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Abstract. We investigate the behavior of the real part of the logarithmic derivatives
of the Selberg zeta-functions ZPSL(2,Z)(s) and ZC(s) in the critical strip 0 < σ < 1.
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1 Introduction

Let s = σ+it denote a complex variable. We start with the definition and some
properties of the Riemann zeta-function. For σ > 1, the Riemann zeta-function
is given by the series

ζ(s) =

∞∑
n=1

1

ns
,

and can be analytically continued to the whole complex plane, except for a
simple pole at s = 1 with residue 1. Trivial zeros of ζ(s) are located at the
negative even integers. The remaining, the so-called non-trivial zeros, lie on
the critical strip 0 < σ < 1. The Riemann zeta-function satisfies the functional
equation

ζ(s) = 2sπs−1ζ(1− s)Γ (1− s) sin
πs

2
,

or ξ(s) = ξ(1 − s), where ξ(s) = 1
2s(s − 1)π−s/2Γ (s/2)ζ(s), and Γ (s) denotes

the Euler gamma-function. The function ξ(s) is an entire function whose zeros
are the non-trivial zeros of ζ(s), see [19, §II].
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In the paper [11], it was proved the following relation between functions
ζ(s) and ξ(s).

Theorem 1. The functions ζ(s) and ξ(s) satisfy, for |t| ≥ 8 and σ < 1/2, the
inequality

Re
ζ ′(s)

ζ(s)
< Re

ξ′(s)

ξ(s)
.

Sondow and Dumitrescu proved in [17] the following theorem for the func-
tion ξ(s).

Theorem 2. The function ξ(s) is increasing in modulus along every horizontal
half-line lying in any open right half-plane that contains no its zeros. Similarly,
the modulus decreases on each horizontal half-line in any zero-free, open left
half-plane.

In the same paper, the following reformulation for the Riemann hypothesis
that all non-trivial zeros of ζ(s) lie on the line σ = 1/2 was given.

Theorem 3. The following statements are equivalent:
I. If t is any fixed real number, then |ξ(σ + it)| is increasing for 1/2 < σ <∞.
II. If t is any fixed real number, then |ξ(σ+it)| is decreasing for −∞ < σ < 1/2.
III. The Riemann hypothesis is true.

Later, Theorem 3 was reproved in [11] in a slightly different way.
Related properties of the functions ζ(s) and ξ(s) in the critical strip were

also investigated in [15].
In this paper, we ask whether Selberg zeta-functions have similar properties

as the Riemann-zeta function has in Theorems 1 - 3. Note that, for Selberg
zeta-functions, the analogue of the Riemann hypothesis is usually valid. We
consider Selberg zeta-functions for cocompact and modular subgroups.

Let H be the upper half-plane, and Γ be a subgroup of PSL(2,R). Let Γ\H
be a hyperbolic Riemann surface of finite area. The Selberg zeta-function Z(s)
is defined [5], for σ > 1, by

Z(s) =
∏
{P}

∞∏
k=0

(1−N(P )−s−k),

where {P} runs trough all primitive hyperbolic conjugacy classes of Γ , and
N(P ) = α2 if the eigenvalues of P are α and α−1, |α| > 1. The Selberg
zeta-function has a meromorphic continuation to the whole complex plane [5].

If Γ\H is a compact Riemann surface of genus g ≥ 2, we use the nota-
tion Z(s) = ZC(s). If Γ = PSL(2,Z), then we denote Z(s) = ZPSL(2,Z)(s).
Similarly, as the Riemann zeta-function, the Selberg zeta-function ZPSL(2,Z)(s)
has a meromorfic continuation to the whole complex plane, and satisfies the
symmetric functional equation [8]

Ξ(s) = Ξ(1− s),
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where

Ξ(s) = ZPSL(2,Z)(s)Zid(s)Zell(s)Zpar(s),

and

Zid(s) =

(
(2π)s

Γ (s)

