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Abstract. In this paper, we introduce a new resolvent operator and we call it
relaxed η-proximal operator. We demonstrate some of the properties of relaxed η-
proximal operator. By applying this concept, we consider and study a variational -like
inclusion problem with a nonconvex functional. Based on relaxed η-proximal opera-
tor, we define an iterative algorithm to approximate the solutions of a variational-like
inclusion problem and the convergence of the iterative sequences generated by the al-
gorithm is also discussed. Our results can be treated as refinement of many previously
known results. An example is constructed in support of Theorem 1.

Keywords: algorithm, nonconvex, proximal, relaxed, solution.

AMS Subject Classification: 47A10; 47J22.

1 Introduction

Variational inequality theory was introduced by Hartmann and Stampacchia
[19] in 1966 as a tool for the study of partial differential equations with applica-
tions principally drawn from mechanics. Variational inclusions involving two or
more variables are of great importance and natural extensions of various types
of variational inequalities existing in the literature. Variational inclusions have
wide range of applications in industry, mathematical finance, economics and in
several branches of applied sciences, see [5,7,8,9,10,14,15,16,17,18,20,25,26,27,
29] and references therein. It is carefully observed that the projection method
and its variant forms can not be applied for solving variational inclusions. This
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fact gives rise to use the techniques based on proximal operators. For recent
development of the subject, we refer to [2, 4, 11,22,23].

By the use of proximal operators, one may develop powerful and efficient
iterative algorithms for solving several classes of variational inclusions (variatio-
nal-like inclusions and other related problems). In fact, optimization algorithms
are called proximal algorithms and are generally applicable but well-suited to
problems of substantial recent interest involving large or higher dimensional
datasets.

In this paper, a different interpretation of proximal operator i.e., a relaxed η-
proximal operator is introduced and we prove some of its characteristics. Based
on relaxed η-proximal operator, we define an iterative algorithm for solving a
variational-like inclusion problem. In support of Theorem 1, we construct an
example.

2 Preliminaries

Let H be a real Hilbert space endowed with a norm ‖ · ‖ and an inner product
〈·, ·〉. Let CB(H) be the family of all nonempty bounded closed subsets of H.

Let D̃(·, ·) be the Hausdörff metric on CB(H) defined by

D̃(A,B) = max

{
sup
x∈A

d(x,B), sup
y∈B

d(A, y)

}
, ∀A,B ∈ CB(H),

where d(x,B) = inf
y∈B

d(x, y) and d(A, y) = inf
x∈A

d(x, y).

Let us recall the required definitions.

Definition 1. Let T : H −→ CB(H) be a set-valued mapping, g,R : H −→ H
and η : H ×H −→ H be single-valued mappings. Then

(i) T is said to be D̃-Lipschitz continuous if, there exist a constant δT > 0
such that

D̃(T (x), T (y)) ≤ δT ‖x− y‖, ∀x, y ∈ H.

(ii) R is said to be η-relaxed Lipschitz continuous if, there exists a constant
α > 0 such that

〈R(x)−R(y), η(x, y)〉 ≤ −α‖x− y‖2, ∀x, y ∈ H.

(iii) η is said to be Lipschitz continuous if, there exists a constant τ > 0 such
that

‖η(x, y)‖ ≤ τ‖x− y‖, ∀x, y ∈ H.

(iv) η is said to be strongly monotone if, there exists a constant δ > 0 such
that

〈η(x, y), x− y〉 ≥ δ‖x− y‖2, ∀x, y ∈ H.

(v) g is said to be strongly monotone if, there exists a constant ξ > 0 such
that

〈g(x)− g(y), x− y〉 ≥ ξ‖x− y‖2, ∀x, y ∈ H.
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(vi) g is said to be Lipschitz continuous if, there exist a constant λg > 0 such
that

‖g(x)− g(y)‖ ≤ λg‖x− y‖, ∀x, y ∈ H.

(vii) R is said to be strongly monotone with respect to g if, there exists a
constant δR > 0 such that

〈R(g(x))−R(g(y)), g(x)− g(y)〉 ≥ δR‖x− y‖2, ∀x, y ∈ H.

Definition 2. [33] A functional f : H ×H −→ R is said to be 0-diagonally
quasi-concave (in short, 0-DQCV) in x if, for any finite set {x1, · · · , xn} ⊂ H

and for any y =
n∑
i=1

λixi with λi ≥ 0 and
n∑
i=1

λi = 1,

min
1≤i≤n

f(xi, y) ≤ 0.

Definition 3. Let η : H × H −→ H be a mapping and φ : H −→ R ∪ {∞}
be a proper functional. A vector f∗ ∈ H is called an η-subgradient of φ at
x ∈ domφ if,

〈f∗, η(y, x)〉 ≤ φ(y)− φ(x), ∀y ∈ H.

Each φ can be associated with the following map ∂ηφ, called η-subdifferential
of φ at x, defined by

∂ηφ(x) =

{
f∗ ∈ H : 〈f∗, η(y, x)〉 ≤ φ(y)− φ(x), ∀y ∈ H, x ∈ domφ
∅, x /∈ domφ.

