn(k) for fixed n and successive k′s we
can use multiple differentiation of the right side of the formula (4.10) or (4.11).
However, quite often we can meet some problems with symbolic or numerical
differentiation. Thus, in the paper, we apply the algorithm of numerical in-
version of the generating function proposed in [1], which is based on Cauchy
integral formula and trapezoidal rule for numerical integration.
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Namely, if F (z)
def
=
∑∞
k=0 z

kfk, then we approximate the values fk in the
following way:

fk ≈
1

2klrk

[
c0(k, l, r) + (−1)kck(k, l, r) + 2

k−1∑
j=1

(−1)jRe(cj(k, l, r))
]
,

where cj(k, l, r)
def
=
∑l−1
n=0 e

−πin/lF (reπi(n+lj)/lk) and typical values of param-
eters are l = 1 and r = (0.0001)1/k.

Note that the numerical inversion of continuous and discrete transforms
may result in poor accuracy for small values of the argument.

Let us consider a single-machine production system modeled via the
Geo/G/1/B-type queueing system with finite buffer capacity and assume that
B = 6. We study three different cases according to the service time: geomet-
rically distributed service time, deterministic (constant) one and the bounded
discrete distribution of the service time. To compare the impact of the shape of
the processing time distribution on the probabilistic behaviour of the time to
buffer overflow, we take into consideration the appropriate distributions with
the same means.
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a=0.5

a=0.8

2 4 6 8 10
k
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Figure 1. P{β ≥ k |X0 = 3} for
geometrically distributed service times.
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Figure 2. P{β ≥ k |X0 = 3} for
deterministic service times.

Let us begin with investigation of the impact of arrival intensity. Assume
firstly that the service time is geometrically distributed with parameter b = 0.5,
so bk = 1/2k, where k ≥ 1 (mean service time equals 2). In Figure 1 we
visualize the probabilities P{β ≥ k |X0 = 3} for k = 1, . . . , 10, and three
different values of the parameter a of geometric distribution of interarrival
times: a = 0.2, 0.5 and 0.8, corresponding to three different offered loads of
the considered system: % = 0.4, 1.0 and 1.6, respectively. For example, the
probabilities P{β ≥ 5 |X0 = 3} take on the following values: 0.9958, 0.9345
and 0.7363 for % = 0.4, 1.0 and 1.6, respectively. So, for the case of % = 1.6
(overloaded system) in comparison to the case ρ = 1.0 the decrease of the value
of probability is essential (about 21%).

For the case of constant (deterministic) service times equal to 2 the appro-
priate results are presented in Figure 2. The conclusion is similar. The “cyclic”
behaviour of the curves is connected with constant service time equal to 2.

Finally, in Figure 3 we visualize results for the case of the service time with
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the same mean 2, distributed as follows:

b1 = 0.25, b2 = 0.50, b3 = 0.25, bk = 0, k ≥ 4.

a=0.2
a=0.5

a=0.8

2 4 6 8 10
k

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Probability

Figure 3. P{β ≥ k |X0 = 3} for
service times with 3 possible values.

n=3
n=1

n=5

2 4 6 8 10
k

0.80

0.85

0.90

0.95

1.00

Probability

Figure 4. P{β ≥ k |X0 = n} for
n = 1, 3 and 5, and % = 0.4.

Now let us analyze the impact of the initial buffer state on the distribution
of the time to the first buffer overflow. In Figures 4–6 the probabilities P{β ≥
k |X0 = n} for three initial levels of the buffer state, namely n = 1, 3 and 5,
and different values of the offered load % are visualized.

n=3 n=1n=5

2 4 6 8 10
k

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Probability

Figure 5. P{β ≥ k |X0 = n} for
n = 1, 3 and 5, and % = 1.0.

n=1

n=3

n=5

2 4 6 8 10
k

0.2

0.4

0.6

0.8

1.0

Probability

Figure 6. P{β ≥ k |X0 = n} for
n = 1, 3 and 5, and % = 1.6.

The results are obtained for geometric service distribution with parameter
b = 0.5 and three different values of the parameter of geometric distribution
of interarrival times, namely a = 0.2, 0.5 and 0.8 (corresponding to Figure 4,
Figure 5 and Figure 6, respectively). Evidently, as one can observe, the smaller
the number of jobs accumulated in the buffer before the opening of the system,
the greater the probability that the time to the first buffer overflow will exceed
the concrete value k. Let us note that if the buffer is almost saturated (n = 5),
the probability is essentially smaller than in two remaining cases (n = 1 and
3).

Lastly, in Table 1 the results for the mean time to the first buffer overflow are
presented (for the same geometric distributions of interarrival and service times
as in Figures 4–6 ). Obviously, corresponding values decrease as the number
of jobs accumulated in the buffer initially increases, however the difference
between values obtained for different %′s is very large.
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Table 1. Mean times to the first buffer overflows in a function of n and % for geometric
service distribution.

Initial buffer state n % = 0.4 % = 1.0 % = 1.6

1 3766.0198 68.7803 14.9719
3 3709.2296 52.8547 8.9569
5 2828.4886 20.9511 2.3312

6 Conclusions

In the paper a model of a single-server production system with finite buffer
capacity is investigated. Using the approach based on queueing theory, the
probability distribution of the time to the first buffer overflow is studied. By
using the method utilizing the idea of embedded Markov chain and the no-
tion of the potential proposed by Korolyuk, the closed-form representation for
the probability generating function of this distribution is derived. Moreover,
corresponding results for next buffer overflow periods and for their means are
obtained. Numerical analysis of sensitivity of the distribution of the time to
the buffer overflow on key operating system parameters is attached.
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