)1/6

(Γ2(s))
1/3

, Zpar(s) =
πs

Γ (s)ζ(2s)Γ (s+ 1/2)2s
,

Zell(s) = Γ
(s

2

)−1/2
Γ

(
s+ 1

2

)1/2

Γ
(s

3

)−2/3
Γ

(
s+ 2

3

)2/3

. (1.1)

The function Γ2(s) is called the double Barnes gamma-function, and is defined
by the canonic product

1

Γ2(s+ 1)
= (2π)

s
2 exp

{
−s

2
− (γ0 + 1)s2

2

} ∞∏
k=1

{(
1+

s

k

)k
exp

(
−s+

s2

2k

)}
,

where γ0 denotes the Euler constant. The function Γ2(s) satisfies the relations

Γ2(1) = 1, Γ2(s+ 1) =
Γ2(s)

Γ (s)
, Γ2(n+ 1) =

12 · 22 · · ·n2

(n!)n
,

see, for example [1], [16] or [20].
The function Ξ(s) is an entire function of order 2, and has zeros at the points

s = 1/2 + irn, n ≥ 0, where rn =
√
λn − 1

4 , and 0 = λ0 < λ1 ≤ λ2 ≤ λ3 ≤ · · ·
are the eigenvalues of the Laplace operator [3], [7]. The function ZPSL(2,Z)(s)
has poles and zeros at the following points [6]:

Poles of ZPSL(2,Z)(s):
(1) s = 0; order 1,

(2) s = 1/2− k, k ≥ 0; order 1.

Zeros of ZPSL(2,Z)(s):
(1) s = 1; order 1,
(2) s = −6k − j, k ≥ 0, j = 1, 2, 3, 4, 6; order 2k + 1,
(3) s = −6k − 5, k ≥ 0; order 2k + 3,
(4) s = ρ/2, where ρ are non-trivial zeros of ζ(s)),
(5) s = 1/2± irn, n ≥ 0.

We prove the following theorem.

Theorem 4. There exists a positive number C such that, for t > C and 0 <
σ < 1/2,

Re
Ξ ′(s)

Ξ(s)
< 0.

Furthermore, if we assume the Riemann hypothesis for ζ(s), then there exists
a positive number C1 such that

Re
Z ′PSL(2,Z)(s)

ZPSL(2,Z)(s)
< Re

Ξ ′(s)

Ξ(s)
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for t > C1 and 0 < σ < 1/4. Conversely, if

Re
Z ′PSL(2,Z)(s)

ZPSL(2,Z)(s)
< 0

for t > C1 and 0 < σ < 1/4, then the function ζ(s), for t > C1, has zeros only
for σ = 1/2.

Theorem 4 is proved in the next section. Below, we formulate a couple of
corollaries of Theorem 4. We also want to mention that a part of assertions of
Theorem 4 can be obtained following the proof of Theorem 6.1 in [12].

Corollary 1. For a fixed sufficiently large t, the function |Ξ(σ+it)| is decreasing
for 0 < σ < 1/2, and is increasing for 1/2 < σ < 1 with respect to σ.

Corollary 2. If the Riemann hypotesis is true for ζ(s), then, for a sufficiently
large fixed t, the function |ZPSL(2,Z)(σ+ it)| is decreasing for 0 < σ < 1/4 with
respect to σ.

Proofs of Corollaries 1 and 2 follow from Lemma 1, functional equation
Ξ(s) = Ξ(1− s) and equality Ξ(s) = Ξ(s).

We return to Selberg zeta-functions attached to compact Riemann surfaces.
The function ZC(s) is an entire function of order 2 [4, §2.4, Theorem 2.4.25]
and satisfies the functional equation [4, §2.4, Theorem 2.4.12]

ZC(s) = f(s)ZC(1− s),

where

f(s) = exp
(

4π(g − 1)

∫ s−1/2

0

v tan(πv) dv
)
,

and g ≥ 2 is the genus of a Riemann surface. The above functional equation is
equivalent to M(s) = M(1− s), where

M(s) = ZC(s) exp
(

2π(g − 1)

∫ 1/2−s

0

v tanπv dv
)
.