Lemma 1. [12] Let D be a nonempty convex subset of a topological vector
space and f : D ×D −→ (−∞,∞) be such that

(i) for each x ∈ D, y 7→ f(x, y) is lower semicontinuous on each compact
subset of D;

(ii) for each finite set {x1, · · · , xn} ⊂ D and for each y =
n∑
i=1

λixi with λi ≥ 0

and
n∑
i=1

λi = 1, min
1≤i≤n

f(xi, y) ≤ 0;

(iii) there exists a nonempty compact convex subset D0 of D and a nonempty
compact subset K of D such that for each y ∈ D \ K, there is an x ∈
Co (D0 ∪ {y}) satisfying f(x, y) > 0.

Then, there exists ŷ ∈ D such that f(x, ŷ) ≤ 0, for all x ∈ D.

Definition 4. Let φ : H −→ R∪ {+∞} be a proper, η-subdifferentiable (may
not be convex) functional, η : H × H −→ H, R : H −→ H be the mappings
and I : H −→ H be an identity mapping. If for any given z ∈ H and ρ > 0,
there exists a unique point x ∈ H satisfying

〈(I −R)x− z, η(y, x)〉+ ρφ(y)− ρφ(x) ≥ 0, ∀y ∈ H,

Math. Model. Anal., 20(6):819–835, 2015.



822 M. Rahaman, R. Ahmad, M. Dilshad and I. Ahmad

then the mapping z 7→ x, denoted by R
∂ηφ
ρ,I (z) is said to be relaxed η-proximal

operator of φ. We have z − (I −R)x ∈ ρ∂ηφ(x), it follows that

R
∂ηφ
ρ,I (z) = [(I −R) + ρ∂ηφ]

−1
(z). (2.1)

�
A comparison of relaxed η-proximal operator of φ (2.1) with some existing

resolvent operators is as follows:

(i) If the mapping R = 0, then the relaxed η-proximal operator (2.1) reduces
to the following resolvent operator introduced and studied by Ahmad et
al. [1]

R∂nφρ,I (z) = [I + ρ∂nφ]−1(z). (2.2)

(ii) If H = X, a Banach space with its dual X∗ and (I − R) = J, where
J : X → X∗ is a mapping, then relaxed η-proximal operator (2.1) reduces
to the following resolvent operator introduced and studied by Siddiqi et
al. [31]

R∂nφρ (z) = [J + ρ∂nφ]−1(z). (2.3)

(iii) If the mapping R = 0, ∂nφ = ∂φ, where ∂φ is the subdifferential operator
of φ, then the relaxed η-proximal operator (2.1) becomes

R∂φρ,I(z) = [I + ρ∂φ]−1(z). (2.4)

The details of resolvent operator (2.4) can be found in [6].

(iv) If the mapping R = 0, ∂nφ = G, where G : H → 2H is a maximal
monotone set-valued mapping. Then, the relaxed η-proximal operator
(2.1) becomes the following classical resolvent operator

RGρ,I(z) = [I + ρG]−1(z). (2.5)

From the above discussion it follows that the relaxed η-proximal resolvent op-
erator (2.1) includes many resolvent operators studied in recent past.

Now, we give some adequate conditions which guarantee the existence and

Lipschitz continuity of the relaxed η-proximal operator R
∂ηφ
ρ,I .

Theorem 1. Let H be a real Hilbert space and η : H ×H −→ H be a strongly
monotone with constant δ and Lipschitz continuous with constant τ such that
η(x, y) = −η(y, x), for all x, y ∈ H. Let R : H −→ H be η-relaxed Lipschitz
continuous mapping with constant α and I : H −→ H be an identity mapping.
Let φ : H −→ R ∪ {+∞} be a lower semicontinuous, η-subdifferential, proper
functional which may not be convex and for any z, x ∈ H, the mapping h(y, x) =
〈z − (I − R)x, η(y, x)〉 is 0-DQCV in y. Then for any ρ > 0 and any z ∈ H,
there exists a unique x ∈ H such that

〈(I −R)x− z, η(y, x)〉+ ρφ(y)− ρφ(x) ≥ 0, ∀y ∈ H, (2.6)

i.e., x = R
∂ηφ
ρ,I (z) and hence the relaxed η-proximal operator of φ is well-defined.
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Proof. For any given ρ > 0 and z ∈ H, define a functional f : H × H −→
R ∪ {+∞} by

f(y, x) = 〈z − (I −R)x, η(y, x)〉+ ρφ(x)− ρφ(y), ∀x, y ∈ H.

Using the continuity of the mappings I,R, η and lower semicontinuity of φ, we
have for each y ∈ H, x 7→ f(y, x) is lower semicontinuous on H.

We claim that f(y, x) satisfies the condition (ii) of Lemma 1. If it is false,

then there exists a finite set {y1, · · · , yn} ⊂ H and x0 =
n∑
i=1

tiyi with ti ≥ 0

and
n∑
i=1

ti = 1, we have

〈z − (I −R)x0, η(yi, x0)〉+ ρφ(x0)− ρφ(yi) > 0, ∀i = 1, 2, · · · , n.

Since φ is η-subdifferentiable at x0, there exists a point f∗x0
∈ H such that

φ(yi)− φ(x0) ≥ 〈f∗x0
, η(yi, x0)〉, ∀i = 1, 2, · · · , n.

It follows that

〈z−(I−R)x0, η(yi, x0)〉 > ρφ(yi)−ρφ(x0) ≥ ρ〈f∗x0
, η(yi, x0)〉, ∀i = 1, 2, · · · , n.

Thus, we have

〈z − (I −R)x0 − ρf∗x0
, η(yi, x0)〉 > 0, ∀i = 1, 2, · · · , n. (2.7)

On the other hand, by assumption h(y, x) = 〈z− (I −R)x, η(y, x)〉 is 0-DQCV
in y, we have

min
1≤i≤n

〈z − (I −R)x0 − ρf∗x0
, η(yi, x0)〉 ≤ 0,

which contradicts the inequality (2.7). Hence f(y, x) satisfies condition (ii) of
Lemma 1. We take a point ȳ ∈ domφ and as φ is η-subdifferentiable at ȳ, there
exists a point f∗ȳ ∈ H such that

φ(x)− φ(ȳ) ≥ 〈f∗ȳ , η(x, ȳ)〉, ∀x ∈ H.

Since η is strongly monotone with constant δ, Lipschitz continuous with con-
stant τ and R is η-relaxed Lipschitz continuous with constant α, we have

f(ȳ, x) = 〈z − (I −R)x, η(ȳ, x)〉+ ρφ(x)− ρφ(ȳ)

≥ 〈ȳ −R(ȳ)− x+R(x), η(ȳ, x)〉+ 〈z − ȳ +R(ȳ), η(ȳ, x)〉+ ρ〈f∗ȳ , η(x, ȳ)〉
= 〈ȳ − x, η(ȳ, x)〉 − 〈R(ȳ)−R(x), η(ȳ, x)〉+ 〈z, η(ȳ, x)〉

+ 〈R(ȳ)− ȳ, η(ȳ, x)〉+ 〈f∗ȳ , η(x, ȳ)〉
≥ δ‖ȳ−x‖2+α‖ȳ−x‖2−τ‖z‖‖ȳ−x‖−τ (‖R(ȳ)‖+‖ȳ‖) ‖ȳ−x‖−ρτ‖f∗ȳ ‖‖ȳ−x‖
= ‖ȳ − x‖

[
(α+ δ)‖ȳ − x‖ − τ

{
‖z‖+ ‖R(ȳ)‖+ ‖ȳ‖+ ρ‖f∗ȳ ‖

}]
.

Let r =
τ

(α+ δ)

{
‖z‖+ ‖R(ȳ)‖+ ‖ȳ‖+ ρ‖f∗ȳ ‖

}
and K = {x ∈ H : ‖ȳ − x‖ ≤

r}. Then, D0 = {ȳ} and K are both weakly compact convex subsets of H, and

Math. Model. Anal., 20(6):819–835, 2015.
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for each x ∈ H \ K, there exists a ȳ ∈ Co (D0 ∪ {ȳ}) such that f(ȳ, x) > 0.
Hence, all the conditions of Lemma 1 are satisfied. Then, there exists an x̄ ∈ H
such that f(y, x̄) ≤ 0, for all y ∈ H, i.e.,

〈(I −R)x̄− z, η(y, x̄)〉+ ρφ(y)− ρφ(x̄) ≥ 0, ∀y ∈ H.

Now, we show that x̄ is a unique solution of problem (2.6). Suppose that
x1, x2 ∈ H are two arbitrary solutions of problem (2.6). Then, we have

〈(I −R)x1 − z, η(y, x1)〉+ ρφ(y)− ρφ(x1) ≥ 0, ∀y ∈ H, (2.8)

〈(I −R)x2 − z, η(y, x2)〉+ ρφ(y)− ρφ(x2) ≥ 0, ∀y ∈ H. (2.9)

Taking y = x2 in (2.8) and y = x1 in (2.9) and adding the resulting inequalities,
we obtain

〈(I −R)x1 − z, η(x2, x1)〉+ 〈(I −R)x2 − z, η(x1, x2)〉 ≥ 0.

Since η(x, y) = −η(y, x), for all x, y ∈ H, we can write

0 ≤ 〈−(I −R)x1 + z + (I −R)x2 − z, η(x1, x2)〉
≥ 〈x1 − x2, η(x1, x2)〉 − 〈R(x1)−R(x2), η(x1, x2)〉. (2.10)

As η is strongly monotone with constant δ and R is η-relaxed Lipschitz con-
tinuous with constant α, from (2.10), it follows that

δ‖x1−x2‖2+α‖x1−x2‖2≤〈x1−x2−z, η(x1, x2)〉−〈R(x1)−R(x2), η(x1, x2)〉 ≤ 0,

and hence we must have x1 = x2. This completes the proof.

The following example exhibits that all the conditions on η and R of The-
orem 1 are satisfied.

Example 1. Let H = R and the mapping η : R× R −→ R be defined by

η(x, y) =


(x− y) if |xy| < c

2 ,
2
c |xy|(x− y) if c

2 ≤ |xy| < c,
1
c (x− y) if |xy| ≥ c,

where c > 0 is any number. Then, it is easy to observe that

(i) 〈η(x, y), x− y〉 ≥ |x− y|2, for all x, y ∈ R, i.e., η is 1-strongly monotone;

(ii) η(x, y) = −η(y, x), for all x, y ∈ R;

(iii) |η(x, y)| ≤ 1
c |x− y|, for all x, y ∈ R, i.e., η is 1

c -Lipschitz continuous.