The Selberg zeta-function ZC(s) has trivial zeros at s = 1, 0,−1,−2, . . . ,
non-trivial zeros on the critical line σ = 1/2 and also, possibly, on the interval
(0, 1) of the real axis, see [4, §2.4, Theorem 2.4.11] and [13]. In this sense, the
analogue of the Riemann hypothesis holds for ZC(s). Moreover, the following
statement is true.

Theorem 5. There exists a positive number B such that the functions ZC(s)
and M(s), for t > B, 0 < σ < 1/2, satisfy the inequality

Re
Z ′C(s)

ZC(s)
< Re

M ′(s)

M(s)
< 0.

Math. Model. Anal., 20(6):852–865, 2015.
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Note that a part of Theorem 5 is proved in [9], namely,

Re
Z ′C(s)

ZC(s)
< 0

for −c ≤ σ ≤ 1/2 and t ≥ t0 > 0, where c > 0 is an arbitrary constant, and t0
is a constant depending on c.

A couple of corollaries follow from Theorem 5 for functions ZC(s) and M(s).

Corollary 3. For a fixed and sufficiently large t, the function |M(σ + it)| is
decreasing for 0 < σ < 1/2, and is increasing for 1/2 < σ < 1.

Corollary 4. For a fixed and sufficiently large t, the function |ZC(σ + it)| is
decreasing for 0 < σ < 1/2.

Proofs of Corollaries 3 and 4 are the same as proofs of Corollaries 1 and 2,
and Theorem 5 is proved in Section 3.

2 Proof of the Theorem 4

Before the proof of Theorem 4, we state one lemma.

Lemma 1. (a) Let f be a holomorphic function in an open domain D and

not identically zero. Let us also suppose Re f
′(s)
f(s) < 0 for all s ∈ D such that

f(s) 6= 0. Then |f(s)| is strictly decreasing with respect to σ in D, i.e., for each
s0 ∈ D, there exists δ > 0 such that |f(s)| is strictly monotonically decreasing
with respect to σ on the horizontal interval from s0 − δ to s0 + δ.

(b) Conversely, if |f(s)| is decreasing with respect to σ in D, then Re f
′(s)
f(s) ≤ 0

for all s ∈ D such that f(s) 6= 0.

The proof of the lemma is given in [11].

Remark 1. Of course, the analogous results hold for monotonically increasing

|f(s)| and Re f
′(s)
f(s) > 0.

Now we prove Theorem 4.
Proof of Theorem 4. First we prove that

Re
Z ′PSL(2,Z)(s)

ZPSL(2,Z)(s)
< Re

Ξ ′(s)

Ξ(s)
, t > C1 > 0, 0 < σ < 1/4.

From the equality Ξ(s) = ZPSL(2,Z)(s)Zid(s)Zell(s)Zpar(s), we find that

Ξ ′(s)

Ξ(s)
=
Z ′PSL(2,Z)(s)

ZPSL(2,Z)(s)
+
Z ′id(s)

Zid(s)
+
Z ′ell(s)

Zell(s)
+
Z ′par(s)

Zpar(s)

=:
Z ′PSL(2,Z)(s)

ZPSL(2,Z)(s)
+ U(s).
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Hence, to complete the proof it is sufficient to show that

ReU(s) > 0, t > C1 > 0, 0 < σ < 1/4.

By (1.1), we obtain

U(s) =a0 +
1

4

(
Ψ

(
s

2
+

1

2

)
− Ψ

(s
2

))
+

2

9

(
Ψ

(
s

3
+

2

3

)
− Ψ

(s
3

))
+

1

3
Ψ2(s)− 7

6
Ψ(s)− Ψ

(
s+

1

2

)
− 2

ζ ′

ζ
(2s), (2.1)

where a0 = 1
6 log 2π + log π

2 = 0.757 . . ., Ψ(s) = Γ ′(s)/Γ (s) and Ψ2(s) =
Γ ′2(s)/Γ2(s).