Let R : R −→ R be defined by R(x) = −kx, for any x ∈ R and k > 0.
Therefore,

〈R(x)−R(y), η(x, y)〉 =


−k(x− y)2 if |xy| < c

2 ,

− 2k
c |xy|(x− y)2 if c

2 ≤ |xy| < c,

−kc (x− y)2 if |xy| ≥ c.
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It can be easily seen that

〈R(x)−R(y), η(x, y)〉 ≤ −k
c
|x− y|2, ∀x, y ∈ R,

i.e., R is η-relaxed Lipschitz continuous mapping with constant k/c.
Now, for any x, z ∈ R, the mapping

h(y, x) = 〈z − (I −R)x, η(y, x)〉
= 〈z − (1 + k)x, η(y, x)〉 = (z − (1 + k)x) η(y, x)

is 0-DQCV in y. If it is false, then there exists a finite set {y1, · · · , ym} and

x0 =
m∑
i=1

tiyi with ti ≥ 0 and
m∑
i=1

ti = 1 such that for each i = 1, · · · ,m,

0 < h(yi, x0) =


(z − (1 + k)x0) (x0 − yi) if |xy| < c

2 ,
2
c |x0yi| (z − (1 + k)x0) (x0 − yi) if c

2 ≤ |xy| < c,
1
c (z − (1 + k)x0) (x0 − yi) if |xy| ≥ c.

Here, we can see that (z − (1 + k)x0) (x0 − yi) > 0, for each i = 1, · · · ,m, and
therefore

0 <

m∑
i=1

ti (z − (1 + k)x0) (x0 − yi) = (z − (1 + k)x0) (x0 − x0) = 0,

which is not possible. Therefore, for any x, z ∈ R, the mapping h(y, x) is
0-DQCV in y. Hence, η and R satisfy all the conditions of Theorem 1.

Theorem 2. If all the conditions of Theorem 1 are satisfied, then the relaxed

η-proximal operator R
∂ηφ
ρ,I of φ is τ/(α+ δ)-Lipschitz continuous.

Proof. By Theorem 1, the relaxed η-proximal operator R
∂ηφ
ρ,I of φ is well-

defined. For any given z1, z2 ∈ H, let x1 = R
∂ηφ
ρ,I (z1) and x2 = R

∂ηφ
ρ,I (z2) be

such that

〈(I −R)x1 − z1, η(y, x1)〉 ≥ ρφ(x1)− ρφ(y), ∀y ∈ H, (2.11)

〈(I −R)x2 − z2, η(y, x2)〉 ≥ ρφ(x2)− ρφ(y), ∀y ∈ H. (2.12)

Taking y = x2 in (2.11) and y = x1 in (2.12) and adding the resulting inequal-
ities, we have

〈(I −R)x1 − z1, η(x2, x1)〉+ 〈(I −R)x2 − z2, η(x1, x2)〉 ≥ 0. (2.13)

Since η(x, y) = −η(y, x), η is strongly monotone with constant δ, Lipschitz con-
tinuous with constant τ and R is η-relaxed Lipschitz continuous with constant
α, from (2.13), we get

〈x1 − x2, η(x2, x1)〉+ 〈R(x2)−R(x1), η(x2, x1)〉 ≥ 〈z1 − z2, η(x2, x1)〉
⇒ 〈x2 − x1, η(x2, x1)〉 − 〈R(x2)−R(x1), η(x2, x1)〉 ≤ 〈z2 − z1, η(x2, x1)〉,

Math. Model. Anal., 20(6):819–835, 2015.
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which implies that

(δ + α)‖x2 − x1‖2 ≤ 〈z2 − z1, η(x2, x1)〉 ≤ τ‖z2 − z1‖‖x2 − x1)‖,

i.e.,

‖x2 − x1‖ ≤
τ

(α+ δ)
‖z2 − z1‖.

Therefore, the relaxed η-proximal operator R
∂ηφ
ρ,I of φ is

τ

(α+ δ)
-Lipschitz con-

tinuous. This completes the proof. ut

3 Formulation of the Problem and Proximal Point Algo-
rithm

Let P, f, g : H −→ H, N, η : H ×H −→ H be the single-valued mappings, and
A,B,C,D : H −→ CB(H) be the set-valued mappings. Let φ : H × H −→
R∪{+∞} be such that for each fixed x ∈ H, φ(·, x) is lower semicontinuous, η-
subdifferential, proper functional on H (may not be convex) satisfying g(H) ∩
dom(∂ηφ(·, x)) 6= ∅, where ∂ηφ(·, x) is the η-subdifferentiable of φ(·, x). We
consider the following variational-like inclusion problem:

Find x ∈ H, u ∈ A(x), v ∈ B(x), w ∈ C(x) and e ∈ D(x) such that
g(x) ∈ dom(∂ηφ(·, x)) and

〈P (u)− (f(v)−N(w, e)), η(y, g(x))〉 ≥ φ(g(x), x)− φ(y, x), ∀y ∈ H. (3.1)

Special Cases:

(i) If N ≡ 0, η(y, g(x)) = y − g(x) and φ(x, y) = φ(x), then problem (3.1)
reduces to the following problem which is to find x ∈ H, u ∈ A(x) and
v ∈ B(x) such that

〈P (u)− f(v), y − g(x)〉 ≥ φ(g(x))− φ(y), ∀y ∈ H. (3.2)

Problem (3.2) is called set-valued nonlinear generalized variational inclu-
sion problem which was introduced by Huang [21].

(ii) If N ≡ 0, P, f, g are identity mappings, A,B are single-valued mappings
and φ(x, y) = φ(x), then problem (3.1) coincides with the following prob-
lem of finding x ∈ H such that

〈A(x)−B(x), η(y, x)〉 ≥ φ(x)− φ(y), ∀y ∈ H. (3.3)

Problem (3.3) was considered and studied by Lee et al. [24].

For suitable choices of operators involved in the formulation of problem
(3.1), one can obtain problems considered and studied by Ding and Lou [13],
Salahuddin and Ahmad [30] and Verma [32], etc..

Definition 5. Let f : H −→ H be a single-valued mapping, and A : H −→ 2H

be a set-valued mapping. For all x, y ∈ H, the mapping N(·, ·) : H ×H −→ H
is called
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(i) relaxed Lipschitz continuous in the first argument with respect to A if,
there exists a constant r1 > 0 such that

〈N(u1, ·)−N(u2, ·), x− y〉 ≤ −r1‖x− y‖2, ∀u1 ∈ A(x), u2 ∈ A(y);

(ii) Lipschitz continuous in the first argument with respect to A if, there
exists a constant λN1

> 0 such that

‖N(u1, ·)−N(u2, ·)‖ ≤ λN1
‖u1 − u2‖, ∀u1 ∈ A(x), u2 ∈ A(y).

Similarly, we can define relaxed Lipschitz continuity of N in the second argu-
ment with respect to A and Lipschitz continuity of N in the second argument
with respect to A.

Definition 6. Let A : H −→ 2H be a set-valued mapping, and f : H −→ H
be a single-valued mapping. Then, A is said to be

(i) relaxed Lipschitz continuous with respect to f if, there exists a constant
k > 0 such that

〈f(u1)− f(u2), x− y〉 ≤ −k‖x− y‖2, ∀u1 ∈ A(x), u2 ∈ A(y);

(ii) relaxed monotone with respect to f if, there exists a constant c > 0 such
that

〈f(u1)− f(u2), x− y〉 ≥ −c‖x− y‖2, ∀u1 ∈ A(x), u2 ∈ A(y).

We first transfer the variational-like inclusion problem (3.1) into a fixed
point problem.

Theorem 3. (x, u, v, w, e) is a solution of variational-like inclusion problem
(3.1) if and only if (x,u,v,w,e) satisfies the following relation:

g(x) = R
∂ηφ(·,x)
ρ,I [(I −R)g(x)− ρ{P (u)− (f(v)−N(w, e))}] ,

where x ∈ H, u ∈ A(x), v ∈ B(x), w ∈ C(x), e ∈ D(x), ρ > 0 and R
∂ηφ(·,x)
ρ,I =

[(I −R) + ρ∂ηφ(·, x)]−1 is the relaxed η-proximal operator of φ(·, x).

Proof. One can prove it easily by using the Definition 4 and hence we omit
it. ut

Based on Theorem 3, we suggest the following iterative algorithm for ap-
proximating the solutions of variational-like inclusion problem (3.1).

Algorithm 1. Let P,R, f, g : H −→ H, N, η : H×H −→ H be the single-valued
mappings such that g(H) = H, A,B,C,D : H −→ CB(H) be the set-valued
mappings, and I : H −→ H be an identity mapping. Let φ : H × H −→
R ∪ {+∞} be a lower semicontinuous, η-subdifferential, proper functional on
H (may not be convex) satisfying g(H)∩ dom(∂ηφ(·, x)) 6= ∅. For any x0 ∈ H,
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u0 ∈ A(x0), v0 ∈ B(x0), w0 ∈ C(x0) and e0 ∈ D(x0), as g(H) = H, there
exists a point x1 ∈ H such that

g(x1) = R
∂ηφ(·,x0)
ρ,I [(I −R)g(x0)− ρ{P (u0)− (f(v0)−N(w0, e0))}] .

By Nadler’s Theorem [28], there exists u1 ∈ A(x1), v1 ∈ B(x1), w1 ∈ C(x1)
and e1 ∈ D(x1) such that

‖u1 − u0‖ ≤ D̃(A(x1), A(x0)), ‖v1 − v0‖ ≤ D̃(B(x1), B(x0)),

‖w1 − w0‖ ≤ D̃(C(x1), C(x0)), ‖e1 − e0‖ ≤ D̃(D(x1), D(x0)).

Let

g(x2) = R
∂ηφ(·,x1)
ρ,I [(I −R)g(x1)− ρ{P (u1)− (f(v1)−N(w1, e1))}] .