To prove the inequality ReU(s) > 0, we need to investigate the behavior
of the functions Ψ(s), Ψ2(s) and ζ ′(2s)/ζ(2s) in the region 0 < σ < 1/4 and
t > C1 > 0. For the function Ψ(s), the estimate [10]

Ψ(s) = log s− 1

2s
+O

(
1

|s|2

)
, |s| → ∞, | arg s| ≤ π − δ < π,

holds. From this, we deduce that

ReΨ(s) = log t+O

(
1

t

)
, t→∞, | arg s| < π. (2.2)

It is known [21] that, for −s /∈ N

Γ ′2(s+ 1)

Γ2(s+ 1)
= Ψ2(s+ 1) =

1− log 2π

2
+ (γ0 + 1)s−

∞∑
k=1

(
k

k + s
− 1 +

s

k

)
= −1 + log 2π

2
+ s− sΨ(s).

This and (2.2) show that

ReΨ2(s) = −3 + log 2π

2
+ σ + (1− σ)ReΨ(s− 1) + tImΨ(s− 1)

= −3 + log 2π

2
+ σ + (1− σ) log t+ t

(
π − arctan

(
t

σ − 1

))
+O

(
1

t

)
= −3 + log 2π

2
+ σ + (1− σ) log t+ t arctan

(
t

σ

)
+O

(
1

t

)
(2.3)

for 0 < σ < 1/4 and t > C1 > 0.
From the formula [2]

ξ(s) = ξ(0)
∏
ρ

(
1− s

ρ

)
,

we obtain that
ξ′

ξ
(s) =

∑
ρ

1

s− ρ
,

Math. Model. Anal., 20(6):852–865, 2015.
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where the summation runs over all non-trivial zeros of the Riemann zeta-
function taken in conjugate pairs and in order of increasing imaginary parts.
If ρ = β + iγ, then

Re
ξ′

ξ
(s) =

∑
β+iγ

σ − β
(σ − β)2 + (t− γ)2

.

If we assume the Riemann hypothesis, i.e., β = 1/2, then Reξ(s)′/ξ(s) > 0 for
σ > 1/2, and Reξ(s)′/ξ(s) < 0 for σ < 1/2.

On the other hand, from the equation

ξ(s) = (s− 1)π−s/2Γ (s/2 + 1) ζ(s)

we get

ξ′

ξ
(s) =

ζ ′

ζ
(s) +

1

2
Ψ
(s

2
+ 1
)
− 1

2
log π +

1

s− 1
.

This yields that, for σ > 1/2,

Re
ζ ′(s)

ζ(s)
>

1

2
log t− 1

2
log 2π +O

(
1

t

)
, (2.4)

and, for σ < 1/2,

−Re
ζ ′(s)

ζ(s)
>

1

2
log t− 1

2
log 2π +O

(
1

t

)
. (2.5)

In view of (2.1), (2.2), (2.3) and (2.5), we find that for t→∞,

ReU(s) = a0 −
13

6
log t+

1

3
ReΨ2(s)− 2Re

ζ ′

ζ
(2s) +O

(
1

t

)
= log

π

2
+
σ

3
− 1

2
− 2σ + 11

6
log t+

t

3
arctan

(
t

σ

)
− 2Re

ζ ′

ζ
(2s) +O

(
1

t

)
>
t

3
arctan

(
t

σ

)
− 5 + 2σ

6
log t+ c(σ) +O

(
1

t

)
, (2.6)

where a0 = 1
6 log 2π + log π

2 and c(σ) = log 1
2 + σ

3 −
1
2 . This shows that

there exists a constant C1 > 0 such that ReU(s) is positive for t > C1 and
0 < σ < 1/4. Hence, for t > C and 0 < σ < 1/4,

Re
Z ′PSL(2,Z)(s)

ZPSL(2,Z)(s)
< Re

Ξ ′(s)

Ξ(s)
.

We note that the restriction of σ < 1/4 is due to the zeros of the function ζ(2s).
Now we prove that

Re
Ξ ′(s)

Ξ(s)
< 0
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for t > C1 and 0 < σ < 1/2. The function Ξ(s) is an entire function of order
two. It has a canonical product expansion [14], [18]

Ξ(s) = eas
2+bs+csn

∏
ρ̂

(
1− s

ρ̂

)
es/ρ̂+(1/2)(s/ρ̂)2 , (2.7)

where ρ̂ runs over the nonzero roots of Ξ(s), and a, b, c, and n are constants.
This implies

Ξ ′(s)

Ξ(s)
= 2as+ b+

n

s
+
∑
ρ̂

s2

ρ̂2(s− ρ̂)

= 2as+ b+
n

s
+
∑
ρ̂

(
s

ρ̂2
+

1

ρ̂
+

1

s− ρ̂

)
.

If ρ̂ = 1/2+ irn, n ≥ 0, then the latter sum splits into two parts: for those ρ̂ for
which the numbers 1/2 + irn are real, and for those ρ̂ for which the numbers
1/2+irn are complex. There are only a finite number of real numbers 1/2+irn.
Then

Re

(
Ξ ′(s)

Ξ(s)

)
= 2aσ + b+

nσ

σ2 + t2
+
∑
n>n0

σ(1/4− r2n) + trn
(1/4− r2n)2 + r2n

+
∑
n>n0

1/2

1/4 + r2n
+
∑
n>n0

σ − 1/2

(σ − 1/2)2 + (t− rn)2

+
∑

0≤n≤n0

(
σ

(1/2 + irn)2
+

1

1/2 + irn
+

σ − 1/2− irn
σ − 1/2− irn + t2

)
. (2.8)

We see that the sum∑
n>n0

σ(1/4− r2n) + trn
(1/4− r2n)2 + r2n

=
σ(1/4− r2n0+1) + trn0+1

(1/4− r2n0+1)2 + r2n0+1

+
∑

n>n0+1

σ(1/4− r2n) + trn
(1/4− r2n)2 + r2n

is positive and unbounded as t → ∞. Then, from equation (2.8), it follows
that there exists a number C > 0 such that

Re
Ξ ′(s)

Ξ(s)
> 0

for t > C and 1/2 < σ < 1. By a note after Lemma 1, for fixed t > C, the
function |Ξ(σ+it)| is monotonically increasing as a function of σ, 0 < σ < 1/2.
In view of the functional equation Ξ(s) = Ξ(1 − s) and Ξ(s) = Ξ(s), the
function |Ξ(σ + it)| is monotonically decreasing for t > C as a function of σ,
1/2 < σ < 1. So, the real part of its logarithmic derivative is negative, and the
second assertion of the theorem holds.

The statement that if

Re
Z ′PSL(2,Z)(s)

ZPSL(2,Z)(s)
< 0

Math. Model. Anal., 20(6):852–865, 2015.
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for t > C1 and 0 < σ < 1/4, then the Riemann hypothesis is true, follows
straightforward from Lemma 1 and the fact that the function ZPSL(2,Z)(s) has
zeros s = ρ/2, where ρ are non-trivial zeros of ζ(s).

Recall that

U(s) =a0 +
1

4

(
Ψ

(
s

2
+

1

2

)
− Ψ

(s
2

))
+

2

9

(
Ψ

(
s

3
+

2

3

)
− Ψ

(s
3

))
+

1

3
Ψ2(s)− 7

6
Ψ(s)− Ψ

(
s+

1

2

)
− 2

ζ ′

ζ
(2s),

where a0 = 1
6 log 2π + log π

2 = 0.757 . . . .

Corollary 5. If 0 < σ < 1/4, then

−Re
Z ′PSL(2,Z)(s)

ZPSL(2,Z)(s)
> Re(U(s))

>
t

3
arctan

(
t

σ

)
− 5 + 2σ

6
log t+ c(σ) +O

(
1

t

)
holds. If 1/2 < σ < 1, then

−Re
Z ′PSL(2,Z)(s)

ZPSL(2,Z)(s)
< Re(U(s))

<
t

3
arctan

(
t

σ

)
− 5 + 2σ

6
log t+ c(σ) +O

(
1

t

)
holds, where c(σ) = log 1

2 + σ
3 −

1
2 and t→∞.