Continuing the above scheme inductively, we can define the following iter-
ative sequences {xn}, {un}, {vn}, {wn} and {en} for solving variational-like
inclusion problem (3.1) as follows:

g(xn+1) = R
∂ηφ(·,xn)
ρ,I [(I −R)g(xn)− ρ{P (un)− (f(vn)−N(wn, en))}] ,

un ∈ A(xn), ‖un+1 − un‖ ≤ D̃(A(xn+1), A(xn)),

vn ∈ B(xn), ‖vn+1 − vn‖ ≤ D̃(B(xn+1), B(xn)),

wn ∈ C(xn), ‖wn+1 − wn‖ ≤ D̃(C(xn+1), C(xn)),

en ∈ D(xn), ‖en+1 − en‖ ≤ D̃(D(xn+1), D(xn)),

where ρ > 0 is a constant and n = 0, 1, 2, · · · .

Now, we prove the following existence and convergence result for variational-
like inclusion problem (3.1).

Theorem 4. Let P,R, f, g : H −→ H and N : H × H −→ H be the single-
valued mappings such that P is Lipschitz continuous with constant λP ; g is
Lipschitz continuous with constant λg and strongly monotone with constant ξ
such that g(H) = H; R is Lipschitz continuous with constant λR, relaxed Lips-
chitz continuous with constant α and strongly monotone with respect to g with
constant δR; f is Lipschitz continuous with constant λf ; N is Lipschitz con-
tinuous in the first argument with respect to C with constant λN1

, Lipschitz
continuous in the second argument with respect to D with constant λN2

, re-
laxed Lipschitz continuous with respect to C in the first argument with constant
r1, relaxed Lipschitz continuous with respect to D in the second argument with
constant r2. Let A,B,C,D : H −→ CB(H) be D̃-Lipschitz continuous map-
pings with constants δA, δB, δC and δD, respectively, B is relaxed Lipschitz
continuous with respect to f with constant k, and A is relaxed monotone with
respect to P with constant c. Let I : H −→ H be an identity mapping and
η : H ×H −→ H be a strongly monotone with constant δ and Lipschitz contin-
uous with constant τ such that η(x, y) = −η(y, x), for all x, y ∈ H, and for any
given z ∈ H, the mapping h(y, x) = 〈z−(I−R)x, η(y, x)〉 is 0-DQCV in y. Let



Relaxed η-proximal Operator 829

φ : H×H −→ R∪{+∞} be such that for each x ∈ H, φ(·, x) is lower semicon-
tinuous, η-subdifferentiable, proper functional satisfying g(x) ∈ dom(∂ηφ(·, x)),
where ∂ηφ(·, x) is the η-subdifferentiable of φ(·, x). Suppose that there exist
constants ρ > 0, µ > 0 such that for each z ∈ H∥∥∥R∂ηφ(·,xn)

ρ,I (z)−R∂ηφ(·,xn−1)
ρ,I (z)

∥∥∥ ≤ µ‖xn − xn−1‖, (3.4)

and the following condition is satisfied:

|α+ δ| ≤ τ(t1 + t2 + t3)
√

2ξ2 − 4µ2

2µ2 − ξ2
, (3.5)

where

t1 =
√
λ2
g − 2δ2

R + λ2
Rλ

2
g, t2 =

√
1− 2ρ(k − c) + ρ2 {λfδB + λP δA}2,

t3 =
√

1− 2ρ(r1 + r2) + ρ2
{
λ2
N1
δ2
C + λ2

N2
δ2
D

}
.

Then, the iterative sequences {xn}, {un}, {vn}, {wn} and {en} generated by
Algorithm 1 converge strongly to x, u, v, w and e, respectively and (x, u, v, w, e)
is the solution of variational-like inclusion problem (3.1).

Proof. By Cauchy-Schwartz inequality and strongly monotonicity of g with
constant ξ, we have

‖g(xn+1)− g(xn)‖‖xn+1 − xn‖ ≥ 〈g(xn+1)− g(xn), xn+1 − xn〉
≥ ξ‖xn+1 − xn‖2,

which implies that

‖xn+1 − xn‖ ≤
1

ξ
‖g(xn+1)− g(xn)‖. (3.6)

By Algorithm 1, we have

g(xn+1) = R
∂ηφ(·,xn)
ρ,I [(I −R)g(xn)− ρ{P (un)− (f(vn)−N(wn, en))}] .

Hence, we have

‖g(xn+1)−g(xn)‖=
∥∥R∂ηφ(·,xn)

ρ,I [(I−R)g(xn)−ρ{P (un)−(f(vn)−N(wn, en))}]

−R∂ηφ(·,xn−1)
ρ,I [(I−R)g(xn−1)−ρ{P (un−1)− (f(vn−1)−N(wn−1, en−1))}]

∥∥.
Since ‖x + y‖2 ≤ 2

(
‖x‖2 + ‖y‖2

)
, using the Lipschitz continuity of relaxed
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η-resolvent operator and condition (3.4), we have

1

2
‖g(xn+1)−g(xn)‖2≤

∥∥R∂ηφ(·,xn)
ρ,I [(I−R)g(xn)−ρ{P (un)−(f(vn)−N(wn, en))}]

−R∂ηφ(·,xn)
ρ,I [(I−R)g(xn−1)−ρ{P (un−1)−(f(vn−1)−N(wn−1, en−1))}]

∥∥2

+
∥∥R∂ηφ(·,xn)

ρ,I [(I−R)g(xn−1)−ρ{P (un−1)−(f(vn−1)−N(wn−1, en−1))}]

−R∂ηφ(·,xn−1)
ρ,I [(I−R)g(xn−1)−ρ{P (un−1)−(f(vn−1)−N(wn−1, en−1))}]

∥∥2

≤ τ2

(α+ δ)2

∥∥[(I−R)g(xn)−(I−R)g(xn−1)]−ρ{P (un)− (f(vn)−N(wn, en))}

+ ρ{P (un−1)− (f(vn−1)−N(wn−1, en−1))}
∥∥2

+ µ2‖xn − xn−1‖2. (3.7)

We now evaluate

‖[(I −R)g(xn)− (I −R)g(xn−1)]− ρ{P (un)− (f(vn)−N(wn, en))}
+ ρ{P (un−1)− (f(vn−1)−N(wn−1, en−1))}‖
≤ ‖g(xn)− g(xn−1)− [R(g(xn))−R(g(xn−1))]‖+ ‖xn − xn−1

+ ρ[f(vn)− f(vn−1)]− ρ[P (un)− P (un−1)]‖+ ‖xn − xn−1

+ ρ[N(wn, en)−N(wn−1, en−1)]‖. (3.8)

Since g is Lipschitz continuous with constant λg, R is Lipschitz continuous
with constant λR and strongly monotone with respect to g with constant δR,
we have

‖g(xn)− g(xn−1)− [R(g(xn))−R(g(xn−1))]‖2 = ‖g(xn)− g(xn−1)‖2

− 2〈g(xn)−g(xn−1), R(g(xn))−R(g(xn−1))〉+‖R(g(xn))−R(g(xn−1))‖2

≤ λ2
g‖xn − xn−1‖2 − 2δ2

R‖xn − xn−1‖2 + λ2
Rλ

2
g‖xn − xn−1‖2

=
(
λ2
g − 2δ2

R + λ2
Rλ

2
g

)
‖xn − xn−1‖2. (3.9)

Since B is relaxed Lipschitz continuous with respect to f with constant k, A is
relaxed monotone with respect to P with constant c, P is Lipschitz continuous
with constant λP , f is Lipschitz continuous with constant λf , and A,B are

D̃-Lipschitz continuous with constants δA, δB , respectively, we have

‖xn − xn−1 + ρ[f(vn)− f(vn−1)]− ρ[P (un)− P (un−1)]‖2

= ‖xn − xn−1‖2 + 2ρ〈f(vn)− f(vn−1), xn − xn−1〉 − 2ρ〈P (un)

− P (un−1), xn−xn−1〉+ρ2‖f(vn)−f(vn−1)− [P (un)− P (un−1)]‖2

≤
[
1− 2ρ(k − c) + ρ2 {λfδB + λP δA}2

]
‖xn − xn−1‖2.

Since N is Lipschitz continuous in the first argument with respect to C with
constant λN1

, Lipschitz continuous in the second argument with respect to D
with constant λN2

, relaxed Lipschitz continuous with respect to C in the first
argument with constant r1, relaxed Lipschitz continuous with respect to D in
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the second argument with constant r2, and C,D are D̃-Lipschitz continuous
with constants δC , δD, respectively, we have

‖xn − xn−1 + ρ[N(wn, en)−N(wn−1, en−1)]‖2

= ‖xn−xn−1+ρ[N(wn, en)−N(wn−1, en)+N(wn−1, en)−N(wn−1, en−1)]‖2

=‖xn−xn−1+ρ[N(wn, en)−N(wn−1, en)]+ρ[N(wn−1, en)−N(wn−1, en−1)]‖2

≤ ‖xn − xn−1‖2 + ρ2‖N(wn, en)−N(wn−1, en)‖2 + ρ2‖N(wn−1, en)

−N(wn−1, en−1)‖2 + 2ρ〈N(wn, en)−N(wn−1, en), xn − xn−1〉
+ 2ρ〈N(wn−1, en)−N(wn−1, en−1), xn − xn−1〉

≤ ‖xn − xn−1‖2 + ρ2λ2
N1
δ2
C‖xn − xn−1‖2 + ρ2λ2

N2
δ2
D‖xn − xn−1‖2

− 2ρr1‖xn − xn−1‖2 − 2ρr2‖xn − xn−1‖2

=
[
1− 2ρ(r1 + r2) + ρ2

{
λ2
N1
δ2
C + λ2

N2
δ2
D

}]
‖xn − xn−1‖2. (3.10)

Combining (3.9) to (3.10) with (3.8), we have

‖[(I −R)g(xn)− (I −R)g(xn−1)]− ρ{P (un)− (f(vn)−N(wn, en))}
+ ρ{P (un−1)− (f(vn−1)−N(wn−1, en−1))}‖

≤
[√

λ2
g − 2δ2

R + λ2
Rλ

2
g +

√
1− 2ρ(k − c) + ρ2 {λfδB + λP δA}2

+
√

1− 2ρ(r1 + r2) + ρ2
{
λ2
N1
δ2
C + λ2

N2
δ2
D

}]
‖xn − xn−1‖. (3.11)

Using (3.11), (3.7) becomes

‖g(xn+1)− g(xn)‖2 ≤
[

2τ2

(α+ δ)2
Θ(∗)2 + 2µ2

]
‖xn − xn−1‖2, (3.12)

where

Θ(∗) =
√
λ2
g − 2δ2

R + λ2
Rλ

2
g +

√
1− 2ρ(k − c) + ρ2 {λfδB + λP δA}2

+
√

1− 2ρ(r1 + r2) + ρ2
{
λ2
N1
δ2
C + λ2

N2
δ2
D

}
.