Proof. The first part of the corollary follows from the fact Re (Ξ ′/Ξ(s)) <
0, 0 < σ < 1/2, and inequality (2.6). The second part is obtained analogically.
ut

3 Proof of Theorem 5

Proof of Theorem 5. Recall that the Selberg zeta-function attached to compact
Riemann surfaces satisfies the functional equation M(s) = M(1− s), where

M(s) = ZC(s) exp
(

2π(g − 1)

∫ 1/2−s

0

v tanπv dv
)
.

The function M(s) is an entire function of order two, and it has the same form
of canonical product expansion (2.7) as the function Ξ(s). So, for t > t0 > 0,
the function |M(s)| is monotonically decreasing with respect to 0 < σ < 1/2.

Let

l(s) = exp
(∫ 1/2−s

0

v tanπv dv
)
.
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To complete the proof, we need to show that

Re

(
l′(s)

l(s)

)
> 0

for 0 < σ < 1/2, and t > t̂0. By elementary calculation, we obtain

Re

(
l′(s)

l(s)

)
= Re

{(
s− 1

2

)
tanπ

(
1

2
− s
)}

=
t(1− e−4πt)

e−4πt − 2e−2πt cos 2πσ + 1
+

(
σ − 1

2

)
2e−2πt sin 2πσ

e−4πt − 2e−2πt cos 2πσ + 1

= t(1 + o(1)),

as t→∞. Taking B = max(t0, t̂0) completes the proof.
In the same way the following corollary follows.

Corollary 6. If 0 < σ < 1/2, then

−Re
Z ′C(s)

ZC(s)
> 2π(g − 1) · t ·

(
1 +O

(
e−2πt

))
, t→∞,

holds. If 1/2 < σ < 1, then

−Re
Z ′C(s)

ZC(s)
< 2π(g − 1) · t ·

(
1 +O

(
e−2πt

))
, t→∞,

holds.

Proof. Proof is the same as that for Corollary 5. ut

4 Some remarks on the Riemann zeta-function

In this section, we present some remarks on the Riemann zeta-function ζ(s),
which could have been obtained proving Theorems 4 and 5.

Let, as above, ρ = β + iγ be non-trivial zeros of ζ(s). Recall that

ξ′

ξ
(s) =

∑
ρ

1

s− ρ
,

where the summation is over all non-trivial zeros of the Riemann zeta-function
taken in conjugate pairs in order of increasing imaginary parts. Also,

ξ′

ξ
(s) =

ζ ′

ζ
(s) +

1

2
Ψ
(s

2
+ 1
)
− 1

2
log π +

1

s− 1
.

Comparing the latter equalities with

ζ ′

ζ
(s) = b− 1

s− 1
− 1

2
Ψ
(s

2
+ 1
)

+
∑
ρ

(
1

s− ρ
+

1

ρ

)
,
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where b = log 2π − 1− γ0/2, we have [19] that∑
ρ

1

ρ
= 1 +

γ0
2
− 1

2
log 4π.

The inequalities (2.4) and (2.5) give the bounds for the real part of the loga-
rithmic derivative of the Riemann zeta-function in the half-planes σ < 1/2 and
σ > 1/2, respectively. Assuming the Riemann hypothesis, allows to construct
more precise bounds. For this we need some lemmas.

Lemma 2. Let N(T ) be the number of zeros of ζ(s) in the rectangle 0 < σ < 1,
0 < t < T . Then, as T →∞,

N(T ) =
T

2π
log

T

2π
− T

2π
+R(T ),

where R(T ) = O(log T ). If the Riemann hypothesis is true, then R(T ) =

O
(

log T
log log T

)
.

The proof of the lemma can be found, for example, in [19].

Lemma 3. For t > 1, the inequality

arctan t <
π

2
− 1

2t

holds.

Proof. We have that

π

2
=

∫ ∞
0

dx

1 + x2
=

∫ t

0

dx

1 + x2
+

∫ ∞
t

dx

1 + x2
> arctan t+

∫ ∞
t

dx

x2 + x2

= arctan t+
1

2t
.

ut

Lemma 4. Let ρ1 = 1/2 + iγ1, γ1 = 14.134725 . . . , be the first non-trivial zero
of ζ(s). Then

∑
γ>0

1

1/4 + (γ − t)2
>

1

2
log

t

γ1
+O

(
1

t

)

and ∑
γ>0

1

1/4 + (γ + t)2
>

1

8πt
log

t

2π
+O

(
1

t

)
as t→∞.
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Proof. By Lemma 2, summing by parts, we get∑
γ>0

1

1/4 + (γ − t)2

=

∫ ∞
γ1

1

1/4 + (u− t)2
d
( u

2π
log

u

2π
− u

2π
+R(u)

)
+O

(
1

t2

)
=

1

2π

∫ ∞
γ1

log(u/2π) du

1/4 + (u− t)2
+O

(∫ ∞
γ1

log u d

(
1

1/4 + (u− t)2

))
+O

(
1

t2

)
=

1

2π

∫ t

γ1

log(u/2π) du

1/4 + (u− t)2
+

1

2π

∫ ∞
t

log(u/2π) du

1/4 + (u− t)2
+O

(
1

t

)
>

1

2π
log

γ1
2π

∫ t

γ1

du

1/4 + (u− t)2
+

1

2π
log

t

2π

∫ ∞
t

du

1/4 + (u− t)2
+O

(
1

t

)
=

arctan(2(t− γ1))

π
log

γ1
2π

+
1

2
log

t

2π
+O

(
1

t

)
>

1

2
log

t

γ1
+O

(
1

t

)
, t→∞,

where the last inequality was obtained using that −π/2 ≤ arctan v ≤ π/2. This
proves the first part of the lemma.

Similar arguments and Lemma 3 show that∑
γ>0

1

1/4 + (γ + t)2
=

1

2π

∫ t

γ1

log(u/2π)du

1/4 + (u+ t)2
+

1

2π

∫ ∞
t

log(u/2π)du

1/4 + (u+ t)2
+O

(
1

t

)
>

1

2π
log

γ1
2π

(2 arctan 4t− 2 arctan(2(t− γ1))) +
1

2π
(π − 2 arctan 4t) log

t

2π

+O

(
1

t

)
>

1

8πt
log

t

2π
+O

(
1

t

)
, t→∞.

ut

It is well known that

Re
ζ ′

ζ
(s) =

∑
ρ

σ − β
(σ − β)2 + (t− γ)2

− σ − 1

(σ − 1)2 + t2

− 1

2
Re
(
Ψ
(s

2
+ 1
))

+
1

2
log π.

Assume the Riemann hypothesis. Then, in view of Lemma 4, we obtain∑
γ

1

(σ − 1/2)2 + (t− γ)2
>
∑
γ

1

1/4 + (t− γ)2

=
∑
γ>0

1

1/4 + (t− γ)2
+
∑
γ>0

1

1/4 + (t+ γ)2

>
1

2
log

t

γ1
+

1

8πt
log

t

2π
+O

(
1

t

)
, t→∞.
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Using this and (2.2), we find that

−Re
ζ ′

ζ
(s) > −1

2

(
σ − 3

2

)
log t− σ − 1/2

8πt
log

t

2π

− 1

2
log 2π +

σ − 1/2

2
log γ1 +O

(
1

t

)
,

for 0 < σ < 1/2, and

−Re
ζ ′

ζ
(s) < −1

2

(
σ − 3

2

)
log t− σ − 1/2

8πt
log

t

2π

− 1

2
log 2π +

σ − 1/2

2
log γ1 +O

(
1

t

)
for 1/2 < σ < 1 as t→∞.
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