Using (3.12), (3.6) becomes

‖xn+1 − xn‖ ≤
1

ξ

( 2τ2

(α+ δ)2
Θ(∗)2 + 2µ2

)1/2

‖xn − xn−1‖

= Θ(z)‖xn − xn−1‖, (3.13)

where

Θ(z) =
1

ξ

( 2τ2

(α+ δ)2
Θ(∗)2 + 2µ2

)1/2

, Θ(∗) = t1 + t2 + t3,

t1 =
√
λ2
g − 2δ2

R + λ2
Rλ

2
g, t2 =

√
1− 2ρ(k − c) + ρ2 {λfδB + λP δA}2,

t3 =
√

1− 2ρ(r1 + r2) + ρ2
{
λ2
N1
δ2
C + λ2

N2
δ2
D

}
.
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Condition (3.5) implies that 0 < Θ(z) < 1, it follows from (3.13) that {xn}
is a Cauchy sequence in H and hence xn → x. Since the mapping A,B,C
and D are D̃-Lipschitz continuous and using Algorithm 1, it follows that {un},
{vn}, {wn} and {en} are also Cauchy sequences, we can assume that un → u,
vn → v, wn → w and en → e. Since R, p, f, g, I and N(·, ·) are continuous
mappings and by using Algorithm 1, we have

g(x) = R
∂ηφ(·,x)
ρ,I [(I −R)g(x)− ρ{P (u)− (f(v)−N(w, e))}] .

It can be easily proved by using the techniques of Ahmad et al. [3] that
d(u,A(x)) = 0. Since A(x) ∈ CB(H), it follows that u ∈ A(x). Similarly, we
can show that v ∈ B(x), w ∈ C(x) and e ∈ D(x). By Theorem 3, we conclude
that (x, u, v, w, e) is the solution of variational-like inclusion problem (3.1).
This completes the proof.

4 Conclusions

It is well known that the proximal gradient methods are the generalized forms
of projection methods. The proximal gradient methods play an important
role in analysis and to find the solution of variational inclusion problems and
equivalent problems.

Most of the splitting methods are based on the resolvent operators of the
form [I + λM ]−1, where M is a set-valued monotone mapping, λ is a positive
constant and I is the identity mapping.

Due to interesting applications of above discussed concept, in this paper, we
introduce a generalized proximal operator i.e., a relaxed η-proximal operator
and prove some of its properties. Finally, this new concept is applied to solve a
variational-like inclusion problem. We remark that our results may be further
considered in higher dimensional spaces.
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Appendix: Verification of Θ(z) < 1

The condition (3.5) states that

|α+ δ| < τθ(∗)
√

2ξ2 − 4µ2/(2µ2 − ξ2), θ(∗) = t1 + t2 + t3,

where t1 =
√
λ2
g − 2δ2

R + λ2
Rλ

2
g, t2 =

√
1− 2ρ(k − c) + ρ2 {λfδB + λP δA}2,

t3 =
√

1− 2ρ(r1 + r2) + ρ2
{
λ2
N1
δ2
C + λ2

N2
δ2
D

}
. Squaring both sides of the

above inequality, we obtain

(α+ δ)2(2µ2 − ξ2)2 < τ2θ(∗)2
(2ξ2 − 4µ2)

⇒ (α+ δ)2(2µ2 − ξ2)2 < τ2θ(∗)2{−2(2µ2 − ξ2)}
⇒ (α+ δ)2(2µ2 − ξ2) < −2τ2θ(∗)2

,

which implies that

2τ2θ(∗)2
+ (α+ δ)2(2µ2 − ξ2) < 0

⇒ 2τ2θ(∗)2
+ 2µ2(α+ δ)2 − ξ2(α+ δ)2 < 0

⇒ 2τ2θ(∗)2
+ 2µ2(α+ δ)2 < ξ2(α+ δ)2.

Dividing the above inequality by (α+ δ)2, we obtain

2τ2θ(∗)2

(α+ δ)2
+ 2µ2 < ξ2.

The above inequality implies that√
2τ2

(α+ δ)2
θ(∗)2

+ 2µ2 < 1,

which implies that

Θ(z) =
1

ξ

√
2τ2

(α+ δ)2
θ(∗)2

+ 2µ2 < 1.

Math. Model. Anal., 20(6):819–835, 2015.


	Introduction
	Preliminaries
	Formulation of the Problem and Proximal Point Algorithm
	Conclusions
	References

